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Abstract—With the rapid development of light field technology,
depth estimation has been highlighted as one of the critical
problems in the field, and a number of approaches have been
proposed to extract the depth of the scene. However, depth
estimation by stereo matching becomes difficult and unreliable
when the captured images lack both color and feature informa-
tion. In this paper, we propose a scheme that extracts robust
depth from monochromatic, feature-sparse scenes recorded in
orthographic sub-aperture images. Unlike approaches which rely
on the rich color and texture information across the sub-aperture
views, our approach is based on depth from focus techniques.
First, we superimpose shifted sub-aperture images on top of an
arbitrarily chosen central image. To focus on different depths, the
shift amount is varied based on the micro-lens array properties.
Next, an area-based depth estimation approach is applied to
find the best match among the focal stack and generate the
dense depth map. This process is repeated for each sub-aperture
image. Finally, occlusions are handled by merging depth maps
generated from different central images followed by a voting
process. Results show that the proposed scheme is more suitable
than conventional depth estimation approaches in the context of
orthographic captures that have insufficient color and feature
information, such as microscopic fluorescence imaging.

Index Terms—Depth estimation, integral imaging, ortho-
graphic views, depth from focus.

I. INTRODUCTION

Since integral photography (IP) was proposed by Lippmann
based on the microlens array (MLA) [1], light field has become
an active research topic and many studies on capturing the
spatial-angular information of 3D scenes have been reported
[2], [3]. Among post-processing techniques of multiple sub-
aperture images captured by light field cameras, depth estima-
tion is a fundamental problem due to its wide range of potential
applications, such as image-based rendering [4] and refocusing
[2]. Although various depth estimation schemes have been
proposed during the past decade [5], [6], very little work has
explicitly considered the challenging task of estimating depth
from monochromatic images with scarce scene features, where
either color or textural cues is insufficient for conventional
stereo matching methods.

In this paper, we address the depth estimation problem for
monochromatic feature-sparse images. Our main contributions
are: 1) A focal stack generation scheme for orthographic
captures by shifting and superimposing normalized elemental
images (EIs). 2) An area-based depth estimation method by

measuring normalized cross-correlation (NCC) across the orig-
inal central image and its corresponding focal stack. 3) A depth
candidate voting scheme designed for occlusion handling in
sparse-feature space.

The paper is organized as follows: we first briefly revisit
related depth from focus (DFF) and Fourier integral micro-
scope (FIMic) techniques in Section II. Section III provides
more detailed description of the proposed method, followed
by experimental results and analysis presented in Section IV.
Finally, this paper is concluded in Section V.

II. RELATED WORK

A. Depth from Focus

DFF refers to methods that estimate the depth of the 3D
scene from a focal stack [7]–[9]. A focal stack is defined as
a set of images that are captured with varying focus settings,
and it is widely used in various applications, such as light
field microscopy [10], controlling depth of field (DoF) [11],
and depth recovery [12]. In order to determine the depth of
an object point by using the focal stack, a focus measure that
describes the sharpness of an object is calculated in small
regions for each captured image. The focus measure attains the
maximum when the object is in focus, and the corresponding
focus setting is assigned as the depth of the object. In this
paper, we explore the focal stack generation from captured
orthographic views.

B. Fourier Integral Microscope

The design of the light field microscope was first initiated
by Jang and Javidi [13], who applied the concept of IP to
the field of microscopy. Shortly after this, Levoy et al. [10]
extended light field microscopy with plenoptic photography.
However, the classical plenoptic camera design presents sev-
eral drawbacks on light field microscopy, including diffraction,
vignetting and reduced spatial resolution.

Recently, Scrofani et al. [14] proposed a FIMic scheme
based on a telecentric architecture and Fourier-plane recording
by placing an MLA at the aperture stop of a microscope
objective. The FIMic captures a set of orthographic per-
spectives of a 3D specimen. Compared with conventional
plenoptic microscopes, the FIMic demonstrates an extended
DoF, an improved spatial resolution, and reduced influence
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Fig. 1: Elemental images of fluorescent cotton fiber captured
by the FIMic. Seven fully captured images are highlighted with
circles and labeled with their corresponding row and column
indices (r, c).

from optical aberrations such as point spread function (PSF)
and vignetting.

III. PROPOSED DEPTH ESTIMATION METHOD

In contrast to studies that are dedicated to depth estimation
based on abundant color and feature information, the depth
estimation method we propose is designed for monochromatic
and feature-sparse images, such as fluorescence microscopy as
shown in Fig. 1. In such images, conventional feature-based
correspondence search methods become unreliable in detecting
robust and accurate correspondences due to the shortage of
color and texture information. Therefore, we propose a depth
estimation scheme based on DFF and ray-tracing.

A. Focal Stack Generation

For integral images recorded by an orthographic captur-
ing setup such as the FIMic, each micro-lens captures an
orthographic sub-aperture image, or the EI, of the scene from
a slightly different perspective. A disparity vector can be
estimated for every pair of EIs if any spatial point of the scene
is not occluded in either of the EIs. Therefore, N−1 disparity
vectors can be estimated for N EIs with respect to a chosen
central view. The magnitude and direction of such disparity
vectors indicate the depth of the spatial point and relative
position of two EIs respectively. Thus, we can synthesize
virtual images that focus on any depth plane within the DoF
for an arbitrary EI by superimposing the other EIs with a
shift, where the shift amounts and directions are respectively
determined by the magnitudes and directions of disparity
vectors.

For the hexagonal structure shown in Fig. 1, the left-most
column of EIs is assigned with column index c = 1. The next
left-most column of EIs is assigned with c = 2 and so forth.
Assignment of EI row index r is done in the same manner.

Fig. 2: Examples of the refocused images from the focal stack
generated by shifting EIs towards central image EI=(2, 3),
focusing at indicated depths. Unit of length: µm.

Therefore, each EI is labeled with (r, c) to mark its specific
position in the integral image. Shift amount for each EI with
respect to the chosen central image can be calculated by the
following equation:

(x′, y′) = (x+Dr × cos
π

6
× s, y +Dc × sin

π

6
× s) (1)

where (x, y) is the original coordinate for a pixel in an EI
before shift, (x′, y′) is the superimposed position of (x, y) on
the synthesized central image, focal depth is defined by the
shifted amount s, and finally Dr and Dc are the differences
between the EI and the chosen central image in r and c
respectively. However, bilinear interpolation is required in
order to have correct pixel positions. Finally, images of the
focal stack with respect to the central image can be synthesized
by averaging intensities from all the superimposed EIs:

I(x′, y′) =
1

N

N∑
m=1

Im(x′, y′) (2)

where I(x′, y′) is the intensity value of the refocused image
at position (x′, y′), Im(x′, y′) is the intensity contributed by
image m after shift, and N is the number of EIs.

A focal stack composed of the synthesized images for the
central view can be generated with the depth:

df = s ·∆df −∆F (3)

where df is focal depth, ∆F is the focus offset of the capturing
system and ∆df is the difference between each focal depth
as a consequence of the orthographic sub-aperture projections.
Eight of the refocused images in the generated focal stack for
the central image EI=(2, 3) are shown in Fig. 2.

B. Area-Based Depth Estimation

Indeed, the accurate depth can be derived once the pixel-
wise correspondence problem between an image pair is solved
[3]. However, monochromatic samples, such as fluorescence
and gray-scale images, do not provide sufficient and distinct
information for unique pixel correspondence matching. Hence,
in order to find robust and accurate depths for all pixels, the
area-based approach is used, which considers an n×n window
around each pixel to handle the ambiguities [15] caused by
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Fig. 3: Examples of depth maps (below) generated for the
different EIs (above).

irradiance noise and photometric differences among EIs of the
capturing system.

The depth of a pixel at (x, y) in the original central
image is found by first composing an n × n square window
of neighboring pixels. Then the intensity pattern within the
window is compared with identically positioned windows in
the synthesized images in the focal stack. NCC is employed
as the matching measure between windows, because it is less
sensitive to noise than cross-correlation, and more robust to
photometric differences among micro-lenses than distance-
based measures [16], such as the sum of absolute differences
(SAD) and the sum of squared differences (SSD). NCC for the
n× n window centered at (x, y) between the original central
image Ic and synthesized refocused image Ir is calculated as
follows:

ρIcIr(x, y) =
σ2
IcIr

(x, y)

σIc(x, y) · σIr(x, y)
(4)

with
µI·(x, y) =

1

W

∑
(i,j)

I·(x+ j, y + i) (5)

σ2
I·(x, y) =

1

W

∑
(i,j)

{I·(x+ j, y + i)− µI·}
2 (6)

σ2
IcIr(x, y) =

1

W

∑
(i,j)

{Ic(x+ j, y + i)− µIc(x, y)}

· {Ir(x+ j, y + i)− µIr(x, y)}
(7)

where i, j ∈ [−n, n], W = (2n + 1)2 refers to the window
size, µ is the mean value of the n × n window and ’I·’
denotes either the original central image Ic or the synthesized
refocused image Ir.

Thus, the maximum of NCC value is attained when the
window is in focus, and the corresponding depth is assigned
to the center pixel (x, y) of the window. In case multiple
maximums are attained for a pixel, the best depth can be
identified by verifying the maximum in different scales. By
considering all the pixels (x, y) in the central image Ic, a dense

(a) V=1 (b) V=2

(c) V=3 (d) V=4

Fig. 4: 3D point clouds generated by merging all depth maps
with respect to different voting threshold V .

depth map is generated. This process is repeated to generate
a corresponding depth map for each EI, as shown in Fig. 3.

C. Occlusion Handling

An important benefit of integral photography is that multiple
perspectives are available in a single shot, enabling us to han-
dle the occlusion problem which cannot be tackled by a single-
perspective capture. For spatial points that are not occluded
in any of the EIs, corresponding pixels from different EIs
converge to a single spatial point when focused at the correct
depth, meaning that the intensities of these pixels are identical
if the scene is Lambertian. If we then consider neighboring
pixels in a small window, the intensities in such a window
share the same distribution in all the EIs. However, this no
longer holds when an occlusion occurs and corresponding
pixels of EIs record the light emitted by different spatial points.
Thus, enforcing stereo matching across the EIs on the occluded
area often leads to erroneous depth, causing smooth depth
variations between the occluder and the occluded objects [17].

One way of handling the occlusion problem is by inpainting
the missing information [18]. However, such reasoning about
the consistency of the scene may result in noticeable visual
artifacts and fail to produce realistic imagery. Therefore, we
handle the occlusion problem by collecting information from
all the perspectives and merging them together, not only
to achieve a better robustness, but also to avoid artifacts
introduced during the inpainting process.

In order to handle the occlusions in the scene, we first use
each EI as the central image and generate the corresponding
depth map for it using the aforementioned approach III-B.
After that we reproduce the scene by back-projecting pixels
in all the generated depth maps with respect to the coordinate
system of the point cloud via:

d(x′, y′) = d(x, y) (8)

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 213



where d(x′, y′) and d(x, y) are the depth of generated point
cloud P at (x′, y′) and depth from the depth map at (x, y)
respectively. The transition between depth map coordinates
(x, y) and point cloud coordinates (x′, y′) is given in Eq. 1.

When there is occlusion, the scene can be seen by a subset
of all the EIs and only unoccluded pixels converge to a single
spatial point, showing the same intensity. However, occluded
pixels from the other EIs exhibit no photometric consistency
as they do not converge to any spatial point. Based on the
above reasoning, the accuracy and robustness of the point
cloud can be further improved by introducing a voting scheme:
if a spatial point is seen by at least V EIs, then it is registered
as an object point in the point cloud P , as shown in Fig. 4.
Note that, when V = 1, all the back-projected points from the
depth maps are kept in the point cloud and the voting process
is not involved. Thus, to avoid erroneous depths around the
boundaries of occlusions, one need to assure V > 1 to adopt
voting process.

IV. EXPERIMENTAL RESULTS

Our proposed depth estimation scheme is tested on FIMic
capture, where the MLA is arranged in a hexagonal structure.
Only 7 fully captured EIs which are highlighted in Fig.
1 are used for depth estimation. The focal plane of the
FIMic is indicated as df = 0. The pitch of each EI is 683
pixels, the focus offset ∆F = 70µm, and one-pixel disparity
corresponds to ∆df = 14.5µm depth change. An integral
image depicting cotton fiber is used to evaluate the proposed
method in various aspects. The cotton fiber specimen is stained
with red fluorescent ink, therefore only intensity information
stored in the red channel of the captured image is used for
depth estimation. The specimen is illuminated by a laser of
wavelength λ = 532nm.

A focal stack can be generated with sub-pixel shifts by
applying the scheme proposed in section III-A. However, we
observe that focus settings beyond the DoF of the capturing
setup cannot be used to generate accurate and robust depth. For
the sake of simplicity without compromising the performance
of the proposed method, a focal stack composed of 25 different
focus settings within the DoF of FIMic setup is generated by
shifting one pixel each step towards an arbitrary central EI.
Eight of the 25 refocused images from the focal stack with
respect to central EI=(2, 3) are shown in Fig. 2.

Point clouds (Fig. 4) are generated by merging all the depth
maps and registering points which are seen by at least V depth
maps. It is shown in Fig. 4a that there are many replicas for
the same object when no voting process is involved. Such
phenomenon is caused by registering inaccurate and unstable
spatial points that can be seen by only one view. In order
to achieve an accurate and robust point cloud, it is required
that V > 1 in the voting process. However, the number of
points in the point cloud decreases as V increases, which
means that setting up an excessively high V will discard the
essential information for scene reconstruction, as shown in Fig.
4d. Therefore, V should be chosen according to the specific
capturing setup and application.

To illustrate the accuracy and robustness of the proposed
method in estimating depths, comparisons have been con-
ducted by applying the proposed method, shape from focus
(SFF) [9] and improved SFF based on reliability measure (R-
SFF) [19] with regard to the same central image EI=(2, 3) and
its focal stack. Although the ground truth depth of cotton fiber
cannot be acquired at the present stage, a visually noticeable
comparison can be seen from Fig. 5 that both SFF and R-
SFF fail in recovering the depth information of the cotton
fibers in two ways: 1) The generated point cloud shows
that the estimated depths for all object points are extended
from the surface to the bottom, which means that the correct
depths are not estimated and the scene cannot be reconstructed
afterwards. 2) The fiber structure on depth maps estimated by
SFF and R-SFF is wider than the fiber structure in the captured
EI. This implies that some spatial points are artificially put into
the depth map, resulting in a false structure of the scene after
reconstruction.

In contrast, the proposed method shows several significant
advantages compared with the other SFF-based methods. First
of all, fibers can be distinguished easily by observation, and
the depths for each fiber section is constrained in a reasonable
depth interval that matches the approximate thickness of the
fibers, as shown in Fig. 5a. Secondly, the fiber structure in the
estimated depth map highly matches with the scene recorded
in EIs as shown in Fig. 3, meaning that the reconstructed 3D
scene is of a higher fidelity compared with the other methods.

However, some failures occur for parts where the captured
scene is not in focus at any of the focal planes of the focal
stack, especially in the overlapping area of multiple blurry
threads which are beyond the DoF of the capturing setup. In
this case, all the refocused images from the focal stack cannot
distinguish between the swarm of threads and reconstruct the
thread structure. Such a failure results in the incorrect and
unstable depths, which are visible in the top right corner of
all the depth maps in Fig. 3.

V. CONCLUSIONS

In this paper, we have proposed a method that enables depth
estimation in the event of insufficient color and feature infor-
mation for orthographic views of the scene. This is achieved
by processing orthographic EIs in three steps: initial focal
stack generation, area-based depth estimation, and occlusion
handling by a voting scheme. The experimental results have
shown that the proposed method outperforms the other SFF-
based depth estimation methods and estimates depths with
high accuracy and robustness. In more compromised scenes
(e.g. parts of scene are out of DoF), the proposed method gives
inconsistent results and further improvements are necessary.
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Fig. 5: Depth estimation performance evaluation of the proposed method, SFF, and reliability-based SFF. The top row shows
the point clouds generated by (a) the proposed method with V = 2, (b) SFF and (c) R-SFF with α = 20dB. The bottom row
shows their corresponding estimated depth maps.
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