
����������
�������

Citation: Rostan, J.; Incardona, N.;

Sanchez-Ortiga, E.; Martinez-Corral,

M.; Latorre-Carmona, P. Machine

Learning-Based View Synthesis in

Fourier Lightfield Microscopy.

Sensors 2022, 22, 3487. https://

doi.org/10.3390/s22093487

Academic Editors: Mohammed

Bennamoun, Liang Zhang and

Mingtao Feng

Received: 31 March 2022

Accepted: 28 April 2022

Published: 3 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Machine Learning-Based View Synthesis in Fourier
Lightfield Microscopy
Julen Rostan 1 , Nicolo Incardona 2,*, Emilio Sanchez-Ortiga 2,3 , Manuel Martinez-Corral 2

and Pedro Latorre-Carmona 1

1 Departamento de Ingenieria Informatica, Universidad de Burgos, E09006 Burgos, Spain;
jrs1002@alu.ubu.es (J.R.); plcarmona@ubu.es (P.L.-C.)

2 3D Imaging and Display Laboratory, Department of Optics, University of Valencia, E46100 Burjassot, Spain;
emilio.sanchez@uv.es (E.S.-O.); manuel.martinez@uv.es (M.M.-C.)

3 School of Science, Universidad Europea de Valencia, Passeig de l’Albereda, 7, E46010 Valencia, Spain
* Correspondence: nicolo.incardona@uv.es

Abstract: Current interest in Fourier lightfield microscopy is increasing, due to its ability to acquire
3D images of thick dynamic samples. This technique is based on simultaneously capturing, in a single
shot, and with a monocular setup, a number of orthographic perspective views of 3D microscopic
samples. An essential feature of Fourier lightfield microscopy is that the number of acquired views is
low, due to the trade-off relationship existing between the number of views and their corresponding
lateral resolution. Therefore, it is important to have a tool for the generation of a high number
of synthesized view images, without compromising their lateral resolution. In this context we
investigate here the use of a neural radiance field view synthesis method, originally developed for its
use with macroscopic scenes acquired with a moving (or an array of static) digital camera(s), for its
application to the images acquired with a Fourier lightfield microscope. The results obtained and
presented in this paper are analyzed in terms of lateral resolution and of continuous and realistic
parallax. We show that, in terms of these requirements, the proposed technique works efficiently in
the case of the epi-illumination microscopy mode.

Keywords: Fourier lightfield microscopy; view synthesis; neural radiance fields; 3D microscopy

1. Introduction

The realistic generation of different views of an existing scene not only requires
understading its three-dimensional (3D) geometry, but also modeling the complex and
inherent viewpoint-dependent information resulting from a series of highly non-linear
light propagation processes. In these situations, the 5D plenoptic function is a good
strategy to model the radiance and direction of the light rays passing through each point in
space [1–3]. The main difficulty in this approach, however, lies in adequately sampling the
plenoptic function.

As a recent alternative to this type of strategy, the novel view synthesis (NVS) frame-
work aims to approximate the plenoptic function from only a sparse group of observations.
One possible way of accomplishing this is through the use of a small set of images acquired
from different viewpoints. This group of techniques is currently obtaining high-quality
results, in particular when being used in a deep learning framework [4]. Their aim is to
obtain new views that did not previously exist. Sometimes, other useful scene information
might also be subsequently obtained—for instance, the depth maps or the 3D location of
the acquisition cameras.

Once the 3D representation is inferred, one might select any new (x, y, z) coordinate
to generate a new view from it. Many of these methods allow renders and models of, for
instance, people or monuments, therefore enhancing virtual reality (VR) capabilities [5,6].
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The neural radiance field (NeRF) method [7] is based on the concept of neural ren-
dering, which aims to substitute some of the rendering stages for a specific type of neural
network surrogate. In this framework, once the 3D model is obtained, new views can be
synthesized. NeRF aims at using the concept of high-quality real-time ray tracing [8]. The
method presented in [7] may be able to represent a non-dynamic scene as a continuous
5D function that outputs the radiance emitted in each direction (θ, φ) at each point (x, y, z)
in space, and a density parameter at each point which controls how much radiance is
accumulated by a ray passing through the 3D (x, y, z) position. Here, θ and φ are the zenith
and azimuth angles codifying the direction of a unit vector in 3D space.

This method optimizes a multilayer perceptron (MLP) to represent this function by
a regression procedure from a single 5D coordinate point (x, y, z, θ, φ) to a single volume
density and view-dependent RGB color. The original NeRF version makes use of a soft-
ware called COLMAP [9,10]. COLMAP is a general-purpose structure-from-motion (SfM)
and multi-view stereo (MVS) framework (pipeline). It has a varied group of reconstruc-
tion methods implemented, allowing for the estimation of the camera system acquisition
parameters.

At present, the amount of methods based on (or inspired by) the original NeRF
proposal have substantially increased. They have tried to tackle some of the drawbacks of
the original theory. Some examples of these new methods include RegNeRF [11], where
a series of regularization terms are included to help improve the scene reconstruction
quality, InstantNeRF [12], which aimed to increase the convergence speed of the method,
pixelNeRF [13], where the main problem to solve is related to the possibility to have one,
two, or just a few input images, and D-NeRF [14], which aimed to reconstruct highly
dynamic scenes (considering rigid and non-rigid motions), to cite only a few cases.

More recently, Wang et al [15] presented NeRF--, a more versatile version of the method
proposed in [7], which can be applied without any prior knowledge of the acquisition sys-
tem parameters. This was possible due to the use of a particular type of joint optimization
strategy applied during the training process. Some further details about NeRF and NeRF--
will be given in Section 2.

The aim of this paper is to show the utility of NeRF-- in Fourier lightfield microscopy
(FLMic) [16–21], which is a promising technique for the rapid acquisition of 3D information
of microscopic samples. In fact, this system is able to acquire angular and spatial infor-
mation of the sample in a single shot. This makes FLMic specially suited for the study of
dynamic processes in 3D microscopy, such as neural activity [22,23] or single-molecule
localization [24]. The lightfield scattered or emitted by the sample can be computationally
retrieved through different approaches. The 3D reconstruction of the sample can be com-
puted based on back-propagation algorithms [25], deconvolution-based techniques [26,27],
or even deep learning methodologies [28].

There are substantial differences between the conventional perspective images and
the ones provided by FLMic. NeRF-- was developed and applied to images that show
a conical perspective; that is, the magnification decreases proportionally to the distance.
They also all have a positive disparity, which decreases with the distance and is zero
for very far-away objects—ideally placed at the infinite. On the contrary, the elemental
images captured with FLMic are orthographic, have no disparity (or parallax) at the object
plane and, as a consequence, they may have a positive or negative disparity. In this
context, we demonstrate the synthesis of elemental images in Fourier lightfield microscopy.
This has great utility in the display of 3D microscopic images, since it allows the off-line
observation of 3D samples from many different view points with smooth and realistic
perspective changes.

In this paper, we demonstrate the applicability of NeRF-- to the microscopic images
captured with FLMic. We apply the method to different kinds of samples and with different
configurations of the optical system. Then, we discuss the quality of the results, and their
dependence on the sample type.
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2. Materials and Methods

The particular details of the acquisition and processing tools and methodologies are as
follows. Section 2.1 is dedicated to describing the main properties of FLMic. Section 2.2 will
give a brief summary about the particular NVS method applied on the images acquired by
this microscope.

2.1. Fourier Lightfield Microscopy

Lightfield microscopy is an active area of research whose origins can be traced back
to the seminal work by Levoy et al. in [29]. FLMic is an upgrade of lightfield microscopy,
based on the spatial multiplexing of the angular information of the sample, in such a way
that the captured image (named here as the integral image) consists of several elemental
images (EIs), each one of them obtained from a different perspective angle. This is achieved
by inserting a microlens array (MLA) at the aperture stop (AS) of a telecentric microscope
objective (MO). As shown in Figure 1, this telecentricity allows for the acquisition of
orthographic EIs, whose lateral magnification does not depend on the object position.
Another singular feature is that the object plane is captured with no parallax; i.e., all
the EIs are identical for that plane. The number of EIs along one direction, NEI , is the
result of dividing the AS diameter by the microlenses’ pitch (i.e., the distance between the
microlenses’ centers). Plane objects in the space between the object plane and the MO are
captured with positive parallax, while the rest are captured with negative parallax. Note
that, in conventional perspective setups, the plane with no parallax is placed at the infinite.

Figure 1. Basic scheme of the Fourier lightfield microscope. The MLA is placed at the aperture stop
(AS) of the microscope objective (MO). Note that the object is assumed to be of a 3D nature. Thus,
only one section of it (the one placed at the so-called object plane) is conjugated with the sensor.

One of the main drawbacks of FLMic is that the angular information acquisition is
achieved at the cost of reducing the lateral resolution of the EIs. This unavoidable effect
occurs due to the spatial multiplexing of the aperture stop, which reduces the effective
spatial bandwidth for each EI. In particular, the lateral resolution limit of captured EIs can
be expressed as:

ρ =
λ NEI
2 NA

, (1)

where λ is the wavelength of the light scattered (or emitted in the case of fluorescence) by
the sample, NEI is the number of EIs along the corresponding direction, and NA is the
numerical aperture of the host microscope objective. Equation (1) shows a loss in lateral
resolution (with respect to a conventional microscope) by a factor NEI , and, therefore, a
direct trade-off between the lateral and the angular resolutions of the system.

Furthermore, the number of EIs is directly related to the 3D information that can be
computationally extracted from the sample. For instance, in a set of refocused images
(namely, z-stack) assessed with standard back-propagation algorithms, the thickness of
the refocused region is inversely proportional to NEI . The same tendency occurs when
applying deconvolution techniques to provide computational optical sectioning, as the
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thickness of the computed optical sections decreases (i.e., the optical sectioning capability
is improved) when the number of EIs increases [25].

In a realistic implementation of FLMic, the microlenses are not placed directly at the
aperture stop, but in a plane conjugated with it. The standard scheme of FLMic is shown in
Figure 2. An afocal relay system (R1–R2) projects an image of the aperture stop onto the
lens array. In addition, a field stop (FS) is used to avoid the vignetting and the overlapping
between EIs.

Figure 2. Fourier lightfield microscope optical scheme. The afocal relay R1–R2 projects an image of
the aperture stop (AS) onto the lens array. Between them, a field stop (FS) is placed at the plane of
the intermediate image, to avoid overlapping between the EIs formed by the lens array. The sensor is
placed at the back focal plane of the lens array, so that it conjugated to the object plane.

2.2. Neural Radiance Field, with Simultaneous Inference of Calibration Parameters

The number of EIs plays an important role during both the acquisition and the com-
putational post-processing processes. We must also bear in mind that the 3D information
obtained from a scene increases in quality with the increase in the number of EIs processed.
That is the reason why NVS methods are attractive in applications that depend on the
number of EIs processed.

Given a set of images I = {I1, . . . , IN} captured from N sparse viewpoints of a scene,
with their associated (intrinsic and extrinsic) camera parameters Π = {π1, . . . , πN}, the
goal of NVS is to come up with a scene representation that enables the generation of realistic
images from novel, unseen viewpoints.

The neural radiance field method [7] represents an ideal tool to optimize the lateral
resolution as well as the thickness of the reconstructed axial regions. Nevertheless, as
previously stated, NeRF needs a previous calibration step (inference of the intrinsic and
extrinsic parameters of the acquisition set-up used). Sometimes, these parameters are
difficult or even impossible to obtain. Hence, we considered the use of NeRF--, since it is
able to infer the camera parameters during a global optimization process.

The creators of NeRF adopt a continuous function for constructing a volumetric
representation of the scene from a sparse group of input views. In essence, it models the
view-dependent appearance of the 3D space using a continuous function FΘ : (x, u) →
(c, ρ), parameterized by a multi-layer perceptron (MLP). The function maps a 3D location
x = (x, y, z), together with a viewing direction u = (ϑ, ψ), to a radiance color c = (r, g, b)
and a density value, ρ. Rendering an image in a NeRF framework implies that the color
at each pixel p = (px, py) on the image plane ( Îi) is obtained by a so-called rendering
function, which aggregates the radiance along a ray coming from the camera position oi
and passing through a specific pixel (p) into a volume [3]:

Îi(p) =
∫ h f

hn
τ(h)ρ(r(h))c(r(h), u)dh (2)

where τ(h) = e
(
−
∫ h

hn ρ(r(s))ds
)

denotes the accumulated transmittance along the ray, i.e.,
the probability of the ray travelling from hn to h without hitting any other particle, and
r(h) = o + hu denotes the camera ray that starts from camera origin o and passes through
p, controlled by the camera parameter πi, with near and far bounds hn and h f . With this
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implicit scene representation FΘ(x, u), NeRF can be trained by minimizing the photometric
error between the observed views and the synthesized ones, under known camera parame-
ters: E = ∑N

i=1 ‖Ii − Îi‖2
2, where Θ∗ = arg minΘ[E( Î|I, Π)]. Î denotes the set of synthesized

images { Î1, . . . , ÎN}. The discretization approach corresponding to Equation (2), and other
particular details related to the implementation strategy, can be found in [7].

In contrast to the work in [7], the authors in [15] show that the pre-processing step
of estimating the camera parameters πi of the input images is unnecessary. Unlike the
training setup of the original NeRF, the authors only assume a set of RGB images I as
inputs, with unknown camera parameters, and they seek to jointly optimize the camera
parameters and scene representation during the training. Mathematically, this can be
written as: Θ∗, Π∗ = arg minΘ,Π[E( Î, Π∗|I)].

Figure 3 shows a brief scheme of the NeRF-- method (further graphical and mathe-
matical details can be found in [15]). On the other hand, Figure 4 shows an example of the
view synthesis results that the NeRF-- method obtains. Starting from a few images (six, in
this case), NeRF-- generates synthesized views corresponding to other camera positions.
As we can see, the results look realistic, with no color or geometrical artifacts whatsoever.
Input views in Figure 4(left) were obtained from the web page created by the authors of the
NeRF method [30].

Figure 3. Summary of the NeRF-- framework. A NeRF model and the camera parameters of the
input images are simultaneously optimized by minimizing the photometric reconstruction error
(E = ∑N

i=1 ‖Ii − Îi‖2
2) between the input and the reconstructed images, and a pixel, p is rendered once

these camera parameters are optimized (read more details in the text body, and in [15]).

Figure 4. Image synthesis example. From a reduced number of input image views, NeRF-- renders a
predefined number of high-quality new ones. Original input images can be downloaded from the
corresponding repository in [30].
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We should emphasize that the above method (and potential variants that might appear
in the future) could be good options as post-processing algorithms for Fourier lightfield
data, mainly because they are able to reliably encode the scene information that is being
acquired, and do not need other, more human-involved algorithms, such as in [31].

3. Results and Discussion

A series of samples were prepared and subsequently acquired by an FLMic built in
our laboratory in open configuration. In all the experiments, we used an MLA with pitch
p = 1.0 mm and focal length fL = 6.44 mm, and a sensor with 2560× 1920 square pixels with
size δ = 2.2 µm. Figure 5 shows representative examples of them. The first sample (top left)
is composed of cotton fibers stained with the fluorescent ink of a highlighter. The second
sample (top right) is the condenser of an electronic circuit. The third (bottom) corresponds
to a dried shark skin tissue. We will call these samples fiber, chip, and shark, respectively,
from now on.

Figure 5. Integral image of the three types of scenes considered: fiber, chip, and shark. In the pictures,
we have shaded the non-complete EIs

Table 1 summarizes the main features of the FLMic setups used for the different
acquisition sessions. The focal length of the second relay lens ( fR2 = 100 mm) is not
specified in the table because it is the same for all the samples. Looking at both Figure 5 and
Table 1, we can correlate the appearance of each sample with the illumination technique
used to observe it. The fiber sample was imaged in epi-fluorescence mode; that is, it was
illuminated through the objective by a monochromatic beam (λ = 480 nm). The same
objective collected the light emitted by the fluorescent fibers, producing an integral image
in the sensor plane after blocking out the illumination beam by means of a dichroic mirror.
The chip sample was epi-illuminated in reflection mode with white light. The background is
the printed circuit board (PCB) of the electronic chip: since this sample is not transparent, it
was observed with reflected light. Finally, the shark sample shows a yellowish background
because it was trans-illuminated with white light.
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Table 1. Acquisition data for the different samples. First column: the microscope objective information
is shown in the classical magnification/numerical aperture format. Second column: R1 lens focal
length. Third column: number of EIs. Fourth column: illumination technique.

Sample MO fR1 NEI Illumination Type

fiber 10×/0.45 200 mm 9 Epi-Fluorescence

chip 10×/0.45 200 mm 9 Epi-Reflection

shark 20×/0.40 180 mm 4 Brightfield

Note that we have used different types of illumination techniques, aiming to test the
performance of the algorithms for a diverse group of samples. The reader should also
bear in mind that, in the integral images of fiber and chip, despite being NEI = 9, only five
complete EIs can be seen in a row. This is because the exit pupil (the image of the AS
through the relay system) was greater than the sensor we used. This fact has impacts on
the lateral resolution of the captured EIs, but no impact on the performance of the view
synthesis algorithm.

Considering only the complete EIs (i.e., those that can be seen entirely), the configura-
tion of the integral image for the fiber and chip samples is four–five–four: four EIs in the
first row, five in the second row, and four in the third row. In the integral image of shark, we
have NEI = 4. As this is an even number, in the central row (corresponding to the diameter
of the exit pupil), we have three complete EIs, and two half EIs. Therefore, the integral
image configuration is two–three–two.

NeRF-- was applied, for each sample, using the acquired complete EIs as training
images. The output is the synthesized images. Neural network convergence was analyzed
based on the 2D inferred positions of the acquisition sensor. Those inferred positions
accurately reproduce the hexagonal geometry of the MLA used for the image capture. The
number of epochs considered was 500 for the fiber, and 1000 for the other two samples. Two
hundred (200) new perspective images per scene were synthesized. To perform the tests,
Google Colab was used, since it offers a greater computational power than our computers.
The training time was 12 min for the fiber, 20 min for the chip, and 9 min for the shark. The
test with the chip was repeated with a laptop with an Intel i7-6700HQ CPU and a Nvidia
GTX 960M GPU. The training time in this case was 50 min.

Figure 6 shows the following for the three selected samples: one of the captured EIs
(left); one of the synthesized views (center). Comparison between the first and second
columns shows us that the images synthesized by NeRF-- fully preserve the resolution in
case of epi-illuminated sparse fluorescent samples, but suffer from a slight fall in resolution
in the case of epi-illumination reflections in the brightfield samples. On the contrary,
the resolution of the synthesized image in the case of the trans-illumination architecture
is much poorer. The right-side column shows that the inferred capturing camera array
reproduces the hexagonal structure of the physical MLA with good accuracy.

Next, in Figure 7, we show a series of images extracted from the 200 images on the
fiber specimen generated by NeRF--. A thorough observation of the synthesized images
demonstrates the homogeneous resolution of all the images, and the small changes of
parallax between neighbor ones. Take into account that, in fact, the shown images are
not neighbors, since there are still eight images between any two of those shown. The
maximum parallax is achieved between images 1 and 100.

In order to gain a deeper insight into the utility of the proposed approach, it would be
useful to generate some videos where the parallaxes of captured EIs, and the corresponding
synthesized views, are compared. In this sense, we have prepared Video S1, which can be
found in the Supplementary Material. In that video, we compare two movies. We show,
on the left side, a movie whose frames are the captured EIs of the fibers sample, and on
the right side, a movie with the 200 synthesized images. This is the best result achieved
here. From the movie, we can confirm that all the synthesized images have been generated
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without any kind of resolution degradation. The perspective change is fairly smooth and
continuous and, importantly, the occlusions are very well-resolved.

Figure 6. (Left column) Acquired elemental image; (central column) synthesized image; (right
column) 2D inferred positions of the capturing cameras (blue full dots).

In Video S2, also given in the Supplementary Material, we show the movies corre-
sponding to the chip sample. In this case, the synthesized views suffer from a slight lost in
resolution, but the perspective change is very continuous and realistic. Finally, in Video
S3, we show the movies corresponding to the shark sample. Clearly, this is the worst case
in terms of resolution. However, it can still be of utility, since the synthesized perspective
views are very realistic, and the occlusions are well resolved.

The reconstruction artifacts of Videos S2 and S3 might depend mostly on the nature
of NeRF--. The estimation of the 3D model is difficult in images with low contrast and an
absence of features, which are intrinsic characteristics of these microscopic images (mainly
those of shark). In these conditions, the algorithm fails to predict a good 3D model of
the sample, leading to artifacts in the reconstruction. This can be observed also in the
original results presented by the authors of NeRF in [30]: in those regions of the scenes that
present lack of features, defocus, or low contrast, the resolution of the synthesized images is
substantially decreased. This effect seems to be more evident in images with a low number
of pixels (455 x 455 pixels per EI). In addition, for the case of shark, the number of EIs is lower
than that for the other two samples, which means that the model was trained with less
images. This, along with the repetitive pattern and the typical background of brightfield
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images, might lead to a bad estimation of the 3D model, and hence to synthesized images
with poorer resolutions and more artifacts.

Figure 7. Group of 12 synthesized images extracted from the series of 200 images provided by NeRF--
for the case of the fibers sample. The labels refer to the position of each image in the order created
during the generation of these images.

Finally, to assess the view synthesis quality, we have made a new computer experiment
in which, for the case of the chip sample, we have trained NeRF-- with all the EIs but
the central one. The central EI is, therefore, used to assess the view synthesis quality.
Then, we compared the EI acquired with the central microlens and the corresponding
synthesized view in terms of the peak signal-to-noise ratio (PSNR). We obtained a value of
PSNR = 34.82, which is similar to the one obtained when the test image is not omitted in
the training, and indicates a good image synthesis quality.

4. Conclusions

Fourier lightfield microscopy (FLMic) features a promising method for the fast capture
of the plenoptic map of microscopic samples with high lateral resolution. The price paid
is a low number of perspective images, which somehow compromises its utility in terms
of display applications. This problem comes from the trade-off between the number of
captured views and the effective numerical aperture (NA) value. Thus, a computational
method that preserves the resolution but synthesizes new views is of great importance.
In this sense, this paper presents, to the best of our knowledge, the first application of
a neural radiance field-type method (NeRF--) for the synthesis of new views in FLMic.
The application of the NeRF-- concept to FLMic is not trivial, due to some of its features,
such as: (a) the telecentric nature of FLMic; (b) the object plane is acquired without any
parallax, and the other planes show positive or negative parallax; (c) the particular type of
illumination technique and the type of sample. In this sense, we found that, in the case of
epi-illumination microscopy, the technique provides remarkable results, with only slight
or no losses in lateral resolution, depending on the structural information of the images,
but with continuous parallax and well-resolved occlusions. This can be of great utility for
microscopists, since they can capture 3D dynamic samples in real time with the FLMic, and
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perform a post-processing application of NeRF-- for a realistic off-line observation of the
sample from a continuous viewpoint.

Future work will be focused on the development of a new mathematical framework
that is able to take into account the particular details of the Fourier lightfield microscope
used, in order to improve the quality of the reconstruction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22093487/s1, Video S1: Animation showing the fiber sample
from the inferred and synthesized views; Video S2: Animation showing the chip sample from the
inferred and synthesized views; Video S3: Animation showing the shark sample from the inferred
and synthesized views.
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3D Three-dimensional
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NeRF Neural radiance field
NA Numerical aperture
NVS Novel view synthesis
PCB Printed circuit board
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