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Automated human gesture recognition is receiving significant research interest, with
applications ranging from novel acquisition techniques to algorithms, data processing,
and classification methodologies. This tutorial presents an overview of the fundamental
components and basics of the current 3D optical image acquisition technologies for
gesture recognition, including the most promising algorithms. Experimental results
illustrate some examples of 3D integral imaging, which are compared to conven-
tional 2D optical imaging. Examples of classifying human gestures under normal
and degraded conditions, such as low illumination and the presence of partial occlu-
sions, are provided. This tutorial is aimed at an audience who may or may not be
familiar with gesture recognition approaches, current 3D optical image acquisition
techniques, and classification algorithms and methodologies applied to human gesture
recognition. c© 2020 Optical Society of America
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1. INTRODUCTION

The ability to identify human activities is one of the most studied areas in computer
vision and machine learning today. Human activity identification aims to detect and
analyze human activities using information acquired by sensors in an automated man-
ner. These sensors can be RGB cameras, range sensors, or other sensing modalities.

Research on human gesture recognition has a direct influence on various research
fields, e.g., sign language recognition [1]. The lack of widespread sign language
knowledge is a global issue. As a result, there is a large demand to realize efficient
sign language recognition systems, with computers set to play a vital role in this
regard. In the field of tele-robotics [2], robots that can imitate movements and ges-
tures made by humans are in demand. Moreover, there is an urgent need to be able to
operate such robots remotely through gestures via environments such as games, simu-
lations, and virtual reality applications [3]. Human action and gesture recognition are
important when actors (game characters) need to move in a way that seems real and
natural to the player. Human–computer interaction (HCI) [4] has applications in fields
including military, medicine, graphical and data processing, and document annotation
and editing.

Three-dimensional (3D) optical image acquisition and processing is a promising
technique for acquiring 3D information from a scene. It has shown good perform-
ance when object(s) of interest are occluded by obstacles or are under low or even
photon-starved illumination conditions.

As with any expanding research field, tutorials are valuable educational tools for
improving the understanding of the fundamental components and basics of the field.
This paper presents a tutorial overview of the current 3D optical image acquisition
technologies for gesture recognition, including the most promising human gesture
recognition algorithms. In addition, we present examples illustrating the performance
of gesture recognition systems in degraded environments.

Taking the aforementioned diverse applications into account, this tutorial paper
discusses human gesture recognition using 3D optical imaging, structured around
the following three pillars: (1) the main characteristics of 3D image acquisition sys-
tems based on camera arrays, such as integral imaging, with a particular focus on
their properties and advantages when compared to other imaging systems within the
framework of human gesture recognition; examples might include inferring the depth
of a 3D scene or extracting information under degraded environmental conditions
such as very low illumination or when the objects to be viewed are obscured; (2)
current methodologies that use 3D information for human gesture/action classifica-
tion; and (3) a series of real gesture recognition experiments and examples where the
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advantages of 3D optical imaging systems are illustrated in terms of human gesture
recognition performance metrics. We consider this structure useful to meet the main
objectives of this tutorial: (a) presenting a wide variety of sensing, acquisition, and
processing techniques that are currently being employed in gesture recognition; (b)
understanding the main components of automated gesture recognition using optical
imaging; and (c) proposing an optimal acquisition methodology for human gesture
recognition that works not only under “normal conditions” but also under sub-optimal
or degraded conditions.

The study is supported by a wealth of citations to assist readers and provide additional
details regarding the topics covered in this tutorial [1–114]. We may have overlooked
some relevant works, as it is not possible to present an exhaustive list of related stud-
ies in a single tutorial paper, for which we apologize in advance.

The rest of this paper is organized as follows. Section 2 provides a summary of the
current data acquisition technologies and recognition methodologies. Section 3 dis-
cusses the main characteristics and properties of the different types of 3D optical
technologies and configurations. In addition, details regarding the advantages of 3D
optical imaging under low illumination and degraded conditions, e.g., in the presence
of occlusions, and low illumination environments are provided. Section 4 presents an
overview of human gesture recognition methodologies and algorithms from a pattern

Table 1. List of Acronyms and Initials Used in this Tutorial
Acronym Definition

AUC Area under the curve
BoW Bag of words
CCD Charge-coupled device
CMOS Complementary metal-oxide semiconductor
CNNs Convolutional neural networks
DBF Depth-based filtering
DOF Depth of field
EMG Electromyography
FN False negative
FOV Field of view
FP False positive
FT Fourier transform
HCI Human–computer interaction
HOF Histogram of optical flow
HOG Histogram of oriented gradients
GHOG Global histogram of oriented gradients
IMUs Inertial measurement units
LMCs Leap motion controllers
LSTM Long short-term memory
LWIR Long-wave infrared
MCC Matthews’s correlation coefficient
ML Maximum-likelihood
MLA Microlens array
PCA Principal component analysis
PMLEM Penalized maximum-likelihood expectation maximization
POE Peak-to-output energy
RBF Radial basis function
ReLU Rectified linear unit
RGB-D Red green blue-depth
RNN Recurrent neural network
ROC Receiver operating characteristic
ROI Region of interest
SL Structured light
STIPs Spatio-temporal interest points
SVM Support vector machine
TN True negative
ToF Time-of-flight
TP True positive
TV Total variation
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recognition perspective, including the main performance metrics used to assess the
capability of the gesture recognition systems. Section 5 presents real experiments
conducted on human gesture recognition under normal conditions, as well as under
occlusions and degraded environmental conditions. Section 6 concludes the paper.
The acronyms and initials used in this tutorial are listed in Table 1.

2. FUNDAMENTALS OF HUMAN GESTURE RECOGNITION

Gestures are an intrinsic part of most of our daily actions and activities and are a cru-
cial component of human communication, either helping with speech cognition, in
some cases for people with impaired hearing function, or replacing spoken language
in circumstances in which the communication conditions are degraded (underwater,
noisy environments, secret communications, etc.). Gestures should not be confused
with other hand movements. In general, gestures start slowly, then have a quicker
part, and finish by returning to a resting position. These features could be used to help
define a classification strategy.

The hand is the body part involved most frequently in defining a gesture.
Consequently, the hand is the body part best adapted for communication and, there-
fore, best suited for integration with HCI. According to [5,6], approximately 21% of
all gestures involve just the hands, 7% the hand and the head, and 7% the body.

Applications of human gesture recognition are numerous and include HCI, human–
machine interaction, virtual reality, communications, entertainment, security, and
autonomous driving, to name just a few. It is an important component of technolo-
gies aimed at assisting the handicapped and the elderly, helping them to deliver a
significant impact.

Human gesture recognition involves the following processing steps: (1) data acquisi-
tion, (2) feature characterization, including extraction and/or reduction, and (3) classi-
fication based on these features (Fig. 1).

Chronologically, the first effort towards the acquisition of data useful for gesture
recognition came from the use of gloves that incorporated sensors. These first devices
were both uncomfortable and considerably expensive. Thereafter, cameras started to
be used as a cheap and easy to use (and manage) data acquisition alternative. Today,
there are a myriad of sensors that can be used for gesture recognition. We can char-
acterize gestures (from an acquisition viewpoint) using vision-based or sensor-based
approaches.

Vision-based approaches are based on the acquisition of human gestures through a
remote camera (or camera setup). Common image acquisition setups include:

Figure 1

Human gesture recognition workflow.
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• Single camera. From a cost-efficiency perspective, and with the technological evo-
lution of cameras, single cameras (a video camera, smartphone, or webcam) are a
competitive solution, although they may be limited in terms of performance.

• Stereo-camera or a camera array. The use of two or more cameras is a promising
solution for gesture recognition because these systems can capture features that are
helpful for classification, particularly those related to 3D scene information, such
as depth, body shape, location, and orientation [7,8].

• Active sensing techniques. These techniques are based on the projection of struc-
tured light on a scene [9]. Examples include RGB-D sensors such as Kinect and/or
leap motion controllers (LMCs) [10].

• Techniques based on the use of body markers [11]. Information about the body or
hand position in 3D space can be obtained using LED lights or elements such as
colored gloves.

In the case of sensor-based approaches, there are many devices that can acquire infor-
mation about the position, motion, and trajectory (including the speed vector) through
the following [12]:

• Inertial measurement units (IMUs). These sensors measure the acceleration, posi-
tion, and several other features associated with the fingers.

• Electromyography (EMG). This measures how the electrical signals evolve
through the muscles in the human body, thereby inferring the movements made by
the hands and fingers.

• WiFi and radar. These techniques use radio waves to detect the signal changes as
propagating waves interact with the human body/gesture movement. These tech-
niques are receiving increasing interest among the research community because
of the low sensor costs, their recognition accuracy, and their almost ubiquitous
presence, particularly with respect to WiFi signals [13–16].

Stereo vision is a passive 3D imaging technology. It is used to obtain a 3D scene
from two calibrated imaging sensors; it extracts the depth information of the
3D scene via triangulation between the imaging sensors based on image cor-
respondences. In stereo vision, it is important to find the matched features and
image correspondences. The accuracy of the extracted depth map is limited by the
ambiguities of feature matching.

• Alternative approaches. Flexible sensing technologies can be adapted to
the hand structure. Other approaches include mechanical and ultrasonic
sensors/technologies.

Among these techniques, human gesture recognition using 3D information obtained
from RGB-D sensors and camera-array setups has seen a significant increase in
research interest. RGB-D sensors are usually based on time-of-flight (ToF) technolo-
gies, or structured light (SL) approaches. In contrast, the 3D information obtained
from a camera-array setup is inferred using the different positions of the cameras.
It is a passive sensing acquisition technology, applied in cases where active sensing
technologies are inadequate, mainly in outdoor environments and for non-controlled
illumination conditions.
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Each type of sensor has its own advantages and drawbacks. As summarized elsewhere
[17], gloves are precise but uncomfortable, ToF sensors depend heavily on the scene
geometry, and RGB-D sensors perform best indoors. For single cameras, durabil-
ity is an issue, and for stereo and multiple cameras, the computational complexity
and calibration can create a source of uncertainty. Alternative acquisition systems
and technologies related to human gesture recognition and analysis are described
elsewhere [18–21]. In some cases, the acquisition occurs under relatively controlled
environmental acquisition conditions. In other cases, specific and simple-to-identify
gestures are considered, using an RGB-D sensor.

Regarding the second processing step (feature characterization), we should stress that,
depending on the type of information, we can generate a gesture representation from
two different perspectives [22]:

• Three-dimensional model-based strategies. These approaches help describe the
main features of hand gesture in a 2D or 3D space. These methodologies can be
sub-divided into (a) volumetric and (b) skeletal models. The former takes the space
occupied by the hand gestures and its dynamic behavior into account, whereas the
latter interprets the hand gestures as a group of angles (and parameters derived
from them) and segment lengths.

• Appearance-based approaches. Features are derived directly from images or videos
and compared with those obtained from gesture templates.

An effective way to characterize gestures is using 3D information. Three-dimensional
data, including depth data, provide a rich description of a scene, particularly when
compared to the analysis of a 2D image, because 3D data contain additional infor-
mation pertaining to the third (z) space coordinate. Stereo cameras and multi-array
systems can be used to extract or infer 3D information, including depth information.
Range cameras can be used to combine depth information with 2D intensity cues.

Human action recognition and, in particular, gesture recognition presents a series
of challenges, including (1) the presence of occlusions; (2) illumination conditions,
such as illumination regimes and the presence of non-homogeneities; (3) complex
backgrounds; (4) intra- and inter-class similarity and the variability of actions, for
example, each action performed by an individual is unique; and (5) dynamic features
of the movement. All of these conditions affect the classification performance of any
type of gesture recognition system substantially.

A ToF 3D imaging system consists of a passive CMOS image sensor (camera)
with an active modulated light source such as a laser or light-emitting diodes
(LEDs). The active light source is used to illuminate the scene, and the light
reflected from the scene is acquired using a dedicated sensor. The phase differ-
ence between the emitted and reflected light is used to estimate the distance and
depth information for the objects in the scene. In order to estimate the correspond-
ing depth information, ToF requires highly accurate wave delay measurements. It
is used typically for indoor and short-range applications.

Current 3D optical imaging technologies can solve some of the abovementioned prob-
lems in gesture recognition. They outperform systems based on 2D information when
dealing with partial actions, gesture obstructions, and low illumination conditions.
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3. BASIC THEORY OF 3D OPTICAL CAPTURE AND IMAGING SYSTEMS

In Section 2, we presented a succinct overview of the acquisition technologies cur-
rently used in human gesture recognition. In Section 3, we focus our attention on
acquisition technologies that can provide 3D human gesture data using optical and
RGB-D information.

The first of these techniques is integral imaging, which is a 3D technique designed
specifically for acquiring the spatio-angular information of the rays emitted by 3D
scenes. This is facilitated by capturing multiple perspectives, with both horizontal and
vertical parallaxes, in ambient light, i.e., under polychromatic and spatially incoherent
illumination [23–38].

3.1. Array of Digital Cameras

At present there are three architectures for implementing the Lippmann concept for
the capture of 3D information of macroscopic scenes. First, we analyze the case in
which the Lippmann concept is implemented using arrays of digital cameras [39,40]
(see Fig. 2).

The camera-array solution has many advantages, the first being the high lateral resolu-
tion of any elemental image, which is determined by the sensor resolution. The second
is the amount of parallax, which is higher (than for the case of the lenslet array) and
can be fixed at will (within certain limits). Additionally, one can utilize all the capabil-
ities of digital cameras, for instance, changing the f -number, the focus plane, or even
the focal length of the objective. Figure 3 shows an example of the multi-perspective
information that can be captured with this type of system [41].

From this collection of elemental images, it is possible to reconstruct the 3D structure
of the scene computationally by using a simple algorithm in which, in the first step, all
the elemental images are superposed over the central one. Then, all the pixels with the
same lateral coordinate are added to give the value of the refocused pixel at infinity.
In the next step, all the elemental images except the central one are shifted by one
pixel and the same summation is performed to obtain the refocused image at a closer
distance. The iterative application of this process provides the complete refocused
stack. An example is shown in Fig. 4, where we show three refocused images from
the stack. Note from the figure that not only is a bokeh effect obtained, but also some
occlusions are overcome.

Figure 2

Scheme of an integral imaging capture device comprising a set of equidistant digital
cameras. p is the camera pitch, d is the range, and θmax is the field of view.
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The actual depth of refocused planes depends on the parameters of the capture archi-
tecture according to the following formula:

zR = f
N
nS
, (1)

where the distance zR is measured from the plane containing the objectives of the dig-
ital cameras, f is the focal length of the photographic objectives, N is the number of
pixels of the CCD, and nS is the number of pixels that the elemental images have been
shifted by in the calculation of the refocused image (0≤ nS ≤ N). By calculating the
first derivative of Eq. (1), it is easy to find the distance between consecutive refocused
planes:

1zR =
z2

R

f N
. (2)

Finally, the depth of field of any refocused image can be calculated as described
in [34]:

DoFR = 2
z2

R

f NN2
H

, (3)

Figure 3

2D elemental images with 3(V)× 7(H) perspectives obtained from a 3D scene by
Martínez-Corral and Javidi [41] using a camera array. Each 2D elemental image
shows a slightly different perspective of the 3D scene.

Figure 4

3D reconstructed images at different depth planes obtained from the study by
Martínez-Corral and Javidi [41].
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where NH is the number of elemental images along, for example, the horizontal
direction.

As an example, we can consider the case in which a 7× 7 array of cameras, with
f = 25 mm and N = 960 pixels of 4.5 µm, are used to capture a 3D scene extended
from z1 = 1.00 m to z2 = 2.00 m. In this case, the number of refocused images within
this interval is equal to 8, the lateral resolution ranges from 0.3 mm to 0.5 mm, and
the DoFR ranges from 2 mm to 4 mm.

Integral imaging is a passive auto-stereoscopic 3D sensing and imaging technique
that can provide 3D images with full parallax and continuous viewing angles. In
the image capture process, the intensity and the directional information of a scene
are recorded by using an array of cameras. Thus, the multiple perspectives of the
3D scene are acquired during the camera pick-up process. The integral imaging
reconstruction is the reverse of the capture process; the voxels are reprojected into
the 3D space at specific depths in order to reconstruct the 3D scene.

3.2. Stereo Cameras

Stereo cameras can be considered as a case of the Lippmann setup. Thus, the
same formulae apply for the calculation of zR , 1zR , and DoFR . The main dif-
ference is that in this case there is no vertical parallax, with the result that the
blurring of refocused images spreads only in the horizontal direction (in the form
of duplicated images). Another consequence is that the DoFR is much larger
(it increases from 24 mm to 48 mm using the data from the previous example).
As an example, we have extracted two views from Fig. 4 (the upper left and the
upper right corners) and calculated the refocused image at three depth planes
(shown in Fig. 5).

Note, however, that stereo images are not often used for the calculation of refocused
images but, typically, for the calculation of 3D point clouds. To achieve this, a con-
volution is performed usually over a window of 3× 3 or 5× 5 pixels. This gives rise
to depth maps with a lateral resolution of one-third (or one-fifth) of that of the stereo
images and an axial resolution provided by1zR [defined in Eq. (2)].

Thus, relative to integral imaging, stereo images have the advantage of being
much less bulky and faster for calculation, but have the drawback of providing 3D
information with significantly lower axial and lateral resolution.

Figure 5

Refocused images at three depth planes from a stereo pair.
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3.3. Plenoptic Camera

Another method for implementing the Lippmann concept is the so-called plenoptic
camera [31–33], which is realized by placing an array of microlenses at the image
plane of a conventional photographic camera. As the schematic in Fig. 6 depicts,
all the rays emitted by the central point of the reference object plane intersect after
passing through the camera objective at the optical center of the central microlens.
Then, they propagate to the pixelated sensor, where each pixel collects the rays within
a given inclination-angle range. A similar process occurs in the other microlenses of
the array. Note that any pixel within a microimage has information corresponding to a
specific ray inclination.

The main advantages of plenoptic cameras are their simplicity and low cost, and
the possibility of acquiring the plenoptic frame in a single CCD with a single shot.
A drawback is that they provide much lower parallax and resolution. However,
modern technologies used for producing microlens arrays (MLAs) with small
pitch and sensors with tiny pixels allow plenoptic cameras to produce elemental
images with satisfactory resolution. Therefore, the main current drawback of
these cameras is the low parallax when imaging objects that are far away.

The collection of microimages of a given 3D scene is nothing but a sampled map
of the spatio-angular information of the light field coming from the 3D scene. This
image collection is typically known as the integral image, but it is also known as the
plenoptic image or light field image. Next, in Fig. 7 (left), we show an example of a
plenoptic frame.

The plenoptic frame has the appearance of a low-resolution image of the 3D scene.
The “pixels” of such an image are circular microimages. However, looking deeper
into the frame [see the magnified inset in Fig. 7 (left)], we find that the microimages
are not homogeneous inside, but have a structure. Sharp images are not found within
the microimages, possibly because they are far from being conjugated with the scene.
Therefore, the plenoptic frame does not provide a collection of multi-perspective
elemental images directly. Nevertheless, it contains this information, which can be
assessed easily by applying the following pixel mapping:

CEIi, j (p, q)=µI p,q (i, j ). (4)

In this equation, CEIi, j denotes the (i, j ) calculated elemental image, and µI p,q

denotes the (p, q) captured microimage. Using a collection of J × J microimages,

Figure 6

Schematic of a plenoptic camera. The curved side of the lens array is conjugated with
the reference object plane, whereas the sensor is conjugated with the aperture stop.



1248 Vol. 12, No. 4 / December 2020 / Advances in Optics and Photonics Tutorial

each with K × K pixels (usually J � K ), one can calculate a collection of K × K
elemental images, each with J × J pixels. As an application of the pixel-mapping
procedure, in Fig. 7 (center), we show the elemental images calculated from the
microimages shown in Fig. 7 (left).

As the calculated elemental images (CEIs) obtained from a plenoptic frame are the
result of a hybrid procedure that includes both optical capture and computational
pixel mapping, the features of such images are influenced by both optical and com-
putational factors, such as the angle of maximum parallax, which can be evaluated in
terms of the f -number of the lenslets as

θmax =
|Mob|

f ML
#

, (5)

where Mob is the lateral magnification of the host camera.

Therefore, we can conclude that the smaller the f ML
# value, the higher the field of view

(FOV) and the parallax of the plenoptic camera. However, this is not a free parameter,
as it is linked to the f -number of the camera objective.

As in the case of the camera array, the resolution limit of CEIs is determined by
the Nyquist theorem. Here, Nyquist establishes that two points in the object are
resolved in the CEI provided that their images obtained through the plenoptic camera
correspond to different microlenses, leaving one empty in between. Thus,

ρCpix = 2
p
|Mob|

, (6)

where p is the pitch. However, to avoid the diffraction effects that are detrimen-
tal to the ray-optics nature of integral imaging (or light field) technology, the size
of the diffraction spot over the MLA (1.22λ0 f ML

# ) should be of the order of (or
lower than) one-fifth of p [41–43]. Then, the spatial resolution of the CEIs would be
approximately 10 times worse than that of the host camera.

To calculate the position of the refocused images, we need to adapt Eqs. (1) and (2) to
this architecture. Then,

zR =
f 2

fML

nS

J ,
(7)

Figure 7

(Left) Plenoptic image of a 3D scene. The image is composed of an array of tan-
gent microimages; (center) elemental images calculated from the plenoptic image;
and (right) central elemental image. These images were obtained from the study by
Martínez-Corral and Javidi in [41].



Tutorial Vol. 12, No. 4 / December 2020 / Advances in Optics and Photonics 1249

where the distance zR is measured from the front focal plane of the objective of the
plenoptic cameras, f is the focal length of the plenoptic objective, J is the number of
pixels behind any microlens, and nS is the number of shifted pixels (−J ≤ nS ≤ J ).
Note that although the number of refocused planes is now much smaller, they are
equidistant.

We can conclude that the advantages of plenoptic cameras are that they are compact
and portable. However, compared with the array of digital cameras, they provide refo-
cused images with significantly worse resolution, parallax, and depth density.

3.4. Structured IR Patterns

An alternative device for recording the information of a 3D scene was launched ini-
tially by Microsoft under the name of Kinect in 2010, as an add-on accessory for the
Xbox game console. The distinctive hallmark of this device is its capability to record
the RGB image and the depth information simultaneously in real time. This is possible
because the Kinect has two different cameras that operate with the same resolution
[44]: an RGB camera and an infrared (IR) camera. The principle behind the Kinect
technology is based on depth mapping obtained from projected structured IR patterns.
The Kinect’s IR emitter projects a fixed pattern onto the target, and both the depth dis-
tance and the 3D reconstructed map are obtained from the reflected pattern recorded
by the IR camera [45,46]. The practical depth information provided by the Kinect
ranges between 1000 mm and 3000 mm. The resulting depth map has a lateral reso-
lution of 320× 240 pixels, which, when projected onto the object space, results in an
angular resolution limit of approximately 0.4◦, which translates to a resolution limit
ranging between 7.0 mm and 21.0 mm. On the other hand, and in accordance with
the expected quadratic depth resolution associated with triangulation-based devices,
the quantization step, q [mm], is related to the target distance, z [mm], through the
function [47]

q = 2.73z2
+ 0.74z− 0.58. (8)

Thus, for the practical axial range, the depth resolution ranges from 3 mm to 25 mm.

We can conclude here that the main advantage of these setups is that they provide
RGB-D maps in real time. However, their axial and lateral resolutions are far from
being comparable with those provided by the integral imaging camera arrays.

3.5. Time-of-Flight Cameras

Time-of-flight (ToF) cameras are light and compact 3D image sensors that provide
depth maps with high frame rates. Originally proposed in 1977 [48], the technique
only became widespread after the appearance of the first prototype of a CCD-based
ToF camera, in 1999 [49]. ToF cameras are based on measuring the phase shift
between IR flashes emitted at high frequency by a modulated source and the signal
received after reflection from the surface of the 3D scene.

If we focus our attention, for example, on the ToF camera associated with the Kinect
v2, we find that the provided depth map has a lateral resolution of 512× 424 pixels.
Taking into account the focal length of the IR objective, f = 3.67 mm, an angular res-
olution of around 0.15◦ is obtained [50]. However, as expected in a technology based
on wave propagation, the depth resolution falls proportionally to the squared distance.
According to [51],

q = 0.542z2
− 0.885z+ 2.708. (9)
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Thus, for the same axial range as in the previous section, 1.0 m to 3.0 m, the depth res-
olution is 2.5 mm to 5 mm.

We should consider, however, that Eq. (9) is not a universal law, but rather a general
trend, as the depth precision has been demonstrated to depend on several factors,
including the lighting conditions, object color, object reflectance, and type of scene
[52]. Finally, Fig. 8 shows an example of the different depth maps that the two
versions of Kinect can provide.

We can conclude that the system’s performance depends on the type of scene.
However, in general terms, the ToF technology offers better possibilities for human
gesture recognition than the IR structured dots technology. When compared with
integral imaging implemented via a camera array, ToF has the advantage of offering
impressive results using a compact light setup. However, integral imaging has the
advantages of being a passive technique and offering better 3D resolution, albeit using
a bulkier setup.

Table 2 compares different types of imaging systems that can be used for human
gesture recognition, in terms of properties that are considered the most distinctive, in
order to provide high-quality gesture data acquisition.

Figure 8

Captured images from two versions of Kinect: (a), (b) Kinect v1 and (c), (d) Kinect
v2. Both pairs of images are captured from the same standpoint. (Reprinted from
[50].)

Table 2. Imaging Systems Used for Human Gesture Acquisition

Compactness

Depth-Map
Lateral

Resolution

Depth-Map
Axial

Resolution
Depth

Refocusing
Overcome
Occlusions

Active/
Passive

Feature
Dependence

Integral imaging
camera array

Low High High High High Passive Medium

Stereo camera High Low Low Low Low Passive High
Plenoptic camera High Low Low Medium Medium Passive High
IR structured
dots

High Medium Medium Medium No Active Medium

IR time-of-flight High High High Medium No Active Low



Tutorial Vol. 12, No. 4 / December 2020 / Advances in Optics and Photonics 1251

3.6. 3D Integral Imaging in Degraded Environments

The integral imaging-based methods discussed in Subsections 3.1–3.3 have some
advantages over other acquisition technologies in cases where imaging is carried out
in poor or degraded conditions. In fact, the information extraction under degraded
conditions is a complex process. Examples of degraded conditions considered herein
include the existence of partial occlusion and imaging in low illumination environ-
ments. Such situations may occur when imaging through biological tissues, e.g., in
night vision imaging, single photon emission tomography, visualization in dense
smog or fog, remote sensing in geographic science, and sensing in fire and rescue
operations [53–56]. To provide high-quality imaging solutions for such scenarios, a
variety of methods have been proposed [57–60]. Among them, integral imaging has
unique advantages. In this section, we provide a brief overview of integral imaging-
based 3D sensing and visualization in situations where partial occlusion and low
lighting present imaging challenges. The corresponding applications and experimen-
tal results for human gesture recognition under degraded conditions will be discussed
in Subsection 4.2c and Subsections 5.1 and 5.2, respectively.

3.6a. Depth Extraction and Occlusion Removal

The 2D imaging sensors can only capture the intensity information of a scene; the
depth information is not recorded. With an integral imaging-based system, the depth
information relating to a real-world scene can be recorded from multiple perspectives
as elemental images, so that we can extract the 3D information by reconstructing the
captured multi-perspective pixels at the corresponding in-focus planes.

In addition, when the object of interest in a 3D scene is partially occluded, other 3D
sensing systems, such as structured IR and ToF cameras (see Subsections 3.4 and
3.5), may not be able to provide accurate depth maps. In contrast, the reconstruction
algorithms utilized in integral imaging provide a sharp image at the in-focus depth,
while the out-of-focus objects show strong blurring. Thus, the occluded object can be
extracted when there is partial occlusion.

Figure 9

Under regular illumination: (a) 2D elemental image of a human gesture with partial
occlusion and (b) corresponding 3D reconstructed image with occlusion removal.
Under low illumination: (c) 2D elemental image of a human gesture with partial
occlusion, (d) corresponding 3D reconstructed image, and (e) corresponding 3D
reconstructed image modified using the total variation (TV) denoising algorithm.
(Reprinted from [83].)
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3.6b. Imaging in a Low Illumination Environment

Conventional 2D imaging sensors designed for the visible wavelength range may
not exhibit high-quality performance in photon-starved environments. One potential
explanation for this is the low incident power (flux) coming from the scene—while
the performance may also be compromised by different noise sources from the cam-
era, e.g., read noise, dark current, and photon noise. Specific imaging systems have
been developed for sensing and visualization at night such as night vision imaging and
long-wave infrared (LWIR) imaging systems. However, the imaging systems men-
tioned above may suffer from low image resolution and low sharpness. In addition,
they can be bulky and expensive. In [61], the potential of integral imaging-based 3D
visualization of objects under extreme photon-starved conditions was demonstrated
using conventional imaging sensors, such as cooled CCD. It has been further applied
to target recognition in low light environments [62].

Under extremely low illumination conditions, the camera noise level can be even
greater than the signal, leading to a low signal-to-noise ratio (SNR). To reduce the
effects of noise and reconstruct the original object simultaneously, total variation
(TV) denoising algorithms are applied. The total variation penalized maximum-
likelihood expectation maximization (TV-PMLEM) algorithm has been reported
for compressed imaging with extended space-bandwidth, and it has been applied for
integral imaging reconstruction [63,64].

Figure 9 shows the advantage of integral imaging-based 3D visualization for human
gestures in degraded environments. Figure 9(a) illustrates a 2D elemental image of a
partially occluded human gesture under regular illumination. The 3D reconstructed
image focused at the gesture depth is shown in Fig. 9(b). With integral imaging sens-
ing and reconstruction, the occlusion in the foreground can be removed. However,
under low illumination conditions, both the 2D image [see Fig. 9(c)] and the 3D
reconstructed image [see Fig. 9(d)] have very low viewing quality due to the noise
level. By applying the TV algorithm to the 3D reconstructed image, as shown in
Fig. 9(e), the image quality is enhanced significantly. Figure 9 indicates that integral
imaging has the potential for human gesture recognition in degraded environments,
such as those where there is partial occlusion and low illumination. A detailed discus-
sion of the corresponding algorithms and experiments can be found in the following
sections.

4. OVERVIEW AND EXPLANATION OF ALGORITHMS FOR HUMAN
GESTURE RECOGNITION

Human action recognition [65] is a broad research field including several topics.
Human gesture recognition is a specific type of human action recognition process
(Fig. 10), for which we can distinguish two main methods whereby a person performs
gestures: body gestures and hand gestures. Body gesture recognition is related to
human body part gestures that encode some information, such as using arm positions
to communicate messages. In the case of hand gesture recognition, the information is
encoded by means of certain positions and configurations of the hand and fingers.

This tutorial is aimed at explaining hand gesture recognition, which is one of the
most relevant types of human action recognition used to communicate information.
More specifically, we address hand gesture recognition using 3D image acquisition
techniques, which provide data sources for this recognition task.

Techniques for 3D hand gesture recognition using depth information can be cat-
egorized into three groups [4]: (1) static, (2) trajectory, and (3) continuous. All of
these categories can use additional 3D hand modeling information for finer hand
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gesture recognition, for instance, to recognize hand gestures with finger movements.
Furthermore, in continuous or dynamic hand gesture recognition, these techniques
can determine when a gesture starts and when it ends from hand motion trajectories.
Static gesture recognition uses only a selected frame or still image representing the
gesture; therefore, this method is not adequate for complex hand gestures where
temporal information is a key factor, such as certain hand part trajectories.

The most successful approaches are appearance-based techniques [4], which are more
robust to sensing and context conditions as model-based methods are based on higher
conceptual models and rely on an accurate extraction of the hand or human model;
small errors in extracting the hand or body parts produce frequent recognition failures.

In recent years, image and video technologies have made the acquisition of 3D video
in real time feasible, which has led to significant progress in research on human action
recognition. The main 3D image and video acquisition technologies currently avail-
able are ToF, RGB, RGB-D, and integral imaging [4]. ToF can be included as part
of RGB-D technologies, since the depth measured by the RGB-D sensors can also
be obtained using ToF techniques. The other common depth sensing technique used
in RGB-D technologies is structured light (SL). In addition, RGB-D includes RGB
images associated with depth data.

Both ToF and SL are active sensing techniques, involving the projection of infrared
light on scene objects to recover the 3D structure. In contrast, integral imaging is
a passive sensing technique, which brings many advantages in applications where
active sensing technologies are inadequate, such as outdoors and in non-controlled
illumination scenarios.

Currently, RGB-D and integral imaging can be considered the principal state-of-the-
art 3D image and video data acquisition methods used in human gesture recognition
and, more specifically, in hand gesture recognition. These 3D image and video tech-
nologies have led to the development of different methods and techniques, depending
on the 3D image acquisition technology and the way the 3D data are pre-processed.

The main stages of recognition are characterization and classification. There are
two main approaches to achieve this. The classical approach is to use extracted fea-
tures designed for the problem and then apply a general classification technique, for
instance, k-Nearest Neighbors (kNN) or support vector machines (SVM). The other
approach is an end-to-end process, such as those utilizing some types of artificial
neural networks (ANNs), where the raw data measured by the sensor represents the

Figure 10

Scope and relationship between human gesture recognition domains.
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system input and the output is the classification result. In these approaches, feature
characterization and classification are learned by the system and no ad-hoc designs
for feature extraction are needed.

Subsection 4.1 introduces some representative approaches for 3D image/video
characterization techniques that have been applied successfully to hand gesture
recognition, including general 3D video characterization features, such as 3D
local spatio-temporal patterns, and more specific features, such as 3D silhouettes.
Furthermore, some examples of classical, end-to-end, and specific classification
techniques used predominantly in 3D hand gesture recognition analyses are described
in Subsection 4.2, including SVMs, ANNs, and correlation filter approaches.

4.1. Three-Dimensional Image/Video Characterization

Given a 3D image/video data source, the first step in hand gesture recognition is the
extraction of basic image and video features that will be used in the final recogni-
tion step. Some authors have proposed different taxonomies for 3D image/video
characterization [4,65]. Table 3 lists a representative selection of 3D image/video
characterization methods for 3D hand gesture recognition, based on the most common
types of visual features chosen as input data.

The techniques based on 3D local occupancy patterns, 3D silhouettes, and 3D optical
flow use RGB-D video as the input information. In these types of techniques, RGB
information is used only to segment the region of interest (ROI), with depth informa-
tion used to characterize the gesture. These techniques offer different strategies to deal
with the depth information, either describing the 3D spatial information of regions in
voxels or analyzing the 3D optical flow that characterizes the action movement.

Local spatio-temporal interest points is a technique that allows the action recognition
based on characterizing a monochrome or RGB video. This strategy is adapted to 3D
optical video using integral imaging, which is used to reconstruct the image sequence
at the depth of the ROI, obtaining a 3D volume along the spatial (x , y ) and the tem-
poral t axes, where spatio-temporal interest points are extracted and used as the input
data for classification.

The final characterization method discussed here is an end-to-end learning technique
and a hot topic in the field of deep learning (DL) that exploits convolutional neu-
ral networks (CNNs). Using this approach, it is possible to train complex learning
systems, bypassing the intermediate stages typically associated with traditional recog-
nition designs, such as feature extraction design and the type of classifier used. In
this case, the input data are raw video RGB-D, with all channels used in the gesture
recognition. The CNN approach can also be used as a feature extraction process, using
only the auto-encoder part of the network as input data for other types of classifiers.

Table 3. Main 3D Image/Video Characterization Methods for Hand Gesture
Recognition
Characterization Technique Main Property

3D local occupancy patterns Local features extracted in 3D point cloud sequences from random
4D (x , y , z, t) sub-volumes

Local spatio-temporal interest points Local features extracted in 2D image videos from Harris
3D (x , y , t) interest point detector

3D silhouettes 2D features extracted from the 3D plane of the hand position
3D optical flow Temporal features from optical flow of the video sequence
Self-learning CNN features Features learned by the auto-encoder layers of a convolutional

neural network
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4.1a. Three-Dimensional Local Occupancy Patterns

Three-dimensional local occupancy patterns [113] are semi-local features extracted
from 4D sub-volumes sampled at random (Fig. 11). Semi-local implies local extrac-
tion from the image, but with a global characterization of the object of interest. Each
depth video sequence is treated as a 4D volume in space and time, containing each
3D pixel at a specific instant in time, which can be represented as I (x , y , z, t). Sub-
volumes can be defined from the entire video 4D volume, by fixing a pixel center
and a sub-volume size around the center point (x , y , z, t). Each pixel in the 4D video
volume I (x , y , z, t) has a value of either 1 or 0, depending on whether there is a 3D
object point at this location and time. The occupancy pattern of a sub-volume whose
pixel center is located at (x , y , z, t) is expressed as

o(x , y , z, t)= δ

 ∑
q∈SV(x ,y ,z,t)

I (q)

 , (10)

where SV(x , y , z, t) is the sub-volume centered at (x , y , z, t), q is the point in that
sub-volume, and I (q)= 1 if the point q = (xq , yq , zq , tq ) is a 3D object point; oth-
erwise, I (q)= 0. δ(·) is a sigmoid normalization function: δ(x )= 1/(1+ e−βx ).
Notably, this occupancy pattern can be computed efficiently using incremental
algorithms for high-dimensional images [68].

To characterize the video sequence, dense sampling of the sub-volumes can be per-
formed using uniform sampling strategies, i.e., uniform sampling of the 4D video
volume and assigning a random sub-volume size to each point. A more efficient sam-
pling method is based on a weighted sampling approach, which characterizes each
sub-volume using a scatter class separability measure [68] that is based on the class
scatter matrices defined as

SB =

C∑
i=1

(mi −m) (mi −m)T, (11)

SW =

C∑
i=1

ni∑
j=1

(
h ij −mi

) (
h ij −mi

)T
. (12)

Figure 11

Gesture characterization by sampling 4D (x , y , z, t) sub-volumes at a given t . The
rest of the gesture characterization process includes feature selection and a sparse
coding phase prior to support vector machine (SVM) classification. This approach is
presented in [113].
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Here, C is the number of classes, ni is the number of samples in class i , h ij is the fea-
ture vector of the j th sample of the i th class, mi is the mean vector of the features h ij

in the i th class, and m is the mean vector of the data samples. The class separability
measure J can be defined as J = tr (SW)/tr (SB), where SW is the within-class scat-
ter matrix, and SB is the between-class scatter matrix. Each point p is characterized
by means of eight Haar feature vectors h from a sub-volume centered at point p .

Let us define V as the 4D volume of the entire depth sequence. For each pixel p ∈ V ,
the class separability score J p at the pixel p is computed. Thus, the probability for a
sub-volume R to be sampled is defined as P sampled

R = P uniform
R · P accept

R , where

P accept
R =

|V |∑
p∈V Jp

JR . (13)

Here, |V | is the number of pixels in the 4D video sequence volume, and J R =

1/NR
∑

p∈NR
J p , where NR is the number of pixels in the R sub-volume. A sampled

sub-volume R is accepted to characterize the video sequence if its sampled PR is
greater than a fixed threshold.

As a final step, a sparse subset of N f features is extracted from the occupancy patterns
that define each depth video sequence using an elastic-net regularization process,
which is based on a linear regression algorithm with L1 and L2 regularization terms,
i.e., minimizing the following objective function E for N video samples:

E =
N∑

i=1

(
y i −

N f∑
j=1

w j h ij

)2

+ λ1||w||1 + λ2 ||w||
2
2 . (14)

Here, λ1 and λ2 are the L1 and L2 regularization parameters that control the spar-
sity of the coefficients in vector w and the margin that defines the linear classifier,
respectively. From the N f features extracted, only those with a significant wj value
are selected.

Given N depth video sequences as training data, each new video is expressed as a set
of αi , (i = 1, . . . N) coefficients that reconstruct the new video sequence as a linear
combination of the N training data videos expressed in the sparse feature domain
that was extracted previously. The α vector will be the final feature vector represen-
tation of each depth video sequence, and it will be used as the input data for further
classification or recognition stage(s).

4.1b. Local Spatio-Temporal Interest Points

Spatio-temporal interest points (STIPs) are points extracted from 2D video sequences,
which are treated as 3D volumes (x , y , t). The points in this 3D volume are character-
ized using the histogram of oriented gradients (HOG) and/or the histogram of optical
flow (HOF) in a local manner, by defining small 3D volumes around the points.

One approach to extend the use of STIPs involving 3D information involves using
integral imaging and reconstructing the video sequence from the integral imaging
video at the depth of interest, i.e., the depth where the hand (that characterizes the
movement) is in focus. Therefore, the 3D information is embedded in the recon-
structed image sequence, which is treated as a 2D video sequence, and the STIPs are
extracted from this reconstructed video sequence [7].

The first step in extracting the STIPs involves smoothing the 3D video sequence
f (x , y , t) using an anisotropic 3D Gaussian kernel g , with variances that define
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different scales for spatial σ 2
l and temporal τ 2

l dimensions:

L
(
x , y , t; σ 2

l , τ
2
l

)
= g

(
·, σ 2

l , τ
2
l

)
∗ f (x , y , t) ,

g
(
x , y , t; σ 2

l , τ
2
l

)
=

1√
(2π)3σ 4

l τ
2
l

exp

(
x 2
+ y 2

2σ 2
l

+
t2

2τ 2
l

)
. (15)

Note that the depth is assumed to be fixed where the object of interest (hand) is in the
scene, and the integral imaging reconstruction is performed at the plane located at this
depth, where the STIPs are being extracted. Given the first-order partial derivatives of
the smoothed video volume L(x , y , t) with respect to {x , y , t}, the first-order deriva-
tive matrix

M ′
=

 L2
x L x L y L x L t

L x L y L2
y L y L t

L x L t L y L t L2
t

 (16)

is smoothed to obtain a second-order matrix M = g (x , y , t; σ 2
i , τ

2
i ) ∗ M ′, where σ 2

i =

s σ 2
l and τ 2

i = s τ 2
l for a given constant value s .

As a final step, a Harris 3D detector is defined from the matrix M as follows:
H = det(M)− ktrace3(M). This is based on an extension of the 2D Harris detector
[69]. The STIPs of the 3D video sequence f (x , y , t) correspond to local maxima
of H, i.e., points that show large variations in the spatial and temporal dimen-
sions. The Harris 3D detector is applied to detect the STIPs at different spatial
{σl = 2(l+1/2)

: l ∈ {1, 2, . . . , 6}} and temporal {τl = 2l
: l ∈ {1, 2}} scales. A com-

mon technique to deal with short videos is to increase the frame rate, in order to have
longer video sequences [69] and obtain more stable STIPs. Other pre-processing tech-
niques prior to extracting the STIPs involve resizing the frames to a mid-level spatial
resolution, e.g., 780× 270 pixels, and in the case of RGB or multi-band images,
applying the Harris 3D detector to a single band, e.g., the R band in the RGB images.

Figure 12 shows examples, for three different gestures, of reconstructed scenes at the
depth where the hand is in focus using the R channel from the RGB images. The cap-
tion of Fig. 12 includes links to two videos showing where the STIPs are located.

The next stage of video characterization using the STIPs consists of extracting some
features from local information around where the STIPs are located. The HOG and
HOF are the most popular tools used to characterize STIPs.

Figure 12

Images corresponding to the 3D reconstruction at the depth where the hand is in focus,
for three gestures: (a) open, (b) left, and (c) deny gestures. Spatio-temporal interest
points (STIPs) were applied to the videos for this depth reconstruction. Visualization
1 and Visualization 2 show two different gestures, where only the hand is in focus.
Visualization 3 and Visualization 4 show the detected STIPs. Most of them appear
where the gesture is taking place [7].

https://doi.org/10.6084/m9.figshare.11861952
https://doi.org/10.6084/m9.figshare.11861952
https://doi.org/10.6084/m9.figshare.11861967
https://doi.org/10.6084/m9.figshare.11861970
https://doi.org/10.6084/m9.figshare.11861976
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A common approach for extracting the HOG and HOF features consists of defining
a 3D volume of size (δx × δy × δt) around the STIP location, depending on the scale
at which the STIP was detected, that is, δx = δy = 18σl and δt = 8τl . Further, each
3D volume is sub-divided by a regular grid into nx × n y × nt sub-volumes, where
nx = n y = 3 and nt = 2 (see Fig. 13). For a given STIP, once the spatial and temporal
gradients in all the frames of the video sequence are computed, the HOG and HOF
can be computed for each sub-volume using four and five bins, respectively. All the
histograms in each sub-volume are normalized. As a final step, the feature vector rep-
resenting the STIP is defined as the concatenation of the HOG and/or HOF in different
ways. The usual combinations are concatenating 72 HOGs, 90 HOFs, or 162 HOGs +
HOFs.

Eventually, the complete video sequence is characterized using the set of STIPs
extracted in the sequence and by building a bag-of-words (BoW) model to character-
ize all the videos in the same feature space. A BoW model (see Fig. 14) consists of
defining a set of C visual code words by grouping the STIPs extracted and represented
in the HOG/HOF features from a set of training videos.

Each {c j , j = 1, . . . , C} code word represents a cluster of STIPs that have similar
HOF/HOG characteristics.

Figure 13

HOG and HOF characterization of spatio-temporal interest points (STIPs) from the
3D volume around the STIP location. The 3D volume is divided into ηx × ηy × ηt

sub-volumes where HOG and HOF are computed.

Figure 14

Bag-of-words (BoW) model to represent videos as histograms of code words, which
are defined by grouping STIPs from a set of training videos into C code words. HOG,
histogram of oriented gradients; HOF, histogram of optical flow.
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A BoW model is a powerful tool used to characterize a series of videos in a com-
mon feature space, in order to classify them. In particular, a BoW model defines
a set of video features (code words), each one representing a cluster of video
STIPs. Each cluster has similar HOF/HOG video sub-volume characteristics. In
a BoW representation of a video sequence, the STIPs that appear in the video are
assigned to the corresponding code word (each one of the C clusters). Code-word
counts are then used to build the corresponding histogram.

Therefore, each STIP extracted from a video can be assigned to the most similar code
word or cluster. Once the code words are defined, a video sequence can be repre-
sented by a histogram of visual code words using the STIPs extracted [66]. Each STIP
is associated with a code word; we can find the most similar code-word cluster and
then vote for the corresponding visual code word in the BoW representation.

To define the C visual code words, the most common clustering algorithm used is the
K-means. After grouping the STIPs from the training videos into C clusters, we can
represent each cluster in terms of their mean or cluster center {µ j , j = 1, . . . , C}.
Let x i , i = 1, . . . n be the n STIPs found in a video sequence. Each STIP x i is
represented in a d -dimensional space corresponding to the HOG/HOF features,
where C clusters have been computed previously using their corresponding means
{µ j , j = 1, . . . , C}.

Thus, each STIP x i , i = 1, . . . n is assigned to the cluster c (x i)with the nearest mean,
i.e.,

c (x i)= argmin j∈{1,2,...,C}‖x i −µ j‖
2. (17)

The final BoW representation h = (h1, h2, . . . hC ) of the video sequence is then
computed as the visual code-word count of the corresponding STIPs in the video
sequence, i.e.,

h j =

n∑
i=1

δ (c (xi)= j ) , j = 1, . . . ,C . (18)

A 3D video sequence, f (x , y , t), is usually pre-processed via smoothing to
eliminate noise. Therefore, we may apply a 3D Gaussian kernel such that
L(x , y , t; σ 2

l , τ
2
l )= g (·, σ 2

l , τ
2
l ) ∗ f (x , y , t), where σ 2

l and τ 2
l denote the spatial

and temporal widths of the Gaussian filter, respectively. The STIPs correspond
to the maxima of H = det(M)− ktr ac e 3(M), where M = g (·, σ 2

l , τ
2
l ) ∗ M ′, and

M ′ is the first-order derivative matrix. The idea behind STIPs is to obtain points
where some type of activity is happening in the video.

Here, δ is the Kronecker delta function, and h j is the j th bin of the BoW histogram
representation of the video sequence.
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A 3D volume of size (δx × δy × δt) can be defined around each STIP extracted
from the image sequence. Each 3D volume is then sub-divided into a regular grid
of ηx × ηy × ηt sub-volumes.

The HOF considers occurrences in the optical flow estimation in this grid. In both
cases, this estimation is made inside each sub-volume of the regular ηx × ηy × ηt

grid.

Analogously, in the HOGs, the occurrences of common orientations in the gradi-
ent are counted in each 3D sub-volume grid defined around a STIP.

Histograms are then computed (the HOF and/or HOG) for each sub-volume
through space quantization (into bins), and concatenated to define the final HOF
or HOG descriptor.

4.1c. Three-Dimensional Silhouettes

Another technique involves a more detailed characterization of the hand shape. Three-
dimensional silhouettes are an adaptation of 2D silhouettes and are conventionally
used in computer vision for object recognition. Hand gesture characterization using
3D silhouettes [114] utilizes RGB-D systems to extract the 2D plane in the 3D space
where the hand gesture is likely performed. The hand gesture characterization using
an RGB-D video sequence comprises the following stages:

1. Segmentation. Each video RGB-D frame is first used to segment the depth map
into regions where the hand is likely to be.

2. Tracking and filtering. The candidate regions found in each frame are used to per-
form correspondence and tracking with previous frames, in order to find the most
probable region where the hand is in the current frame.

3. Orientation normalization. Once the hand region is located, the orientation and
position of the hand are calculated, and a 3D plane is fitted to approximate the
hand palm plane.

4. Feature extraction. The hand-depth map is normalized to extract the hand silhou-
ette features.

The feature extraction step consists of the characterization of the hand contour in
the plane fitted to the hand palm in each frame (see Fig. 15). Therefore, each RGB-
D frame i of the hand gesture video sequence is characterized as a feature vector
F i = {vi , r i , s i}, where vi = x i − x i−1 denotes the velocity of the hand center
between frame i and i − 1, where x i is the 3D centroid position of the hand, r i is
the quaternion (rotation) parameter of the 3D plane of the hand with respect to the 3D
reference system, and s i = (s 1, . . . , s T) is a silhouette feature extracted from the T
sectors of the hand shape in frame i (see Fig. 15). As the final characterization step
for each frame, a principal component analysis (PCA) feature reduction technique
is applied, keeping the most significant PCA coefficients (usually 10 to 30 features).
This reduced feature vector is then used as the input for the final classification stage.

4.1d. Three-Dimensional Optical Flow

This type of strategy involves generating a 3D flow, characterizing the scene move-
ment, and capturing the depth changes. In [71,72], a stereo camera system was used
to estimate the disparity map between a camera stereo pair and the optical flow map
between consecutive stereo images. However, flow estimation algorithms require
a high computational cost; therefore, it is necessary to use faster approximations to
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reduce the cost. In [73], the Fanerbäck algorithm [74] was applied to compute the
2D optical flow of the Ft frame with respect to the previous Ft−1 frame. Thus, each
pixel (xt−1, y t−1) belonging to a ROI of the Ft−1 frame is reprojected in the 3D vector
(X t−1, Yt−1, Zt−1), where the Zt−1 coordinate corresponds to the depth estimates;
that is,

 X t−1

Yt−1

Zt−1

=


(xt−1−x0)b
d

(y t−1−y0)b
d

b f
d

 . (19)

Here, b is the baseline of the stereo system, f is the focal length, d is the dispar-
ity, and (x0, y0)

T is the principal point of the sensor. Analogously, it is possible
to perform a reprojection of the point (xt , y t) in the Ft frame in the 3D vector
(X t , Yt , Zt). Thus, the 3D distance vector of a point between the two frames is
defined as d= (X t − X t−1, Yt − Yt−1, Zt − Zt−1)

T . By normalizing with respect to
the L2-norm, we can obtain the movement of the n pixels of an ROI (d1, · · · , dn).

To generate a compact flow representation for each frame, a 3D HOF (3DHOF) is
built. Therefore, the direction of the gestures is codified by a descriptor z(t) ∈ Rh×h×h ,
where h is the bin size used to parametrize the space. In addition, each 3DHOF z(t) is
normalized, i.e.,

∑
j z(t) j = 1. Thus, each 3DHOF stores the ratio of the directions in

the current gesture, and the descriptors are invariant to the scale. Figure 16 shows the
high-level statistics for a scene.

When computing the HOG of the pixels belonging to an ROI, a new descriptor called
the global histogram of oriented gradients (GHOG), h(t) ∈ Rn2 , is generated from the

Figure 15

Hand silhouette characterization in the 3D plane fitted to the hand palm. The hand
shape is divided into sectors with respect to its centroid and then characterized by
the mean distance of the hand sector points from the hand contour. This approach is
presented in [114].
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depth map, where n2 is the number of bins in representing the depth. The scale invari-
ance property is preserved by normalizing the descriptor

∑
j h(t) j = 1. Fanello et al.

[73] applied this descriptor to a depth map in combination with the 3DHOF to charac-
terize gestures.

To retain only the relevant information from the data, feature selection is performed.
This selection process discards background or body parts not involved in the gesture
through a sparse coding technique. This method establishes a preliminary step called
dictionary learning, where each element of the dictionary is learned from the data.
Thus, given a set of 3DHOFs with Z= [z̃(1), . . . , z̃(m)] ∈ Rn1·m , where m is the
number of frames in the training dataset and z̃(i)] ∈ Rn1 is the feature vector with
size n1, the method builds one motion dictionary DM(n1 × d1) matrix, where d1 is
the dictionary size, and one code U M(d1 ×m) matrix that minimizes the objective
function,

minDM ,U M‖Z− DMU M‖
2
F − λ‖U M‖1, (20)

where ‖·‖F is the Frobenius norm. Note that by fixing U M, we can reduce the above
optimization problem to a problem that can be solved using a least-squares algo-
rithm, while given DM, it is equivalent to linear regression with the sparsifying
norm L1.

Similarly, we can define the optimization problem for the GHOG using a dic-
tionary DG(n2 × d2) matrix and the code UG(d2 ×m) matrix for the descriptor

Figure 16

High-level statistics (3D histogram of optical flow) for a scene. The histograms of the
scene flow directions at time t for the primitives are shown in the (a) right, (b) left,
(c) forward, and (d) backward directions. Each cuboid represents one bin of the
histogram, where the 3D space is divided into h × h × h with h = 4. Filled cuboids
(cuboids with a darker shade of blue) represent high-density areas [73].
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H = [h(1), . . . , h(m)] ∈ Rn2·m . Thus, each frame i can be encoded by the
concatenation of the two descriptors of the motion and depth U(i)= [U M(i);UG(i)].

4.1e. Self-Learning Features: Convolutional Neural Networks

Inspired by biological neural systems, ANNs are computing systems composed of
artificial neurons, which receive different values through their input connections,
combine these values using a weighted sum with a bias term, and then produce the
output result according to a nonlinear activation function. In general, ANNs are
able to learn nonlinear mapping functions through a collection of connected layers
that represent different abstraction degrees of the input data. Based on this idea, the
so-called DL paradigm [75] aims to use multiple layers in order to extract higher-
level semantic information from the raw input data without the need to compute
handcrafted features. As a result, DL models have seen remarkable success in many
computer vision applications and tasks, with human gesture recognition being no
exception [76].

Deep neural networks have recently shown great potential in human gesture recogni-
tion using 3D optical imaging [77]. The high flexibility of the network design allows
the use of DL models at two different segments of the gesture recognition pipeline: (1)
feature extraction and (2) gesture classification. In this section, we review the funda-
mentals of DL for characterizing human gestures from RGB-D data, with a particular
focus on CNNs.

From stack auto-encoders to sparse and denoising coding networks [78], many unsu-
pervised architectures have been employed to characterize human gestures from
image sequences. The performance of these approaches depends typically on sin-
gle data modalities, which often makes other network designs more effective when
combining RGB and depth information. CNNs have emerged as one of the most
popular state-of-the-art technologies for characterizing human gestures from RGB-D
images [79].

The general objective of a CNN is to approximate a mapping function of the form
f : X→ Y through the hierarchical concatenation of different transformation blocks.
Within the human gesture recognition field, the elemental CNN architecture is made
of several convolutional blocks aimed at extracting relevant features from the input
data X , as well as several final fully connected dense layers that enable discrimination
between different gestures Y .

Figure 17

Graphical visualization of a convolutional block.
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A typical CNN comprises a set of convolutional and pooling layers followed
by a fully connected layer and a classification layer. The convolutional and
pooling layers filter the input data spatially to produce feature vectors. These
feature vectors can be utilized by a fully connected layer and a classification
layer for high-level inferencing tasks such as object detection and classifica-
tion. Mathematically, the spatial filtering considered is a discrete convolution
operation (hence its name).

Typically, a convolutional block (l) includes three different components: a convo-
lutional layer, a nonlinear activation step, and a pooling layer. Figure 17 shows a
graphical visualization of these operations. The convolutional layer [Eq. (21)] con-
sists of a collection of convolutional filters used to extract different feature maps from
the input data. Thus, the kernels act as sliding windows that convolve their weights
(W) and add their bias (b) to each input data location. The nonlinear component
[Eq. (22)] then uses an element-wise activation function (H) to generate a nonlinear
activity volume that encodes the internal structures and relationships of the data. This
function is often implemented by a rectified linear unit (ReLU) defined as the positive
part of its input argument. Finally, the pooling layer [Eq. (23)] sub-samples the activa-
tion volume to compress the obtained feature maps and to provide a certain degree of
robustness with respect to small spatial variations. These processes are expressed as
follows:

C (l)
=W(l)

∗ X (l)
+ b(l), (21)

ˆC l
= H(C (l)), (22)

X (l+1)
= P (Ĉ

(l)
). (23)

Figure 18 shows a graphical visualization of a 2D convolution kernel (in blue) and
the generation of the corresponding spatially reduced feature maps (in green) using
the spatial pooling operator (in orange). Because the 2D-CNN approach can extract
convolutional features involving bi-dimensional information only, the temporal and
multi-modal nature of recognizing human gestures from RGB-D data makes it suit-
able to extend the 2D convolutional scheme to higher-dimensional orders [80]. Thus,
it is possible to account for the temporal domain and additional information within
the feature extraction process naturally. Figure 18 shows (in red) the graphical visu-
alization of a 3D convolution over t input frames. As shown, the 3D kernels extract
features from both spatial and temporal domains jointly to capture spatio-temporal
information encoded in the adjacent image frames.

Despite the advantages of the 3D-CNN feature extraction scheme, the need for a
fixed kernel size makes this approach rigid for managing gestures with a substantially
different temporal duration and motion speed [76]. To overcome this limitation,
several CNN-based extensions have been proposed in the context of human gesture
recognition [78]. Among these proposals, a technique known as temporal pooling [81]
has yielded the most accurate results. This approach performs a pooling operation on
the convolutional features of all the data frames. As a result, it is possible to obtain
temporally reduced feature maps, instead of spatially reduced maps, with variable
time depth. Figure 18 shows a conceptual diagram (in yellow) of the temporal pooling
process used to obtain temporally reduced feature maps (in green).
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Another important aspect is the process of integrating RGB data and depth informa-
tion into a CNN-based feature extraction architecture for gesture recognition. One
straightforward option to integrate both data modalities consists of stacking together
the RGB and depth frames of each timestamp. However, other alternatives have been
shown to obtain better results due to the inherent differences between RGB and depth
data. Specifically, one of the most successful approaches to integrate these two data
modalities is based on using a specific CNN for each modality and then fusing the
resulting feature maps for the gesture classification module.

Figure 19 shows a graphical visualization of the CNN-based feature extraction proc-
ess from RGB-D data where the feature maps generated by the sub-networks are
concatenated for the classification system. The fundamentals of gesture classification
methods based on DL are further described in a dedicated section in this tutorial.

4.2. Three-Dimensional Image/Video Recognition

Given the characterized 3D image/video data obtained using techniques such as those
described in the previous section, the final step in hand gesture recognition will be
the application of an automatic classification technique utilizing several popular
hand gesture recognition classification methods. The methods used in hand gesture
recognition are summarized in Table 4 with respect to a representative sample, where
three main types of approaches have been considered: general-purpose classification

Figure 18

Graphical visualization of 2D convolution (blue), 3D convolution (red), conventional
spatial pooling (orange), and temporal pooling (yellow).

Figure 19

Graphical visualization of the process of extracting convolutional neural network
(CNN)-based features from RGB-D data for gesture recognition.
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methods, end-to-end DL approaches, and techniques designed specifically for the 3D
hand gesture recognition problem.

General-purpose classifiers follow the classical pattern recognition approach, where
a set of problem-oriented features is extracted in the first stage before a classical
classification technique is applied. SVM is a representative example of a classic
technique, which has been applied successfully in a wide range of classification prob-
lems. SVM has been chosen because it outperforms other classical, and sometimes
simpler, algorithms such as kNN in situations where a limited number of training
samples is available. SVM has provided impressive gesture recognition results [73],
outperforming other classification techniques that, in principle, should be better suited
to identifying continuous gestures because they consider the temporal sequence of
events. Notable examples include hidden Markov models (HMM) and dynamic time
warping (DTW) [5].

DL methods have developed quickly in recent years, demonstrating remarkable suc-
cess with regard to recognition problems when a significant number of training sam-
ples are available, and the 3D hand gesture recognition problem is no exception [77].
Therefore, DL has been chosen as the prototypical end-to-end approach in the litera-
ture, and some specific DL architectures have been quite successful at gesture recog-
nition. Hybrid convolutional neural network long short-term memory (CNN-LSTM)
ANN architectures are the most relevant for 3D hand gesture recognition [82].

Finally, distortion-invariant correlation filter techniques have been applied for 3D
hand gesture recognition under degraded conditions, which include low illumination
and occlusion [83]. As an example of how this type of problem-oriented method can
compete with classical and end-to-end approaches overall, when there are limited
training samples and degraded conditions, this method can exploit an ad-hoc feature
extraction and combine it with a distance-based classifier technique.

4.2a. Support Vector Machines

In recent years, use of the SVM classification algorithm has become increasingly
widespread [70]. It is a general-purpose supervised classifier with high generalization
power, making it an appropriate choice for diverse applications. It performs satisfac-
torily when the amount of training data is small, making it a useful alternative to the
most recent and popular DL algorithms.

The basic SVM is a two-class linear classifier that can be generalized to both non-
linear problems, by means of the “kernel trick,” and multi-class problems alike.
Let {(x 1, y i : x i ∈Rd , y i ∈ {−1, 1}), i = 1. . . . , n} be a set of n hand gesture video
sequences. Each video is characterized in a d -dimensional space using a feature
vector x i that is labeled with a gesture class y i = 1 if the video belongs to the target
gesture; otherwise, y i =−1. The objective of the SVM is to find a hyperplane in
the d -dimensional space in order to separate the training videos of the two classes
(Fig. 20, left). From all the possible hyperplanes that may separate the two classes, the
objective is to find the hyperplane with the maximum margin between video samples
from the two classes (Fig. 20, right).

Table 4. Taxonomy of 3D Image/Video Characterization Methods for Hand Gesture
Recognition
Approach Example

General-purpose classification technique Support vector machines
Deep learning methods Artificial neural networks
Correlation filters designed for hand gesture recognition Distortion-invariant correlation filter
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The SVM classifier is a linear classifier that can be adapted to nonlinear sepa-
rable problems using the so-called “kernel trick” (see Fig. 21). The “kernel
trick” involves applying a mapping function from the original d -dimensional
space to a higher-dimensional space using a kernel function K(x i , x j ). The
kernel functions used are the linear, polynomial, or radial basis function
(RBF) kernels.

Therefore, the objective function that the SVM tries to solve can be expressed as fol-
lows:

arg min
w,β,b

1

2
||w|| +C

n∑
i=1

βi , subject to y i (w · x i − b)≥= βi , (24)

where the vector w= (w1, · · · , wd) corresponds to the weight vector and the
constant term representing the hyperplane, and 1/‖w‖ corresponds to the margin
around the decision hyperplane that has to be maximized. β = {βi}i = 1, . . . , n
refers to the slack variables for each video sample, which are required to handle the
classification error, and C is a regularization parameter used to balance the optimiza-
tion between obtaining a high margin and a low classification error, i.e., between
good classifier generalization and fitting, while also obtaining video training
samples.

The main learning algorithm employed to find the optimal hyperplane parameters
w, b, and β is based on an iterative gradient descent of Eq. (24). The regularization
parameter C is estimated by means of an exhaustive validation search in the set
10{−4,−3,··· ,4}, setting C to the value of the lowest mean classification error using a
leaving-on-subject-out validation strategy (see Subsection 5.1).

The SVM objective function [Eq. (24)] is called the primal form of the SVM. An
alternative formulation of the SVM problem implements the dual form SVM based on
a Lagrange multiplier formulation, that is,

Figure 20

(Left) Infinite number of potential solutions to a linearly separable problem; (right)
the best solution is the one that maximizes the margin (i.e., the distance between the
closest samples from the two classes).
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arg max
α

∑n
i=1 αi −

1
2

∑n
i=1

∑n
j=1 αiα j y i y j K

(
x i , x j

)
,

subject to 0≤ αi ≤C for all i = 1, 2, . . . , n and
∑n

i=1 αi y i = 0.
(25)

The “kernel trick” refers to the technique employed to generalize the SVM for nonlin-
ear classification problems (Fig. 21). The “kernel trick” involves mapping the original
d -dimensional space, where the dot product (x i x j ) of two video sequences is repre-
sented, onto a higher-dimensional space using a kernel function K(x i , x j ). The kernel
functions used are the linear, polynomial, or RBF kernels.

Once the SVM parameters (w, b) are trained, a new video sample is classified using
the decision function y (x)= sign(wT x + b) by assigning the new gesture video sam-
ple x to the target gesture sample if y (x ) > 0; otherwise, it is not.

In the data pre-processing for the SVM, each feature of the feature vectors x is usu-
ally L1 normalized, with each feature value rescaled within the [0, 1] range to the
minimum and maximum values of each feature in the video training dataset. Finally,
as a last pre-processing step, the x feature vectors with L1-normalized features are
L2-normalized.

4.2b. Deep Learning: Hybrid Convolutional-Recurrent Neural Network Approach

The most elemental approach to classify human gestures via ANNs is based on the
use of several layers of artificial neurons to map the features extracted from the input
data onto the final class label space. That is, the uncovered multi-modal features are
fed into several final dense layers, enabling human gesture discrimination. However,
other more sophisticated designs based on the DL paradigm have demonstrated better
performance [76]. In this subsection, we focus on the hybrid CNN-LSTM approach
[84] to classify human gestures and the application of this model to 3D imaging, for
both integral imaging and RGB-D input data.

Recurrent Neural Networks. The recurrent neural network (RNN) model provides
a natural method to exploit the temporal nature of a human gesture classification
problem. These networks use an internal feedback loop such that each data sequence
depends on the previous sequences. Thus, RNNs can model temporal dynamic behav-
iors from sequential data. Figure 22 (left) shows a standard RNN cell structure that
replicates a linear dynamic system.

The RNN unit takes x t as the input data and produces an output based on its hidden
state h t , which is computed from the current input data, previous output, and hyper-
bolic tangent layer. For an input sequence of T time steps, x = [x1, x2, x3, . . . , xT]

Figure 21

Example of applying the “kernel trick” to transform the original (x1, x2) space into a
transformed (z1, z2, z3) space, where the classes are linearly separable.
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is fed into an RNN. Let h = [h1, h2, h3, . . . , hT] be the hidden vector and
y= [y1, y2, y3, . . . , yT] be the output vector. A standard RNN computes h and y
using the following relationships [81]:

h t = σ(Wihxt +Whhh t−1 + bh) (26)

and

y t =Whoh t + bo , (27)

for time t = (1, 2, 3, . . . , T). Here, σ(x )= 1/(1+ e−x ) is the element-wise logistic
sigmoid function, Wkk for kε{i, f , x , h, o , c } represents the corresponding weight
matrices, and bk for kε{o , c , f , i, h} represents the corresponding bias terms of the
network. Despite the potential of this scheme to model data sequences, the vanishing
(or exploding) gradient problem makes this straightforward model very difficult to
train in practice because of its recursive structure [76].

To address these practical limitations, the long short-term memory (LSTM) network
was developed, a variant of RNN exhibiting remarkable performance within the
human gesture recognition field. Unlike standard RNNs, the LSTM [85] uses memory
cells to identify the long-range temporal relationships hidden in the sequence. It has
a self-connection with unity weight. This self-connection causes it to copy its own
real-valued state and gather the external signal. In addition, the self-connection is
gated multiplicatively by another unit that learns to decide when to clear the con-
tent of the memory [75]. A standard LSTM network computes the hidden vector as
follows [85]:

it = σ(Wxixt +Whih t−1 + bi), (28)

f t = σ
(
Wxfxt +Whfh t−1 + b f

)
, (29)

c t = f tc t−1 + it tan h(Wxcxt +Whch t−1 + bc ), (30)

o t = σ(Wxoxt +Whoh t−1 + bo ) , (31)

Figure 22

RNN (left) and LSTM (right) cell structures. The RNN replicates a linear dynamic
system, and the LSTM includes additional control gates.
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h t = o t tanh(c t) , (32)

where i, f , and oare the input, forget, and output gates, respectively, and c represents
the cell state vectors.

Figure 22 (right) shows the LSTM cell structure including three different control
gates. From left to right, the first one (forget gate) decides the amount of input infor-
mation that remains in the cell by passing the input data (x t) and the previous state
through a sigmoid activation function. The second one (input gate) updates the cell
content as follows: initially, a sigmoid function is applied to both the previous state
and x t to set the values that will be updated. Next, the sigmoid output is multiplied
by the output of a hyperbolic tangent layer. At this point, the cell state is updated by
multiplying the previous state with the output of the forget gate and adding it to the
output of the input gate. The final step (output gate) determines the system output by
passing the previous state and the input data x t through a sigmoid function. This result
is multiplied by the current cell state and passed to the hyperbolic tangent layer to
produce the final output result.

The literature on LSTM technologies presents different variations for human gesture
recognition, e.g., the bi-directional long short-term memory (BiLSTM) network,
which makes use of two LSTM networks, the first one for learning in the positive
time direction (forward states) hforward and the other for learning in the negative time
direction (backward states)hreverse. The output layers are merged for classification,
i.e., h= [hforward, hreverse], where the resulting output is typically normalized via a
fully connected layer and the softmax nonlinear activation as follows:

y= sm(Wh h + bh) , (33)

where sm represents the softmaxfunction. Notably, as in the case of CNN, the LSTM-
based methods normally utilize several fully connected layers to discriminate the dif-
ferent gestures. Most recent studies have shown that hybrid CNN-LSTM models give
better results. In the following subsection, we review a representative hybrid approach
and provide more details on this type of architecture.

Spatio-temporal human gesture recognition using 3D imaging and deep neural net
works. In this subsection, we discuss the technical details of dynamic gesture recog-
nition using 3D imaging and deep neural networks. In particular, we discuss the DL
architectures used for gesture recognition via two different 3D imaging techniques;
the first architecture considers integral imaging-based data acquisition, while the
second considers RGB-D sensor-based data acquisition. In both cases, we can use a
hybrid CNN-LSTM approach. The CNN is useful for extracting the spatial features,
while the LSTM network assists in capturing the temporal dependency of feature
vectors. Integral imaging can be considered as a depth-based filtering process, which
outputs the reconstructed video at the depth of the gesture of interest. Unlike inte-
gral imaging, RGB-D sensors such as Kinect provide the RGB and the depth videos
separately, which requires a multi-modal fusion for classification. The block dia-
grams and their descriptions for deep neural network-based gesture recognition using
integral imaging and RGB-D sensors have been provided in detail in the following
subsections.

Hybrid CNN-LSTM for integral imaging-based data acquisition. This subsection
describes a representative approach using CNN and LSTM for integral imaging-based
data acquisition. CNNs are a popular method used for object recognition and image
classification [75]. As the name suggests, conventional CNNs consist of stacked
convolutional and pooling layers followed by one or more fully connected layers.
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The convolutional layers use a series of convolutional kernels for feature learning.
The output of the convolutional layers is a set of feature vectors, which represents the
spatial features in an image. The pooling layer combines semantically similar features
into a single feature [75]. In the case of gesture recognition, the temporal dependen-
cies of feature vectors from adjacent frames are also important, which a CNN alone
cannot capture. Therefore, a cascaded network is used, as shown in Fig. 23. The con-
volutional layers of the CNN produce the feature vector, which is fed as an input into a
BiLSTM network, which captures the temporal dependency of the adjacent frames in
the gesture videos. The following subsections discuss the proposed system in detail.
Figure 23 shows the block diagram of the gesture recognition strategy using integral
imaging-based data acquisition.

The computational reconstruction algorithm is an inverse mapping procedure, which
extracts pixels from each elemental image and displays the corresponding voxels at
coordinates [86]. In this tutorial, we considered the spatio-temporal volume video
data for the reconstruction process:

r (x , y , z, t)=
1

O(x , y , t)

K−1∑
i=0

L−1∑
j=0

E Ii, j

(
x − i

r x × px

M × dx
, y − j

r y × p y

M × dy
, t
)

. (34)

Here, r (x , y , z, t) is the integral imaging-reconstructed video, x and y represent the
pixel indices in each frame, z represents the reconstruction depth, and t is the frame
index. The reconstructed frame at depth z is obtained by shifting and overlapping K ×
L elemental images E Ii, j at a specific depth z. In Eq. (34), r x and r y represent the res-
olutions, dx and dy represent the physical size of the image sensor, and px and p y indi-
cate the pitches of adjacent image sensors on the camera array. The O(x , y , t)matrix
contains information regarding the number of overlapping pixels and the magnifica-
tion factor M = z/ f , where f represents the focal length.

The 3D reconstructed video obtained using Eq. (34) is fed as the input data into a
CNN, in order to extract its spatial features. The input data are passed through a
series of convolutional and pooling layers, which spatially filter the input to extract
relevant features. The output of the last pooling layer is taken as the feature vector
representing the spatial information of the video, which can be used for high-level
interpretation tasks. For small datasets, we can use a pretrained network such as a
deep GoogLeNet network, pretrained on the well-known ImageNet [87] database.

Figure 23
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Block diagram of the deep learning strategy for 3D integral imaging-based gesture
recognition. CNN, convolutional neural network; LSTM, long short-term memory
network. (Reprinted from [108].)
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Similar to the architecture proposed by Serre et al. [88], which used a series of Gabor
filters to handle multiple scales, GoogLeNet uses an inception module. The filters in
the inception module are learned [89]. GoogLeNet takes a single 224× 224 image
as its input and passes it through multiple filters in parallel, using 1× 1, 3× 3, and
5× 5 convolution and max-pooling operations, and concatenates the resulting filter
outputs [89]. Finally, the activations are average-pooled to obtain a feature vector x .
For a video with N frames, {I1, I2, I3, . . . , IN}, where I represents the frame and the
index represents the frame number. For each frame In, n = (1, 2, . . . , N), the CNN
produces a P -dimensional feature vector X ε RP . Thus, an N frame video can be
represented by a feature matrix X ε RP×N, i.e.,

X = x 1� x 2� x 3� . . .� x N, (35)

where � represents the concatenation operator. Therefore, for each input video, the
convolutional and pooling layers of the CNN output the feature matrix X ε RP×N,
where P represents the number of features. The row and column sequences of
X ε RP×N encode the spatial and temporal information of the video, respectively.

The CNN is followed by a BiLSTM network, which learns the temporal depend-
ency between the feature vectors extracted from the adjacent frames of the input
video. Finally, it is fed to a fully connected layer and classification layer for gesture
classification.

Hybrid CNN-LSTM for RGB-D sensor-based data acquisition. In this subsection,
we present specific details of a representative approach, namely the hybrid CNN-
LSTM model, for human gesture recognition using RGB-D data. We focus on the
work presented in [84], which provides a multi-modal human gesture recognition
approach based on 3D CNN and LSTM. The rationale behind this method is based on
learning short-term spatio-temporal gesture features first using a CNN before learning
long-term features via convolutional LSTM. Figure 24 shows an overview of the five
steps included in this method.

In the pre-processing step [Fig. 24(a)], the RGB and depth modalities are initially
normalized and down-sampled to transform each gesture sequence into a fixed length
L . Specifically, a temporal jitter strategy is used to sample a gesture sequence with S
frames as follows:

IX i =
S
L
×

(
i +

r
2

)
, (36)

where IX i represents the index of the i th frame, and r is a random value between −1
and 1, sampled from the uniform distribution. The second step [Fig. 24(b)] processes
each data modality (i.e., RGB and depth) to extract the corresponding features using
the 3D CNN model defined in [90].

This network design includes four Conv3D layers with 64, 128, 256, and 256 ker-
nels as well as batch normalization, ReLU activation, and spatio-temporal pooling.
The third step [Fig. 24(c)] consists of a convolutional LSTM, which, unlike regular
LSTMs, utilizes convolutional structures in both the input-to-state and state-to-state
transitions. The gates of the ConvLSTM can be described using Eqs. (28)–(33).

The fourth step [Fig. 24(d)] applies a spatial pyramid pooling layer between the
ConvLSTM and the fully connected layers to reduce the data dimensionality and, con-
sequently, the number of model parameters. This process pools the generated feature
maps at four different levels to generate feature representations with a fixed size of
49+ 16+ 4+ 1= 70. Finally, the multi-modal fusion step [Fig. 24(e)] adopts a late
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fusion approach by averaging the predictions generated by the network modalities to
produce a final gesture prediction for the input RGB-D data.

4.2c. Correlation-Based Spatio-Temporal Human Gesture Recognition in Degraded
Environments

The methodologies and strategies discussed thus far require the acquisition of accu-
rate human gesture features from the scene. However, under some degraded imaging
conditions, it can be challenging to achieve the desired quality. Correlation-based
matched filters have been investigated and used for target detection and object recog-
nition [91,92] because these approaches do not require prior object detection or
segmentation, and they are important for solving pattern recognition problems.

The concept of a conventional matched filter is equivalent to a linear space-invariant
filter. Consider a 3D signal s (x , y , t); the impulse response of the filter h(x , y , t) is
designed to correspond to the model signal as a template [93]:

h(x , y , t)= s ∗(−x ,−y ,−t), (37)

where s ∗ (·) represents the complex conjugate of the signal. The correlation process
applies the designed filter template to the unknown test data t(·) at every spatio-
temporal location. The correlation output g (·) reaches a large value at the location
where the test data is similar to the template. The cross-correlation process between
the test signal [t(·)] and the template [s(·)] can be expressed in the spatio-temporal
domain as

Figure 24

LSTM-based approach, presented in [84], composed of five blocks: (a) pre-
processing, (b) 3D CNN, (c) convolutional LSTM, (d) spatial pyramid pooling,
and (e) multi-modal fusion.
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g (x , y , t)=
∫∫

∞

−∞

t(ξ, η, γ )h(x − ξ, y − η, t − γ )dξdηdγ

=

∫∫
∞

−∞

t(ξ, η, γ )s ∗(ξ − x , η− y , γ − t)dξdηdγ . (38)

For correlation-based human gesture recognition, the correlation filters will be
designed based on 3D (x − y − t) or 4D (x − y − z− t) video sequence tem-
plates. To perform high-quality correlation between the templates and the test video
sequence, care must be taken when designing the filter to minimize the difference
between the correlation response of the filter and the desired correlation output.
Once the filter is synthesized, it can be correlated with the test data in the frequency
domain:

g (·)= FT−1
{
T
(

fx , f y , f t

)
× S∗

(
fx , f y , f t

)}
, (39)

where T( fx , f y , f t)= FT[t(x , y , t)], S( fx , f y , f t)= FT[s (x , y , t)], and FT[·] is the
Fourier transform operation. The correlation output is obtained by applying an inverse
Fourier transform operation FT−1

[·]. As shown in Fig. 25, the correlation-based object
recognition concept comprises three main steps: (1) training and design of a correla-
tion filter, (2) frequency domain correlation, and (3) classification (for human gesture
recognition).

Compared with the pattern recognition techniques discussed in previous sections,
correlation-based approaches for object recognition are computationally efficient,
spatially shift-invariant, and can provide a large peak indicating the presence and
location of the desired target template. Correlation-based approaches are easy to
understand and implement; they have advantages when limited samples are available
for training, and they do not require the computation of features. In addition, correla-
tion is robust to certain types of noise. However, the drawbacks of correlation-based
approaches may include the fact that consistent similarity between the target and
the template is needed for high-quality performance. Correlation filters are particu-
larly sensitive to rotations and scale size changes because they are both amplitude
and phase matched [93–95]. For more complex objects and scenes, the sharp-
ness of the correlation output may be reduced, and correlation-based approaches
may not be able to solve classification problems with very complex decision
boundaries.

Figure 25

Flowchart of correlation-based object recognition. FFT, fast Fourier transform; IFFT,
inverse fast Fourier transform. (Reprinted from [83].)
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In the end, classification is performed to recognize the object of interest based on spe-
cific features. The correlation-based methods described in this subsection can apply
the nearest neighbor (NN) type classifier, which uses the correlation output as a dis-
similarity/distance measurement. This is performed using the correlation in relation to
an “exemplar”-type video, which acts as the training set for the NN classifier. The NN
classifier expects the class conditional probabilities to be constant at a localized scale,
and classifies each piece of test data by labeling it with respect to multiple nearest
neighbors, which are defined in the training dataset. The NN classifier will first calcu-
late the distance between the object and the model points in each class in the feature
domain. It then classifies the object to a class with the shortest distance, which can
be either the Euclidian distance or another weight combined distance [96]. The NN
classifier is a simple method for pattern recognition. However, if the features of the
object are not distributed in the domain in a straightforward way, overlaps between
different classes may occur, and the performance of the NN classifier may be reduced.
In this situation, we may consider the Bayesian classifier, which uses the frequency
information of the object and the probabilistic information of its features.

Conventional correlation-based matched filters used for target detection were
designed to optimize the output SNR in the presence of additive overlapping sta-
tionary noise. However, such filters are sensitive to distortion and changes in the
target, which may lead to poor correlation performance for object recognition under
degraded conditions such as when the objects are partially occluded and/or there
is low illumination. To solve this issue, optimum distortion-invariant filters have
been proposed [97,98]. In Subsection 3.6, we explained the advantages of integral
imaging-based 3D imaging in a degraded environment. By combining these concepts,
we can use integral imaging to apply the spatio-temporal correlation method for
human gesture recognition, especially under degraded conditions. The details of the
distortion-invariant filter design and the classification process will be discussed in
Appendix A. In Subsection 5.2, we will show the corresponding experimental results
to illustrate the potential of the spatio-temporal correlation-based approach with 3D
integral imaging and TV denoising algorithms for efficient human gesture recognition
in degraded environments. Comparative analysis against other well-known algo-
rithms further indicates that the nonlinear correlation filtering approach is more robust
for human gesture recognition under degraded conditions.

The correlation-based method described in Subsection 4.2c applies a nearest
neighbor (NN) type classifier, which uses correlation as a dissimilarity/distance
measure. This is carried out by means of the correlation in relation to an
“exemplar”-type video, which acts as the training set for the NN classifier.

4.3. Performance Metrics of Human Gesture Recognition Systems

Thus far, we have described how different technologies can be used to acquire and
process human gestures. The final processing step concerns the quantification of their
characterization performance. Human activity recognition is a complex classifica-
tion problem, which can be tackled, in terms of performance, from vastly different
viewpoints. Depending on whether the activity is continuous or not, we might have to
consider the classification quality from a timestamp viewpoint (e.g., fragmentation
of the video, or when the action starts and finishes). This affects how input data is
extracted before it is classified.
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In this regard, research addressing the problem of failures in the data capture of the
action, specifically in video event segmentation, event merging, and timing offsets,
has been conducted previously [99,100]. This raises the possibility of inserting,
deleting, fragmenting, merging, or combining fragmented and merged operations of
the information provided by the sensors. This is especially useful in cases where the
nature of the sensors is not visual, e.g., in WiFi [13–16], or when there is an additional
complexity of visual scenarios, such as in the behavior of a crowd of people, which
makes it difficult to temporally segment the actions or gestures. Nevertheless, this
specific problem is beyond the scope of the proposed tutorial, which is focused on the
main techniques and methods for 3D hand gesture characterization and recognition.

Once the trajectory of the gesture is well characterized in the temporal domain, we can
focus on the meaning of the gesture within that video. The gesture recognition process
can be described by building a feature space in which each gesture can be represented.
In this case, the problem may be solved using a conventional classifier approach such
as the SVM. This classifier performs well in situations where the number of data sam-
ples is scarce and dispersed in spaces of high dimensionality, as in problems related to
gesture recognition.

In the case of a binary classification, such as the recognition of a certain gesture, the
denial gesture might be labeled as “denial” or “positive” and “non-denial” or “nega-
tive.” The terms “positive” and “negative” are related to the presence or absence of a
certain event, in this case the gesture “denial.” Therefore, in binary classification, the
confusion matrix is limited to a 2× 2 matrix between the classifier prediction and the
real value for each sample. Four possible results may be obtained: true positive (TP),
which represents the number of samples where both the prediction and true labels
coincide with the gesture “denial”; false positive (FP) when its true label is “non-
denial” but its prediction is “denial”; false negative (FN) when the label is “denial”
but the prediction is “non-denial”; and true negative (TN) when both the prediction
and true labels coincide with “non-denial” (see Fig. 26).

In this type of problem, the measures used most frequently to quantify the classifica-
tion results are precision and sensibility or r e c all : pr e c i s ion = TP/(TP+ FP) and
sensibility= TP/(TP+ FN). These two measures can be combined with the F1 score
measure via the harmonic mean between them:

F 1score = 2 ·
precision · sensibility

precision+ sensibility
. (40)

Figure 26

Confusion matrix in a binary classification problem.
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Other measures include the accuracy and Matthews’s correlation coefficient (MCC)
[101]:

Accuracy=
TP+ TN

TP+ FP+ FN+ TN
(41)

and

MCC=
TP·TN− FP·FN

√
(TP+ FP) · (TP+ FN) · (TN+ FP) . (TN+ FN)

. (42)

We can analyze the performance of the binary classifier through the receiver oper-
ating characteristic (ROC) curve. This curve represents the relationship between the
true positive rate (sensibility) on the ordinate axis and the false positive rate, FPR
= 1–specificity, on the abscissa axis, where specificity= TN/(TN+ FP). Each pre-
diction or instance of the confusion matrix represents a point in the ROC space. The
classification is perfect at the upper left corner where we have a 100% specificity (no
false negative) and 100% specificity (no false positive).

Any point along the diagonal line (red line) gives a random classification, also called
the line of no-discrimination. The diagonal ROC divides the space into two regions:
classification results that represent points above the diagonal (better classification
than random), and those representing the points below the line (poorer classifica-
tion than random). Figure 27 shows the prediction results, indicated in blue, for the
case of the classifier with better behavior than the random classifier. The commonly
used statistic is the area under the ROC curve (Fig. 27), typically referred to as the
AUC (area under the curve). This index can be interpreted as the probability that
a classifier scores a positive instance, chosen at random, is higher than a negative
instance [102].

In the general case of multiclass classification, different strategies have been proposed
to evaluate the performance. In the binary classification case, there is a confusion
matrix whose range coincides with the number of classes k, as shown in Table 5. The
first evaluation scheme is to generalize the different criterion-defined binary classi-
fiers from the multiclass confusion matrix, obtaining the following expressions for the
class n:

TP(n) =Cn,n, FN(n) =NPl ,n −Cn,n , FP(n) =NPn,l −Cn,n ,

TN(n) =

∑k

l=1

∑k

j=1
Cl , j − TP(n) − FN(n) − FP(n). (43)

Similarly, we can obtain the rest of the expressions for class n as follows:

accuracy(n) =
TP(n)

TP(n) + FP(n) + FN(n) + FN(n)
, precision(n) =

TP(n)
TP(n) + FP(n)

,

sensibility(n) =
TP(n)

TP(n) + FN(n)
, F 1score(n) = 2 ·

precision(n) · sensibility(n)
precision(n) + sensibility(n)

,

MCC(n) =
TP(n) · TN(n) − FP(n) · FN(n)√(

TP(n) + FP(n)
)
·
(
TP(n) + FN(n)

)
·
(
TN(n) + FP(n)

)
·
(
TN(n) + FN(n)

) .

(44)
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This allows the use of these measures to divide a multiclass problem into several class
problems and later take the average of the obtained measures. In the case of the accu-
racy measure, this is given by the sum of the accuracies of each class,

accuracy=
k∑

l=1

accuracy(l), F 1score =
1

k

k∑
l=1

F 1score(l), MCC=
1

k

k∑
l=1

MCC(l).

(45)

Another typical measure is Cohen’s kappa measure [103]. It was developed in the
field of psychology to establish a statistical significance test of the diagnosis by
different experts. This idea has been used in the multiclass confusion matrix for clas-
sification problems. Let us consider Table 5, where the confusion matrix contains
a total of n samples. The marginal accumulated samples are shown in the last row
and column. Let us denote the sum of samples in the main diagonal using Pa and the
product of the marginal accumulated using Pe such as

Pa =

k∑
l=1

Cl ,l (46)

and

Pe = N P1,l · N Pl ,1 + N P2,l · N Pl ,2 + . . .+ N Pk,l · N Pl ,k . (47)

Thus, we define the kappa coefficient κ as

Pe = N P1,l · Pl ,1 + N P2,l · Pl ,2 + · · · + N Pk,l · Pl ,k . (48)

Figure 27

ROC space with random results and with a possible classifier.



Tutorial Vol. 12, No. 4 / December 2020 / Advances in Optics and Photonics 1279

When the true labels match the predictions of the classifier, we obtain a value of
κ = 1, whereas if there is no similarity, the true labels and predictions take the
value κ = 0.

5. EXPERIMENTS ILLUSTRATING HUMAN GESTURE RECOGNITION

This section shows three examples of the application of integral imaging for human
gesture recognition. In the first example (Subsection 5.1), integral imaging is com-
pared with Kinect in terms of the gesture recognition performance when there is an
occlusion that may (totally or partially) impede the correct visualization of the ges-
ture. In the second example (Subsection 5.2), another series of real experiments is
performed using the correlation-based approach explained in Subsection 4.2c., when
there are degraded environmental conditions (in particular, with partial occlusions
and under low illumination). The experimental results shown in these sections verify
that integral imaging can enhance the performance of human gesture recognition in
degraded environments. In the third example, a deep learning approach is used. A cas-
caded network formed by a CNN, fed into a BiLSTM network, is used for classifying
two different types of gestures under different acquisition conditions.

5.1. Experimental Results of Gesture Recognition under Occlusions

In this subsection, we compare two 3D imaging methodologies by conducting real
experiments [8]: (1) elemental images are obtained using integral imaging from a
3× 3 camera array and (2) RGB-D data are generated by a Kinect. Eleven subjects
performed three different gestures, repeating them twice in front of the camera array,
once in an unobstructed scenario, and once obstructed by a plant. The hand gestures
used for recognition were “open,” “left,” and “deny.” In addition, a Kinect was placed
under the camera setup so that the gestures were recorded by the devices at the same
time (see Fig. 28).

The two systems have different image resolutions. The Kinect’s images have a larger
FOV but a lower resolution (640× 480 pixels). The images from integral imaging
are 1024× 768 pixels in size. To make an equivalence between the two resolutions,
cropping and resizing can be performed to obtain a common interest region (subjects’
upper bodies). In Fig. 29, we show the image representation under RGB-D, monocu-
lar, and integral imaging for both the non-occluded and occluded views. In the case of
the monocular image, it corresponds to the central camera image of the setup.

Figures 29(a) and 29(b) show the resulting RGB-D information obtained by the
Kinect, whereas Figs. 29(c) and 29(d) show the corresponding information acquired
by integral imaging. For both the sensors, the same scene of the person is shown, in
which we can see a hand gesture with and without occlusions. We can observe that in
the scenes with occlusion, the Kinect generates a significant amount of noise that can

Table 5. Confusion Matrix and Marginal Accumulated Values
True Labels

Class 1 Class 2 · · · Class k

Class 1 C1,1 C1,2 · · · C1,k N P1,l =

k∑
l=1

C1,l

Predicted labels Class 2 C2,1 C2,2

...
...

...
. . .

. . .

Classk Ck,1 Ck,2 Ck,k N Pk,l =

k∑
l=1

Ck,l

N Pl ,1 =

k∑
l=1

Cl ,1 · · · N Pl ,k =

k∑
l=1

Cl ,k
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be solved by integral imaging if it is focused at an appropriate depth with respect to
the gesture.

As for obtaining features from STIPs, different local visual descriptors can be
used: the HOG, the HOF, and their concatenation (HOG + HOF). In this exper-
iment, only the performance with HOG + HOF is reported. Histograms were
L1-normalized, and the individual features were rescaled independently to the
range [{0,1}]. Finally, the histograms were L2-normalized. Different vocabulary
sizes K ∈ {10, 25, 50, 100, 200, 500, 1000, 2000} were tested using the K-means
algorithm of the VLFeat library [104].

When classifying hand gestures, a SVM [70] was tested with two kernel models,
namely, a linear and a nonlinear model, with the RBF leading to similar perform-
ance in each case; therefore, only the learning outcomes related to the linear SVM

Figure 28

Two-sensor setup used in the experiments: 3× 3 camera array on top and Kinect
device below. (Reprinted from [8].)

Figure 29

(a) and (b) RGB-D data without and with occlusion, respectively. On the top, we show
the color images obtained by the Kinect, and on the bottom their corresponding depth
maps. (c) and (d) On the top, we show the monocular images obtained using the cen-
tral camera without and with occlusion. On the bottom, we show the 3D reconstructed
images obtained by integral imaging in the hand-depth plane. (Reprinted from [8].)
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are reported. For the implementation, the LIBSVM library [105] was used. As for
the parameters, we need only to adjust the parameter C between a set of values
{10e
: e ∈ {−4,−3, · · · , 4}} via cross-validation. Regarding the process of data

splitting, a “leave a subject out” protocol was used. Moreover, given the variability
in the results of the K -means algorithm, the entire process (clustering + learning +
classification) was repeated n = 10 times and the average accuracy reported. The
performance plot (see Fig. 30) includes these averages and their standard errors as a
measure of the variance.

In the experiments with occlusion, the training set was constructed using the STIPs
from videos of the non-occluded gestures in order to have “clean” gestures, while
the test set included the STIPs from videos with occlusions. The process of partial
occlusion of the gesture throughout the video brings a level of unpredictability, while
including it in the training process makes learning difficult.

To study the effectiveness of depth-based filtering (DBF), we compare the perform-
ance of using the entire set of STIPs detected in the RGB Kinect’s images with the fil-
tered set of STIPs resulting from the DBF.

Figure 30 shows that a sufficiently large vocabulary, e.g., K > 500, is required to
have an adequate learning rate. The learning rate is two percentage points higher with
DBF than with RGB-D for a vocabulary of K = 1000 words. This advantage is main-
tained even in the case of larger vocabularies (K ∈ {3000, . . ., 7000}). However,
given the small number of samples available, as we increase the dimensionality of the
space, the data are more dispersed. To demonstrate this tendency, we should perform
the experiments with larger gesture databases.

The following observations can be made by comparing the three sensory modalities
with and without occlusion (see Fig. 30):

Figure 30

Comparison of monocular, RGB-D, and integral imaging with and without occlusion.
The horizontal axis represents the number of words in the logarithmic scale to empha-
size the wide range of vocabulary sizes. (Reprinted from [8].)
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1. Occlusion: There is a significant difference (approximately 20%) in the learn-
ing rate between the results with occlusion and without occlusions for the three
proposals (integral imaging, monocular, and RGB-D).

2. Integral imaging versus monocular: Integral imaging obtains better results under
occlusion than the monocular images. The use of an image in focus around the
depth of the gesture integrates the camera-array information, allowing the elimi-
nation of some of the information occluded in the hand gesture. This difference
increases approximately with vocabulary size.

3. Integral imaging versus RGB-D: In the case of no occlusion, integral imaging
obtains better results than RGB-D for small vocabularies; RGB-D (through the
DBF mechanism) outperforms integral imaging for larger vocabularies. However,
although the DBF has some positive effect without occlusions, it does not find
a solution in scenes with occlusions, where integral imaging is clearly a better
option. To understand the reasons behind the difference in performance between
integral imaging and RGB-D, note that in RGB-D, DBF eliminates some poten-
tially noisy STIPs detected in monocular images (RGB), whereas the STIPs
detected from the integral image are different from the monocular case.

4. RGB-D versus monocular: In the case of no occlusion, RGB-D outperforms the
monocular images as a result of its learning capability; however, in scenes with
DBF occlusion, it is inferior to the monocular case because the DBF procedure can
eliminate unnecessary STIPs.

Integral imaging implemented via obtaining a video of images in focus naturally
solves a part of the occlusion problem owing to the multi-view nature of the method.
Thus, with just a few words (only 10), acceptable performance may be obtained.
Experimentally, we found that K ≈ 10 seems to be the minimum required number of
words.

Table 6 lists the changes in the precision for situations with and without occlusions,
comparing monocular images with images obtained through integral imaging. In the
case of no occlusions, a higher resolution in the number of words is similarly benefi-
cial to the two methods, with an average accuracy increase of 5%. Increasingly large
vocabularies are required to obtain constant performance, possibly because more
STIPs are found. In the case of occlusions, learning using monocular images only
occurs from 100 words onwards. Therefore, we can rely on integral imaging owing to
its ability to focus as well as the quality of the resolution provided.

Regarding the ability to recognize each of the three hand gestures, multi-class cri-
teria have been applied to each of them. Table 7 shows the confusion matrix and
the marginal accumulated values, in the case of recognition by means of integral

Table 6. Change in Average Accuracy (%) with Respect to the Low-Resolution
Case, in Monocular (Mono) and Integral Imaging (II) (* = with Occlusion)
K 10 25 50 100 200 500 1000 2000

Mono −20.8 0.0 +2.7 +2.3 +4.4 +7.0 +6.8 +6.5
II −12.9 −1.8 +6.2 +3.6 +4.7 +5.6 +5.2 +7.1
Mono* −12.6 −5.5 −4.2 −6.2 −3.9 +2.8 +9.7 +6.3
II* +3.3 +3.0 +0.3 −0.8 +4.1 +10.0 +2.4 −0.5

Table 7. Confusion Matrix and Marginal Accumulated Values
True Labels

Open Left Deny
Open 17 1 1 N P1,l = 19

Predicted Left 1 14 0 N P2,l = 15
Labels Deny 4 7 21 N P3,l = 32

N Pl ,1 = 22 N Pl ,2 = 22 N Pl ,3 = 22
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imaging without occlusions, and with a BoW of 1000 words. In the case of sensitiv-
ity, the aim is to reduce false negatives (FNs), whereas in the case of specificity, the
objective is to reduce false positives (FPs). When analyzing the confusion matrix,
we obtain the following values: Sensibility(Open, Left,Deny) = (0.77, 0.63, 0.95) and
Specificity(Open, Left,Deny) = (0.95, 0.97, 0.75). We can observe that in almost all
cases, the hand gesture with true label “Deny” is identified correctly and only
contains one FN. However, other hand gestures used during the recognition are
identified as the label “Deny,” which implies that the classifier generates a sig-
nificant number of FPs for this gesture. This is corroborated when estimating the
Precision(Open, Left,Deny) = (0.89, 0.93, 0.65), where it is observed that the prediction of
the “Deny” label contains more FPs than those in the other two classes. As for the final
results globally, we have the following measures: acy= 0.788, F 1_score= 0.788,
MCC= 0.704, and κ = 0.682. In this case, the MCC is more informative than the
other measures, such as the F1_score or the accuracy, in the sense that it has better
considered the relationships between the different values obtained in the confusion
matrix. Thus, it obtains a result similar to Cohen’s kappa (κ), altogether penalizing
the difference between the quantities observed by its true labels and classification
predictions.

5.2. Experimental Results of Correlation-Based Spatio-Temporal Human Gesture
Recognition

A series of experiments was designed and implemented to verify the validity of the
recognition methodology using the spatio-temporal correlation-based approach (pre-
sented in Subsection 4.2c. and Appendix A) for human gesture recognition under
degraded environmental conditions. An integral imaging system consisting of a 3× 3
synchronized camera array in the horizontal and vertical directions was used. The
nine-camera (Mako G192C machine vision camera) system captured the video data
of the scene from different viewing perspectives. The intrinsic parameters of each
camera are identical, including a focal length of 50 mm, F/# of 1.8, and a frame rate of
20 frames/s.

Figure 31(a) shows the camera array used in the experiments. Figure 31(b) shows a
complete human hand gesture action and a sampling stack formed by nine frames.
In the experiments, five video datasets were collected for training the correlation
filters (see Appendix A). A forefinger waving from left to right corresponding to the
observer’s viewing direction constitutes the training data [see Fig. 31(c)]. The test
datasets include both true class hand gestures [see Fig. 31(c)] and false class hand ges-
tures [see Fig. 31(d)]. The test data were collected from six people, and each person
performed 10 gestures with five true class and five false class datasets.

Figure 31

(a) Integral imaging system used in the human gesture recognition experiment.
(b) Examples of the spatio-temporal video frames. (c) Example of a true class human
hand gesture frame. (d) Examples of false class human gestures [83].
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The experiment was performed under low illumination conditions, in a low dynamic
range scenario, and with a partial occlusion in front of the target. Figure 32(a) (i–
iii) illustrates the original captured video frames, for which the reader may find it
difficult to locate the target. With the application of the integral imaging computa-
tional reconstruction algorithm, the video sequence reconstructed at the object depth
plane enhanced the signal intensity, with the occlusion out of focus in front of the
target [see Fig. 32(c) (i–iii)], and the object of interest can be observed as well. To
further improve the image quality, we applied the total variation (TV) denoising
algorithm [106], which may smoothen the reconstructed image and preserve the
edges. The results, shown in Fig. 32(d) (i–iv), provide enhanced video frames and
clear human hand gesture features. The comparison results obtained by applying the
total variation algorithm to the 2D frame without integral imaging reconstruction
[see Fig. 32(i–iii)] indicate the advantages of the integral imaging reconstruction. The
1D intensity profiles [see Fig. 32(iv)] along the yellow lines [illustrated in Fig. 32(ii)]
verify the capability of combining integral imaging and the TV algorithm for noise
removal.

The test video datasets captured under degraded conditions are correlated in the
frequency domain with the filters discussed in Subsection 4.2c and Appendix A.
The correlation filters are trained using the true class dataset [see Fig. 31(b)], and
we set the operator k as 0.3 for the nonlinear correlation process [see Eq. (A5) in
Appendix A]. The ROC curves were applied to analyze the performance of the linear
(k = 1) and nonlinear (k < 1) classifiers with the different computational imaging
algorithms.

Figure 32

Video frames for a true class partially occluded human hand gesture under low light
environment: (a) captured video sequence, (b) captured video sequence with the
total variation (TV) denoising algorithm, (c) integral imaging-reconstructed video
sequence, and (d) integral imaging-reconstructed video sequences with the TV
denoising algorithm. (i)–(iii) Examples of video sequence and (iv) one-dimensional
intensity profiles of the finger along the yellow lines in (ii) [83].
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Figure 33 shows five ROC curves corresponding to the distortion-invariant filter
[see Eq. (A2)] with a nonlinear (k = 0.3) and a linear correlation value (k = 1) for the
distortion-invariant filtering process. Under the nonlinear correlation operation, we
compared the results obtained by applying various algorithms to the captured video
frames: (i) the original captured video sequences, (ii) the original captured video
sequences with the TV denoising algorithm, (iii) integral imaging-reconstructed
video sequences, and (iv) integral imaging-reconstructed video sequences with the
TV denoising algorithm. The ROC curves show that the nonlinear correlation process
outperforms the corresponding linear correlation counterpart. In addition, the ROC
curve of the integral imaging-reconstructed video sequences with the TV denoising
algorithm (see the red line in Fig. 34) gives the highest AUC value (AUC= 0.897).

Figure 34 shows five ROC curves corresponding to the nonlinear distortion-invariant
correlation filter [see Eq. (A4)] with a nonlinear operation (k = 0.3). We also com-
pared the results by applying various algorithms to the captured video frames: (i) the
original captured video sequences, (ii) the original captured video sequences with the
TV denoising algorithm, (iii) integral imaging-reconstructed video sequences, and
(iv) integral imaging-reconstructed video sequences with the TV denoising algorithm.
In addition, the simplified filter trained by the average templates was analyzed as
indicated by the brown dotted line in Fig. 34. Among the various algorithms and
approaches, the ROC curve corresponding to the integral imaging-reconstructed
video sequences with the TV denoising algorithm (see red line in Fig. 34) yielded the
highest AUC value (equal to 0.921). The AUC value for the case in which the filer
was trained with the averaged template videos was 0.887, which can be considered an
option for reducing the computational cost. The experimental results demonstrate the
potential of using the spatio-temporal correlation-based approach when considering
integral imaging and TV denoising algorithms for efficient human gesture recognition
under degraded conditions.

Finally, we show a confusion matrix to compare the performance between the
correlation-based approach with distortion-invariant correlation filters discussed

Figure 33

Receiver operating characteristic (ROC) curves for human gesture recognition using
the optimum linear distortion-invariant filter and nonlinear transformations of the
filter. For nonlinear correlation (k = 0.3), (a) red line: integral imaging-reconstructed
video with the TV denoising algorithm, (b) blue line: integral imaging-reconstructed
video, (c) magenta line: original video data with the TV algorithm, and (d) black
line: original video data. For linear correlation (k = 1), (e) green line: integral
imaging-reconstructed video with the TV denoising algorithm [83].
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in this section and a previously reported method with a standard bag-of-features
SVM framework [66] for human gesture recognition in degraded environments. The
thresholds for the classification of the correlation-based approaches are calculated
based on the optimal operating points obtained from the corresponding ROC curves
as shown in Figs. 33 and 34. As illustrated in Table 8, the results of the comparison
show that the nonlinear distortion-invariant filter (see Appendix A) outperforms
the bag-of-features SVM framework for human gesture recognition in degraded
conditions.

5.3. Human Gesture Recognition using 3D Integral Imaging and Deep Learning

In this subsection, we demonstrate representative results for 3D integral imaging-
based human gesture recognition using deep neural networks. A two-class
spatio-temporal gesture problem without occlusions was considered in this case.
We used the integral imaging-based hybrid CNN-BiLSTM approach for gesture clas-
sification. The integral imaging-based reconstructed video has been fed into a CNN
in order to extract the spatial feature vectors. The temporal dependency between the
feature vectors of adjacent frames was captured using a BiLSTM network. The details
of this neural network model are explained in Subsection 4.2b.

Figure 34

ROC curves for human gesture recognition using the nonlinear distortion-invariant
filter with k = 0.3. (a) red line: integral imaging-reconstructed video with the TV
denoising algorithm, (b) blue line: integral imaging-reconstructed video, (c) magenta
line: original captured video with the TV denoising algorithm, and (d) black line:
original captured video. For the simplified filter training process by averaging the
template videos, (e) integral imaging-reconstructed video with the TV algorithm [83].

Table 8. Confusion Matrix for a Variety of Algorithms for Human Gesture
Recognition and Classificationa

Actual Condition

Linear Correlation
Filter Used with

Nonlinear
Architecture, k = 0.3

kth-order Nonlinear
Distortion-Invariant

Filter, k = 0.3
Bag-of-Features

SVM Framework

Classified
condition

True False Tot. True False Tot. True False Tot.
True TP = 25 FP = 3 28 TP = 28 FP = 7 35 TP = 13 FP = 8 21
False FN = 5 TN = 27 32 FN = 2 TN = 23 25 FN = 17 TN = 22 39
Tot. 30 30 60 30 30 60 30 30 60

Sensitivity/TP rate 83.3% 93.3% 43.3%
Specificity/TN rate 90% 76.7% 73.3%
Accuracy/ACC 86.7% 85% 58.3%

aTP, true positive; TN, true negative; FP, false positive; FN, false negative; Tot., total [83].
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A series of videos was acquired from four participants for five different scene back-
grounds using integral imaging capture without occlusion (Figs. 35 and 36). Each
participant was asked to repeat the gesture twice (in order to capture the slow and the
fast variations of the same gesture). In total, a series of 80 videos was recorded, with
40 videos corresponding to each gesture. A 3× 3 camera array was used to capture
the data. For each gesture, the data recorded were divided into two sets using a random
split strategy. The first set, containing 30 videos for each gesture, was used for model
training. To improve the performance and generalization capabilities of the model, we
used data augmentation techniques (such as affine transformation, blurring, flipping,
inversion, resizing, and noise addition). We trained the network using 420 videos,
with 210 videos corresponding to each gesture class. The second (test) set, containing
10 videos for each gesture, was used to test the model. Figures 35 and 36 show the
sample data collected for gestures 1 and 2, respectively.

The detection performance was compared using comparison metrics such as the
accuracy, AUC, F1 score [107], precision, and MCC. We obtained an accuracy of
100% and a value of 1 for each of the F1 score, precision, and MCC. This is a clear
indication that combining integral imaging with deep learning offers a promising
approach to tackle human gesture recognition problems. The previous sections
demonstrated the advantages of integral imaging techniques over alternative method-
ologies in degraded environments where there is occlusion, low levels of light, etc.
This approach could be extended for multi-class gesture classification and more com-
plex scenes under various degradation conditions. A more detailed study regarding

Figure 35

Sample video frames for gesture 1 with different backgrounds: (a) mannequin, (b) ball
and cityscape, (c) checkboard, (d) curtain, and (e) wall. (Reprinted from [108].)
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human gesture recognition under various degradations, such as partial occlusions, low
illumination conditions, and multi-gesture scenarios, using an integral imaging-based
deep learning algorithm is presented in [108]. Therefore, the approach demonstrated
in this section can be extended for building a spatio-temporal gesture recognition
system using 3D integral imaging and deep learning in degraded environments [108].

6. CONCLUSIONS

Automated human gesture recognition is an active research area encompassing a
large number of application fields. In fact, research on human gesture recognition
has increased significantly in the last 20 years, with particular focus on new sensing
and acquisition technologies, and processing/classification algorithms and method-
ologies. This paper serves as a tutorial, presenting an overview of the current 3D
image acquisition technologies used for gesture recognition, and discusses the most
promising human gesture recognition algorithms. We presented experimental results
to illustrate some examples of human gesture recognition using 3D integral imaging,
comparing the results with those of 2D imaging. We provided examples of classi-
fying human gestures under normal illumination, under low illumination, and in the
presence of degraded conditions, such as occlusions, for both 2D and 3D imaging.

The tutorial is aimed at readers who may or may not be familiar with current 3D
optical acquisition techniques as well as classification algorithms and methodologies

Figure 36

Sample video frames for gesture 2 with different backgrounds: (a) mannequin, (b) ball
and cityscape, (c) checkboard, (d) curtain, and (e) wall. (Reprinted from [108].)
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applied to human gesture recognition. We presented a systematic tutorial overview of
the classification algorithms and techniques and 3D gesture acquisition methodolo-
gies based on 3D integral imaging and conventional 2D imaging. As with any tutorial
of this nature, it is not possible to cover every related topic extensively in a single
paper, and we may have inadvertently overlooked some relevant works. Nevertheless,
114 papers are cited, including overview articles, to assist the reader by covering
relevant topics of interest in more detail [1–114].

APPENDIX A: SPATIO-TEMPORAL HUMAN GESTURE RECOGNITION IN
DEGRADED ENVIRONMENTS

We consider the application of optimum distortion-invariant filters for high-quality
correlation-based spatio-temporal human gesture recognition under degraded imag-
ing conditions. The flowchart for the spatio-temporal correlation-based human
gesture recognition is shown in Fig. 37. The filter design involves developing an
optimum linear distortion-invariant filter [97] and/or a nonlinear distortion-invariant
correlation filter [109]. The optimum linear distortion-invariant filter operates by
maximizing the output peak-to-output-energy (POE) ratio. To train the filter, a
continuous human gesture action video template r i(x , y , t) is used, where x and y
are the spatial coordinates in each video frame, t represents the frame index, and
i [1, 2, . . ., N] denotes the template video index.

The training data in the frequency domain can be expressed as a 1D vector, Svec(ω)=

S(u, v, ϕ)= FT[s(x , y , t)], which is stacked from the corresponding 3D data matrix
for simplicity. FT represents the Fourier transform operation. The expression for the
video data in the spatio-temporal domain can be obtained as follows [83]:

s (p)= FT−1[Svec (ω)]= vec [s (x , y , t; z)] , (A1)

where FT−1 represents the inverse Fourier transform operation. The synthesized opti-
mum linear distortion-invariant filter can then be given by [83,97]

H∗opt (ω)=
E [S (ω, τ ) exp ( jωτ)]

E [|S (ω, τ )|2]
. (A2)

A nonlinear distortion-invariant correlation filter [106,109] has also been considered
for the spatio-temporal human gesture recognition. Compared with the conven-
tional linear correlation filtering process, the nonlinear correlation in the Fourier
plane can further enhance the correlator’s performance with improved sharpness

Figure 37

Flowchart of the spatio-temporal correlation-based human gesture recognition pro-
posed in [83]. FFT, fast Fourier transform; iFFT, inverse fast Fourier transform;
Thresh, threshold; POE, correlation peak-to-output-energy ratio.
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of the correlation peak. The nonlinearity extends the immunity to both in-plane
distortions, such as object rotations, and out-of-plane distortions, such as view-
ing from different angles. For consistency, the series of training videos is denoted
by r i(x , y , t). The corresponding vectorized dataset in the frequency domain is
Ri(ω)= vec{FT[r i(x , y , t)]}, where i = 1, 2, . . ., N. An N column matrix is formed
as Sk
= [Rk

1(ω), Rk
2(ω), . . . , Rk

N(ω)], where the vector operator vk is defined as [109]

vk 1
=
[
|v1|

k
× exp ( jφ1) , |v2|

k
× exp ( jφ2) , . . . , |vd |

k
× exp ( jφd)

]T
, (A3)

where (.)T represents the transpose operation. Finally, the nonlinear distortion-
invariant correlation filter can be synthesized as [109]

Hk (ω)=

{
Sk
([

Sk
]+

Sk
)−1

c∗
} 1

k

, (A4)

where (·)−1 and (·)+ represent the inverse operation and complex-conjugate trans-
pose, respectively, c is a constant for cross-correlation output origin values [109],
(·)∗ is the complex conjugate, and ·1/k follows Eq. (A3). In addition, a simplified
implementation can be performed by applying all the reference videos to obtain an
averaged template; the corresponding experimental results are shown in Fig. 34. As
an extension to Eq. (39), the linear/nonlinear correlation can be expressed as

g (x , y , t; z)= FT−1
{
[abs (S) · abs (T)]k

× exp [ j (∠T −∠S)]
}
, (k ∈ [0, 1]) ,

(A5)
where T is the Fourier transform of the test video data [t(x , y , t; z)] with the in-
focus depth z. Integral imaging reconstruction of the test data will be processed to
focus on a specific depth, and the total variation (TV) denoising algorithm [106]
will then be applied to the reconstructed dataset, in order to reduce the noise. The
correlation output is obtained by applying an inverse Fourier transform operation.
In Eq. (A5), [·]k is an exponential operator, which determines if the correlation
approach is linear [k = 1] or nonlinear in nature. When k < 1, the correlation becomes
a kth-order nonlinear correlation process [110,111].

Finally, the correlation peaks are classified and localized by analyzing the correlation
POE ratio on the correlation output matrix. The POE is the ratio between the expected
energy of the correlation peak and the expected energy of the output signal:

POE=
|E [g (τ, τ )]|2

E
{

[g (p, τ )]2
} . (A6)
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