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Using a mathematical approach, this paper presents a generalization of semi-analytical expressions for the point
spread function (PSF) of plenoptic cameras. The model is applicable in the standard regime of the scalar diffraction
theory while the extension to arbitrary main lens transmission functions generalizes a priori formalism. The accu-
racy and applicability of the model is well verified against the exact Rayleigh–Sommerfeld diffraction integral and a
rigorous proof of convergence for the PSF series expression is made. Since vignetting can never be fully eliminated,
it is critical to inspect the image degradation it poses through distortions. For what we believe is the first time,
diffractive distortions in the diffraction-limited plenoptic camera are closely examined and demonstrated to exceed
those that would otherwise be estimated by a geometrical optics formalism, further justifying the necessity of an
approach based on wave optics. Microlenses subject to the edge diffraction effects of the main lens vignetting are
shown to translate into radial distortions of increasing severity and instability with defocus. The distortions due to
vignetting are found to be typically bound by the radius of the geometrical defocus in the image plane, while objects
confined to the depth of field give rise to merely subpixel distortions. ©2023Optica PublishingGroup

https://doi.org/10.1364/JOSAA.485284

1. INTRODUCTION

A wave optics generic model for the light field point spread
function (LF-PSF) is substantially advantageous for plenop-
tic cameras. This model provides the tools for a quantitative
quality assessment of these imaging systems in the presence of
aberrations and diffraction. An accurate model of the LF-PSF
provides direct insight into the camera’s optical influence on
depth estimation algorithms. From here, one can modify the
intrinsic parameters of the plenoptic camera to optimize its
optical design.

Recent research in light field technology has been aimed at
improving the overall resolution performance of these imaging
systems. In [1], a scheme was devised to enhance the effective
refocus resolution at the expense of the angular resolution by
displacing the microlens array (MLA) to a different distance
from the sensor. Currently, the presence of multiple microlens
types allows an enhanced depth of field in a Raytrix camera [2].
Alternatively, an extended depth of field for enhanced depth
resolution can be achieved by compensating for the out-of-focus
blur through selective depth deconvolution [3]. A design for
ultimate 3D microscopy was proposed by placing the MLA at
the aperture stop of the microscope objective. The net result is
an extended depth of field by 2.75-fold and a lateral resolution
increase of

√
2 multiplied the spatial resolution of regular inte-

gral microscopy [4]. Further research was conducted to discover
the real resolution limit in integral microscopy and to optically

acquire perspective images with unprecedented resolution [5].
Post-processing methods are also used to achieve enhanced
resolution. In the inspection of fluorescent samples, sensor noise
and sensitivity is problematic and large pixels are necessary to
handle low-light conditions that cause undersampling issues. By
analyzing sampling patterns, the extent to which computational
super-resolution can be achieved for resolution enhancement
was explored in [6].

Lytro Inc. founder Ng [7] conceived the Fourier slice photog-
raphy theorem to devise a Fourier-domain algorithm for digital
refocusing. It is done by stripping the suitable 2D Fourier slice
of the light field’s Fourier transform, with a successive inverse
Fourier transform of the result. A two-step algorithm was pro-
posed through an initial reconstruction of the scene depth by
determining the correspondence between views. From this, a
model for the spatially variant PSF was obtained in a Bayesian
deconvolution scheme to estimate the superresolved image with
an extended depth of field [8]. Through ray tracing methods
and the use of ray space diagrams in [9], aberrated rays were
digitally reallocated to their ideal image points to synthesize
light field photographs with reduced lens aberrations. More
recently, a full simulation of the plenoptic camera in Blender was
devised to synthesize light field images of elaborate scenes using
accurate finite ray tracing that accounts for the complete optical
design of the main lens and MLA [10]. However, none of these
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approaches explicitly use wave optics to explain diffraction in
the image formation process.

It should be strongly emphasized that neither spot diagrams
nor ray intersection patterns accurately represent the genuine
irradiance variation in the image plane and a fully diffraction-
based computation is necessary [11]. In particular, wave optics
quantitively describes the effects of the vignetting with supe-
rior accuracy over geometrical optics. As shown in Section 5,
the explanatory scope of a geometrical optics model does not
sufficiently estimate the complex distortions predicted by this
diffraction model. Moreover, a realistic and accurate model
for the LF-PSF offers the prospect of image restoration of the
microimages by deconvolution and super-resolution tech-
niques, which will improve the depth resolution and image
contrast [12]. Improvement in the image quality by such
methods is constrained by both the accuracy of the diffraction
model and the optical resolution versus the sensor resolution.
Therefore, deconvolution is most advantageous when applied to
microscopy where the system’s impulse response is observably
greatest.

In the pursuit of a generic wave optics model that assimilates
aberrations, it is also important to acknowledge the inevitable
degradation of image quality that would occur as a result of
such wavefront deformations. As shown in [13], using the
Cauchy–Schwarz inequality, image contrast can never increase
as a result of aberrations and will in general decrease the contrast.
Furthermore, severe aberrations can limit the effective cutoff
frequency, while within certain frequency bands, aberrations
can cause the optical transfer function (OTF) to become neg-
ative or complex valued, which gives rise to contrast reversal
where intensity maxima vanish and vice versa [13].

Nonetheless, the effect of aberrations on image quality spe-
cifically in the plenoptic camera has only been more recently
investigated. More generally, in the presence of aberrations, the
set of phase aberrations for a given microlens, depends on its
lateral coordinates in the MLA plane due the variation in field
angle it subtends with respect to the main lens exit pupil. De-
centered microlenses have nodes in the field-dependent Zernike
coefficients that approximate the wavefront aberration func-
tion. Interestingly, even the main lens on axis aberrations such as
spherical aberrations will not uniquely cascade to spherical aber-
rations in the microlenses. This is due to the fact that decentered
microlenses with respect to the main lens optical axis depart
from circular symmetry. The severity of the arising off-axis aber-
rations has been studied in detail [14]. It has been shown that
for an aberration-free system composed of circular apertures
under arbitrary wavefront tilting when the Fresnel diffraction
integral holds, can only give rise to radial distortions in the
microimages [15]. It may be claimed that radial distortions can
strictly occur for an axially focusing rotationally symmetric
(potentially aberrated) wavefront from the main lens exit pupil,
even under the exact Rayleigh–Sommerfeld integral regardless
of the final emergent wavefront at the microlens exit pupils. The
alternate case is for a tilted paraxial aberration-free wavefront,
where the Fresnel approximation applies to diffraction from
the microlenses. The problem of microimage distortions along
with solutions to compensate for them is a relatively new study.
Distortions due to surface defects in the microlenses have been
investigated [16].

Based on the prior research discussed in the literature review
above, this paper proposes what we believe, to the best of our
knowledge, is a novel model based on wave optics that extends
the conditions of applicability of a former model [17]. The solu-
tion presented here demonstrates and advocates the notion that
realistic and accurate computations of the LF-PSF in the spatial
domain is achievable for the desirable end goals outlined above.
To the best of our knowledge, this mathematical approach is
entirely original and state of the art in the area of light field
photography. It generalizes the approach in [17] to general pupil
locations in the presence of arbitrary wavefront tilting and trans-
mission functions for the main lens. For practicality, however,
it shall be assumed that the microlenses are not subject to any
main lens aberrations. Otherwise, any invariance properties of
the LF-PSF will be violated, introducing an impractical level of
complexity to computational schemes. In this way, the analysis
may be restricted to the aberration-free case in the presence of
inherent vignetting within the system.

Despite these assumptions, in a number of respects this
model supersedes other approaches such as the aberration-free
plenoptic camera with a thin lens main lens and microlenses
proposed in [18]. This model introduces unnecessary restric-
tions and complexity to the image formation. In particular,
the intermediate image is assumed to form prior to the MLA
and is thus not valid for defocusing in the Galilean configura-
tion. The excessive number of highly oscillatory integrals that
have to be numerically computed just to simulate the impulse
response is also computationally inefficient. In [3], the LF-PSF
is assumed to be spatially transversally invariant and isotropic,
as the vignetting induced by the finite aperture of the main lens
is not accounted for. In [12], the diffraction is modeled for the
light field microscope to perform deconvolution to enhance
the spatial resolution of the samples; in [19,20], plenoptic 1.0
setups are considered where microlenses are placed in the back
focal plane of the main lens and with the MLA to sensor distance
fixed to the microlens focal length. This assumption is extended
for the case of arbitrary distances.

Another powerful application of knowledge of the LF-PSF
is that it allows for a high accuracy assessment of distortions
through computations of the centroids of the intensity response.
Such computations are necessary as experimental data suggests
an inadequacy in the geometrical optics models typically used
in the metric calibration of plenoptic cameras. For example,
the common pinhole model for the microlenses cannot explain
the sheared curvilinear epipolar geometry on the local scale
of the microimages that is experimentally observed when imag-
ing a rectilinear target at a fixed depth plane. Although this is a
likely complication of multiple phenomena, distortions must be
at least partly attributed to wavefront aberrations and inevitable
vignetting inherent within the system. To investigate the claim
of the latter, succeeding the formulation of this model, radial
distortions are shown to increase in severity with both the cou-
pled main lens vignetting and defocus at the sensor plane. For
the first time in the literature of light field photography, this is
quantitatively analyzed and discussed in depth as accomplished
in Section 5 of this paper. This is the first step to comprehend
and estimate noise in the reconstructed depth map of a light field
camera, forming the basis of any schematic procedure required
to rectify or minimize these systematic errors in the camera’s
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calibration, which is a reason for a model that attests to these
observations, as presented here in this paper.

2. THEORY

In this section, a generic expression for the LF-PSF is derived
from first principles. By using the results of the extended
Nijboer–Zernike (ENZ) theory [21–25], analytical expres-
sions for the microlens pupil light amplitude distributions
are obtained. Through considerations of symmetry and by
exploiting the use of an unconventional shifted coordinate
frame centered on the chief ray intersection with the microlens
exit pupil, integration is handled by expressing the LF-PSF as an
infinite series of Hankel transforms.

Note that in the following sections, all bold quantities refer
to 2D position vectors that lie in planes perpendicular to the
optical axis. For simplicity of notation, whenever reference to a
function F (x , y ) of variables x , y is made, in a distinct coordi-
nate frame, F (u, v) represents the re-expression of F (x , y ) in
terms of the variables u, v, while in general, F (x , y ) 6= F (u, v).

Assume the situation depicted in Fig. 1, where a considered
object point P is located at a transverse position described by
the vector X o and a distance po from the entrance pupil plane of
the main lens of a light field imaging system.

A particular microlens is located with its entrance pupil plane
at a distance a from the exit pupil of the main lens, with its opti-
cal axis displaced parallel by c̃` with respect to the optical axis of
the main lens. Finally, the sensor plane lays on a transverse plane
at a distance b from the exit pupil of the microlens. The main
lens intermediate image forms at P ′ while the final microlens
image forms at P ′

`.
From now on, the very usual case of a well-corrected main

lens is assumed, generating negligible field and point aberration.
The information regarding the wavefront tilting and defocus is
encapsulated in the field distribution incident on the microlens
array from the main lens. Under this hypothesis, the amplitude
PSF (APSF) in the presence of wavefront tilting arriving to the
microlens’s entrance pupil may be expressed as

U−(ξ)= e i k
a (̃co−ce )·ξ U (ξ − c̃o , a; po ) , (1)

where U(ξ , a; po ) stands for the axial APSF of the main lens
at lateral position ξ (as measured from the main lens’ optical
axis) and at distance a from its exit pupil plane, for the object
depth po , and k = 2π

λ
is the wavenumber for wavelength λ.

Here, c̃o stands for the lateral position vector of the intersection
of the main lens’ chief ray with the microlens’ entrance pupil,
as measured from the main lens’s optical axis, and ce represents
the position vector of the main lens exit pupil center. From
now on, it is appropriate to express this response relative to the
microlens optical axis. Thus, by using the new lateral coordinate
x = ξ − c̃`, neglecting constant phase terms, the scalar field
amplitude arriving at the entrance pupil of the microlens is

U−` (x)= e i k
a (δ
−

`
+̃c`−ce )·x U

(
x − δ−` , a; po

)
, (2)

where δ−` = c̃o − c̃` is the lateral position vector of the chief ray
intersection with the microlens’ entrance pupil, as measured
from its optical axis. The microlens amplitude transmittance
from its entrance to its exit pupil is then given by

Fig. 1. Depiction of a general model for the main lens and a sin-
gle microlens. Note that for the sake of clarity it is assumed that the
microlens optical axis is contained in the plane defined by the object
point P and the optical axis of the main lens. In a more general sit-
uation, the position vector c̃` might not be on the figure plane, and
the center of the main lens exit pupil ce may not lie on the main lens
optical axis.

tn`(x)= e
−i k

2 fn`
|x |2

Pn`(x), (3)

where Pn`(x) is the pupil function of the microlens, fn` is the
distance from its exit pupil to its image focal plane and n` is the
assigned index-generating function that ascribes the microlens
type to a given `-th microlens. Note that an extra magnification
factor Mp must be considered in this step, accounting for the
scaling between the entrance and exit pupil conjugated planes.
In this way, the amplitude distribution emerging from the
microlens’ exit pupil is given by

U+` (x)= e
−i k

2 fn`
|x |2

U
(

x − δ`
Mp

, a; po

)

Pn`(x)e
i k

Mp a

(
δ`
Mp
+̃c`−ce

)
·x
, (4)

δ` =Mpδ
−

` being the transverse vector coordinate of the
exiting location of the chief ray (as measured from the microlens
optical axis).

We shall adopt the Fresnel integral with a defocus term for
diffraction from the microlenses because it enables analyti-
cal treatment with greater ease. Given the lateral coordinates
x ` = x s

− c̃`, the Fresnel integral takes the form

U s
` (x `)=

∫∫
R2

e i k
2b |x |

2
U+` (x)e

−i k
b x`·x d2x . (5)

The substitution of Eq. (4) into Eq. (5) then gives

U s
` (x `)=

∫∫
R2

e iαn` |x |
2
U
(

x − δ`
Mp

, a; po

)

Pn`(x)e
−i k

b

[
x`−

b
Mp a

(
δ`
Mp
+̃c`−ce

)]
·x

d2x , (6)

where αn` =
k
2 (

1
b −

1
fn`
). By defining the microimage center as

the LF-PSF’s centroid for when δ` = 0, it follows that the vector
quantity 1` =

b
Mp a (̃c` − ce ) is the lateral coordinate offset of

the `-th microlens center to its microimage center c′`. It is now
ideal to express the integration position x in Eq. (6) in relation
to the intersection of the main lens’ chief ray with the microlens’
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Fig. 2. Geometry used in the computation of the APSF onto the
sensor plane. The main lens’ optical axis runs perpendicular to the
figure plane passing through the black spot at Os , while the microlens’
optical axis intersects the figure plane in the blue spot at O`, as shown
in (a). The pink points represents the chief ray impact point onto the
microlens’ exit pupil and the sensor planes as shown, respectively, in
(a) and (b).

exit pupil, by using the coordinate u= x − δ`. Introducing the
additional coordinate shift x ′` = x ` −1`, it is straightforward
to obtain (see Fig. 2)

U s
` (x
′

`)∝

∫∫
R2

e iαn` |u|
2
U
(

u
Mp

, a; po

)
Pn`(u+ δ`)e

−i k
b (x ′`−r̄`)·u d2u

∝F
{

e iαn` |u|
2
U
(

u
Mp

, a; po

)
Pn`(u+ δ`);

x ′` − r̄`
λb

}
,

(7)

where the vector

r̄` = b

(
1

M2
pa
+

1

b
−

1

fn`

)
δ` (8)

can be shown to be the position vector (as measured from
the microimage center) of the intersection point of the chief
ray onto the sensor plane, while F{ f (t); v} stands for the
2D Fourier transformation of the function f (t) at spatial
frequency v.

For the purpose of this work, it is very convenient to use polar
coordinates in Eq. (7), both in the integration domain and the
sensor plane. Thus, we introduce the polar coordinates (ρ, φ),
where ρ = |u|, φ = arg{u} in the integration domain (centered

on the intersection point of the chief ray and the microlens’
exit pupil plane). Furthermore, in the sensor plane, we have
polar coordinates (r , θ), where r = |x ′`|, θ = arg{x ′`}, (with
the center of the microimage c′` as reference), as shown in Fig. 2.
These changes lead to

U s
` (r , θ)∝

∫ 2π

0

∫
∞

0
e iαn`ρ

2
U
(
ρ

Mp
, φ, a; po

)
Pn`(%(ρ, φ), ϑ(ρ, φ))

e iγo (r ,θ)ρ cos(φ+ϕo (r ,θ))ρdρdφ, (9)

where

γo (r , θ)=
k
b
|r̄` − x ′`|, %(ρ, φ)= |u+ δ`|,

ϕo (r , θ)=− arg
{
r̄` − x ′`

}
, ϑ(ρ, φ)= arg{u+ δ`}.

(10)

If Pn` is a uniform circular aperture, from [26] we may take
Pn (̀x)= 1, |x | ≤ re and Pn (̀x)= 0, |x |> re , where re is the
radius of the microlens exit pupil; therefore, in the polar coor-
dinates (ρ, φ), the domain of integration can be represented by
the disjoint union of sets S` := S(1)` ∪ S(2)` , where

φ̄δ`(ρ)= Re
[
arccos(ζδ (̀ρ))

]
, ζδ (̀ρ)=

δ2
` − r 2

e + ρ
2

2δ`ρ
,

(11)
for δ` = |δ`|.

Therefore, the pupil function is now Pn`(ρ, φ)= 1 for
(ρ, φ) ∈ S` and Pn`(ρ, φ)= 0 for (ρ, φ) /∈ S`; hence,

S (1)` =

 (ρ, φ) ∈R≥0 × [0, 2π) : ρ ∈ [0,max{r e − δ`, 0}],
φ ∈ [0, 2π), δ` ∈ [0, r e )

∅, δ` ∈ (r e ,∞)

S (2)` =

(ρ, φ) ∈R≥0 × [0, 2π) : ρ ∈ (|r e − δ`|, r e + δ`),

|φ − ϕ`|< φ̄δ`(ρ), δ` ∈ (0,∞)
∅, δ` = 0

(12)

whereϕ` =−arg{δ`}.
From the geometry of intersecting circles [27], the limits of

integration are given by the relations (see Fig. 2)

φ0(ρ)= ϕ` − φ̄δ`(ρ), ρ ∈ [0,∞) ρ0 = 0,

φ1(ρ)= ϕ` + φ̄δ`(ρ), ρ ∈ [0,∞) ρ1 = re + δ`, δ` ≥ 0.
(13)

Finally, we obtain

U s
` (r , θ)=

∫ ρ1

ρ0

ρe iαn`ρ
2
∫ φ1(ρ)

φ0(ρ)

U
(
ρ

Mp
, φ, a; po

)
e iγo (r ,θ)ρ cos(φ+ϕo (r ,θ))dφdρ. (14)

It is clear in Fig. 3 that the plots of φ̄δ`(ρ) directly corre-
spond to the set of points over which one must integrate over
the aperture in the polar coordinate frame (ρ, φ). For radial
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Fig. 3. Exemplary plots of the φ̄δ`(ρ) function on the domain
ρ ∈ (0, re + δ`) for cases δ` ≤ re : (a) showing φ̄δ`(ρ)= π on
ρ ∈ [0, re − δ`), and (b) δ` > re with φ̄δ`(ρ)= 0 on ρ ∈ [0, δ` − re ).

values ρ ∈ [0,max{0, re − δ`)}, the integration is on a full
circle within the microlens aperture, so φ̄δ`(ρ)= π on this
domain; whereas on the intervals ρ ∈ [|re − δ`|, re + δ`]

and ρ ∈ [0,max(δ` − re ))∪ [re + δ`,∞), φ̄δ`(ρ) ∈ [0, π ].
Using solutions to the ENZ theory for a main lens obeying the
Debye diffraction integral, the exit pupil distributions may be
expressed completely analytically for a general defocus. Hence,
we are left to calculate diffraction from the microlens exit pupils
to the sensor to acquire the final LF-PSFs of the plenoptic
camera.

A. Generalization to Arbitrary Main Lens
Transmission Functions

To use the analytical results from ENZ theory applied to
the main lens response onto the microlens’ entrance pupil
U( ρ

Mp
, φ, a; po ) [21–25], we first decompose the main lens’

generalized pupil function in terms of the Zernike polynomials,
Zq

p(υ, ω)= Rq
p(υ) cos[qω− (1− |q |/q)π/4]; namely,

P (υ, ω)=
∑
p,q

βq
p Zq

p(υ, ω), p ∈N, q ∈Z : p − |q | ≥ 0 even,

(15)
with (υ, ω) being the polar coordinates onto the main lens
exit pupil, normalized to this aperture radius. The com-
plex valued βq

p coefficients in the Zernike expansion can be
determined using either inner products or the least squares
method [21]. Propagating the field given by Eq. (15) onto the
microlens’ entrance pupil using the Debye approximation,
ENZ framework predicts

U(ρ, φ, a; p0)= 2
∑
p,q

i |q |βq
p V q

p (ρ
′)e iqφ, (16)

for normalized radial coordinate ρ ′ =NA′ρ/λ, where NA′

stands for the numerical aperture of the main lens on the image
side. The functions used in this decompositions are defined as

V q
p (ρ
′)=

∫ 1

0
e i f υ2

Rq
p(υ)Jq (2πρ

′υ)υdυ (17)

and have analytical solutions in the form of an infinite series as
provided by the ENZ theory, and J s are the Bessel functions of
the first kind, while the defocus coefficient is defined as

f =−2π
a − p ′0
λ

(
1−

√
1−NA′2

)
. (18)

Note that to avoid a cumbersome notation, dependency
on the defocus parameter of the functions V q

p (ρ
′) has been

omitted.
Finally, by substituting Eq. (16) into Eq. (9), considering the

Jacobi–Anger expansion

e iγoρ cos(φ+ϕo ) =

∞∑
s=−∞

i s J s(γoρ)e i s (φ+ϕo ), (19)

we finally obtain

U s
` (r , θ)=

∫ ρ1

ρ0

ρe iαn`ρ
2

∫ φ1(ρ)

φ0(ρ)

(∑
p,q

i |q |βq
p V q

p

(
ρ ′

Mp

)
e iqφ

)
(
∞∑

s=−∞

i s J s(γo (r , θ)ρ)e i s(φ+ϕo(r ,θ))

)
dφdρ

=

∑
p,q

i |q |βq
p

(
∞∑

s=−∞

i s e i s ϕo(r ,θ)

∫ ρ1

ρ0

V q
p

(
ρ ′

Mp

)

e iαn`ρ
2

(∫ φ1(ρ)

φ0(ρ)

e i(s+q)φdφ

)
J s(γo (r , θ)ρ)ρdρ

)

=

∑
p,q

i |q |βq
p

(
∞∑

s=−∞

i s e i s ϕo (r ,θ)I q
ps (r , θ)

)
,

(20)

where

I q
ps (r , θ)=

∫ ρ1

ρ0

V q
p

(
ρ ′

Mp

)
e iαn`ρ

2
(∫ φ1(ρ)

φ0(ρ)

e i(s+q)φdφ

)
J s (γo (r , θ)ρ)ρdρ.

(21)

The expression above was obtained having taken advan-
tage of term-by-term integration of the infinite series, which
is applicable due to legitimacy of Lebesgue’s dominated con-
vergence theorem. The theorem holds since, for any arbitrary
number of terms, the partial sum defining the integrand is
bounded above and converges pointwise to the limit func-
tion U

(
ρ

Mp
, φ, a; po

)
e iγo(r ,θ)ρ cos(φ+ϕo(r ,θ)). For a proof, see

Appendix A. Also since the ENZ theory and Jacobi–Anger
expansion have allowed the integrand to be expressed as a sum
of multiplicatively separable functions, the above integration
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above can be carried out much more easily. Using the definitions
of φ0(ρ) and φ1(ρ), the straightforward angular integration of
Euler’s formula in the expression above now gives

I q
ps (r , θ)= e i(s+q)ϕ`

∫
∞

0
g s+q (ρ)V q

p

(
ρ ′

Mp

)
e iαn`ρ

2
J s(γo (r , θ)ρ)ρdρ, (22)

where g n(ρ)= 2φ̄δ`(ρ)sinc(nφ̄δ`(ρ)) for n ∈Z. One
may alternatively express g n(ρ)=

2
n (1− (ζδ`(ρ))

2)1/2

Un−1(ζδ`(ρ)), where Un is the Chebyshev polynomial of
the second kind of nth degree [28]. Finally, Eq. (22) may be
expressed in the concise form

I q
ps (r , θ)= e i(s+q)ϕ`Hs

{
uq

ps(ρ); γo (r , θ)
}
, (23)

for uq
ps(ρ)= g s+q (ρ)V

q
p
(
ρ′

Mp

)
e iαn`ρ

2
, where the s th

order Hankel transform of v(ρ) is given by the equation
Hs {v(ρ); γ } =

∫
∞

0 v(ρ)J s (γρ)ρdρ.
Note that the definition of φ̄δ`(ρ) and ζδ`(ρ) leads to a com-

pact support for g n(ρ), vanishing out of the region

�= [max{0, δ` − re }, re + δ`). (24)

Thus, we can explicitly state

g n(ρ)=

{
2φ̄δ`(ρ)sinc(nφ̄δ`(ρ)), for ρ ∈�

0, otherwise
. (25)

This form conveys the piecewise behavior of g n(ρ).
Interestingly, g n(ρ) is also the Radon transform of
the radial part of the Zernike polynomial Rn−1

n−1(ρ),
with integral transform representation as given by
R{Rn−1

n−1(ρ); ζδ`(ρ)} = (−1)
n−1

2
∫
∞

−∞

Jn(t)
t e iζδ` (ρ)t dt [29].

Finally, setting ϕ(r , θ)= ϕo (r , θ)+ ϕ` and substitut-
ing Eq. (23) in Eq. (20), we have for arbitrary main lens
transmission functions

U s
` (r , θ)=

∑
p,q

i |q |βq
p e iqϕ`

(
∞∑

s=−∞

i s e i s ϕ(r ,θ)Hs{uq
ps(ρ); γo (r , θ)}

)
.

(26)
A small number of terms over the series for p, q indices is

generally enough for small aberrations and minimal main lens
vignetting. It may be shown that considerable simplification can
be made toward the ideal plenoptic 1.0 setup or an aberration-
free imaging system. The latter case will hold for a high-quality
main lens whose optical elements are well aligned from the
manufacturing process. Somewhat more generally, under the
circumstance that U solely depends onρ, thenβq

p = 0, ∀q 6= 0.
We can now half the number of terms in the series required to
attain the same level of accuracy, by identifying the asymmetric
relation between terms of opposite index entry. For q = 0, it is
easy to show that, as g−s(ρ)= g s(ρ),

u0
p(−s )(ρ)= u0

ps(ρ). (27)

Therefore, exploiting the asymmetric property of Bessel func-
tions J−s (x )= (−1)s J s(x ), we may easily find

H−s {u0
p(−s )(ρ); γo (r , θ)} = (−1)s Hs{u0

ps(ρ); γo (r , θ)}.
(28)

Splitting the series expression of the LF-PSF, for negative

indices in s , changing the index of summation s →−s , we find

Fig. 4. (a) Exemplary real and imaginary parts of the incident
amplitude distribution V 0

0 (ρ) for strong defocusing with respect to
the MLA. (b) Corresponding intensity distribution |V 0

0 (ρ)|
2. Radial

coordinate ρ is normalized with respect to the geometric spot radius

given by the formula µ= a Re

(
1
zo
+

1
a −

1
fL

)
. Shading depicts the

illuminated region of the microlens.

Fig. 5. (a) Contour plot of the defocus parameter f (a , zo ) and (b) a
focal stack of aberration-free intensity PSFs |V 0

0 (ρ)|
2 for an example

main lens.



Research Article Vol. 40, No. 7 / July 2023 / Journal of the Optical Society of America A 1457

−1∑
s=−∞

i s e i s ϕ(r ,θ)Hs{u0
ps(ρ); γo (r , θ)}

=

∞∑
s=1

(−1)s i−s e−isϕ(r ,θ)Hs{u0
ps(ρ); γo (r , θ)}. (29)

So the intensity LF-PSF I s
` (r , θ)= |U

s
` (r , θ)|

2, using
Eq. (26) gives

I s
` (r , θ)∝

∣∣∣∣∣∑
p

∞∑
s=0

εs β
0
p i s cos(s ϕ(r , θ))Hs

{
u0

ps(ρ); γo (r , θ)
}∣∣∣∣∣

2

,

(30)
with εs = 2− δs 0, δnm being the Kronecker delta tensor.

If we consider, for example, an aberration-free thin main lens
with a clear circular pupil function and aperture stop at the lens,
we haveβ0

p = 0, ∀p 6= 0. The ENZ theory then gives (see Figs. 4
and 5)

V 0
0 (ρ

′)= e i f /2
∞∑
`=0

(−i)`(2`+ 1) j`( f /2)
J2`+1(2πc zoρ

′)

2πc zoρ
′

,

(31)
Where, as formerly derived in [17] for small image side
numerical aperture, NA′ = Re/z′o , while the transversal
scaling factor c zo and defocus parameter that now reduces to
f = π(p ′o − a)NA′2/λ, may both be expressed as

c zo =
Re

λ

(
1

fL
−

1

zo

)
,

f =
πaR2

e

λ

(
1

fL
−

1

zo

)(
1

a
−

1

fL
+

1

zo

)
, (32)

respectively, and j` is the spherical Bessel functions of the first
kind, Re is the radius of the main lens, zo is the distance of
the object to the main lens, and fL is the focal length of the
main lens. Therefore, the aberration-free LF camera yields an
intensity response

I s
` (r , θ)=Cδ`

∣∣∣∣∣
∞∑

s=0

εs i s cos(sϕ(r , θ))Hs
{
u0

0s (ρ); γo (r , θ)
}∣∣∣∣∣

2

,

(33)
where Cδ` is a suitable power transmission coefficient derived in
Appendix B. In general, I s

` (r , θ) is asymmetric due to the nature
of the amplitude distribution incident on the microlenses, as
shown in Figs. 6 and 7. A spatially variant asymmetric PSF con-
sequence of this would explain at least in part the distortions that
give rise to the curvilinear epipolar lines on the local scale of the
microimages. It is also essential to emphasize that the solutions,
as provided by Eqs. (26), (30), and (33), are not restricted to an
APSF incident on the MLA to be of the form given by the ENZ
theory. Indeed, any expansion of the form of U above renders
the equations valid. Furthermore, the expressions above for the
LF-PSF can be further simplified under field approximations
corresponding to the small and large defocus limits at the MLA.

For δ`� re , the rate of convergence of the series as given
by Eqs. (26), (30), and (33) deteriorates significantly. In cases
where the redundancy is high and in which many microlenses

Fig. 6. LF-PSFs for an in-focus point source with a single microlens
type MLA. The blue dots are the ideal image points x ideal

` .

Fig. 7. Columns (left to right) show the set of LF-PSFs for values of
δ` = 0, ... µ+ re at uniform intervals for an aberration-free, circular
clear pupil for the main lens, demonstrating increasing asymmetry
and distortion in the LF-PSF. The point source is displaced along the
positive x direction. The blue dots represent the ideal image points
x ideal
` and the purple dots represent the LF-PSF centroids, which are the

real image points. As shown in each microimage, showing increasing
divergence as the defocusing and vignetting is enhanced. For realis-
tic comparison, the plots are normalized relative to the total energy
transmitted through the lens, as given by the power transmission
coefficient Cδ` .

observe the scene point, an alternative expression as derived in
Appendix C describes a method for a good approximation of the
irradiance distribution observed at the sensor.

3. SYMMETRY PROPERTIES OF THE LF-PSF

By re-expressing the intensity LF-PSF in an alternative shifted
coordinate frame, we are able to enhance computational effi-
ciency by reducing the necessary computations of the Hankel
transforms in Eq. (33). In the unique alternate coordinate frame
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Fig. 8. Geometry illustrating the relations of the observation vector
for evaluation of the LF-PSF x ′` measured relative to O ′`, the position
vector of the main lens chief ray intersection with the sensor r̄` and the
new observation vector r ′` in the shifted coordinate frame, defined by
the linear transform r ′` = x ′` − r̄`.

r ′` = x ′` − r̄`, as shown in Fig. 8, in which we define polar coor-
dinates (ε, ψ), where ε= |r ′`| and ψ = arg{r ′`}, we are able to
express the LF-PSF as an infinite series of separable functions of
radial and angular dependency. Specifically, the Hankel trans-
forms become solely of radial dependency, which means that
these integral transforms do not need to be iteratively computed
for all points in the sensor that are bounded by the microimage
because circles centered on x s

o = c′` + r̄` define contours of the
Hankel tranforms.

In this shifted coordinate frame (ε, ψ), the simplified expres-
sion for the LF-PSF immediately reveals the inherent mirror
symmetry property of the irradiance distribution about the axis
of polar angleϕ` through the origin of the (ε, ψ) frame.

The functions ϕ and γo now transform to
ϕ(ψ)= ϕ` −ψ − π and γo (ε)=

k
b ε. Thus Eq. (33) can

now be expressed as

I s
` (ε, ψ)=Cδ`

∣∣∣∣∣
∞∑

s=0

εs(−i)s cos(s(ψ − ϕ`))Hs

{
u0

0s (ρ); γo(ε)
}∣∣∣∣∣

2

,

(34)
where Hs {u0

0s (ρ); γo (ε)} =
∫
∞

0 u0
0s (ρ)J s

(
kερ
b

)
ρdρ.

It therefore is immediately clear that the irradiance obeys
the mirror symmetry property I s

` (ε, ϕ` +ψ)= I s
` (ε, ϕ` −ψ)

for ψ ∈ [0, 2π). More crucially, however, the origin of the
(ε, ψ) frame is situated on the axis of polar angleϕ` through the
microimage center O ′`. This is because the origin of (ε, ψ) has
a position vector with respect to O ′` of r̄` that is collinear to δ`
where ϕ` =−arg{δ`}. Therefore, it follows that the irradiance
is also mirror symmetric in the fixed coordinate frame (r , θ)
independent of δ`, with

I s
` (r , ϕ` + θ)= I s

` (r , ϕ` − θ). (35)

The same simplification through the use of the coordinate
transform above applies to Eq. (26). However, in this new coor-
dinate frame, the general variation of the vector δ` will typically
lead to an inhomogeneous sampling for evaluation of the irra-
diance within the microimage; thus, one should take caution

in simulating the LF-PSFs to avoid artifacts in the rendered
images.

Using these properties of symmetry, we can conclude that
given an LF camera with an optical setup strictly confined to
paraxial imaging, which may include a LF microscope with a
telecentric objective-tube lens setup acting as the main lens, if
the position of the object point is such that δ` takes the same
magnitude and angle, independent of indices `, then the relative
intensity distribution I s

` (r , θ) remains invariant. This defines
the diffractive periodicity between microimages and implies
that it is sufficient to consider all responses under any one given
microlens because its collective set of responses is invariant
from microimage to microimage. By itself, this property may be
exploited to increase the computational efficiency by the factor
of the ratio of the total number of microlenses to the number of
microlens types.

Furthermore, the diffractive mirror symmetry property
that was shown to hold true above from analysis is not only in
congruence with the light field centroid (LFC) theorem in [15],
but it has the more profound implication in that the centroids
of the PSF can only be radially displaced with respect to the
microimage center.

Moreover, there exists a rotational property of the response in
the plenoptic camera. In mathematical terms,

I s
` (r , θ +1ϕ`)

∣∣
R(1ϕ`)δ`

= I s
` (r , θ)

∣∣
δ`
, (36)

where R(1ϕ`) is the rotation matrix that, upon operation,
rotates the vectors counterclockwise by the angle 1ϕ`. If
both Eqs. (35) and (36) hold true, then the microimage radial
distortions are isotropic.

It has been further proven in [15] that the same properties
stated above hold true for any radially symmetric deformation of
the main lens caustic that remains transversally shift invariant.
So, given these results, for any LF camera configured under
the same conditions, all possible cases may be comprehended
for the LF-PSF for a fixed depth plane by considering points
along a single radial path within a single microlens’s field of
view to its edge; i.e., consider simulations of the LF-PSF for
δ` ∈ [0, µ+ re ) where µ is the geometrical spot radius in the
plane of the MLA. Considering δ` ≥µ+ re from the per-
spective of geometrical optics, no rays intersect the microlens
aperture and the light is completely vignetted by the main lens.

It is important to emphasize that the conclusions reached
regarding the periodicity of microimages, rotational property,
and mirror symmetry of the LF-PSF are exact results assuming
the conditions of a telecentric main lens or assuming a main lens
satisfying paraxial imaging with the microlenses satisfying the
Fresnel approximation. However, one more statement may be
made in the more general case of a circularly symmetric main
lens with a severely decentered microlens that departs from the
paraxial regime, giving rise to off-axis aberrations. When we
defineϑ` = arg{c′`}, then we claim

I s
` (r , ϑ` − θ)

∣∣
R(2(ϑ`−ϕ`))δ`

= I s
` (r , ϑ` + θ)

∣∣
δ`

. (37)

This equivalently says that if δ` is transformed only by a
counterclockwise rotation of 2(ϑ` − ϕ`), then the LF-PSF is
reflected about the line of polar angle ϑ` through O`. More
generally, this means that the set of all LF-PSFs under a given
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Fig. 9. Vectorial representation of rotation of δ` anti-clockwise by
2(ϑ` − ϕ`) in the image formation reflects the LF-PSF about the axis
of polar angle ϑ` for a decentered microlens. In both diagrams, Os is
where the main lens optical axis intersects the sensor plane, O ′` is the
lateral coordinates of the corresponding microimage center.

microimage are mirror symmetric about the axis through O`

inclined at polar angle ϑ`. This result should remain valid,
assuming that the refractive elements and aperture stop con-
stituting the main lens and microlenses, are individually, as
subsystems, well-aligned and comprise rotational symmetry, as
shown in Fig. 9.

4. COMPARISON TO RAYLEIGH–SOMMERFELD
MODEL

To truly test the validity of the semi-analytical solution to the
LF-PSF, comparison may be made with either experimental
data, or with the gold standard theory of diffraction optics: the
solution as given by the Rayleigh–Sommerfeld (RS) diffraction
integral. For this model, the amplitude light distribution onto
the sensor plane after a microlens, neglecting scalar pre-factors,
takes

U s
` (x `)=

∫∫
R2

U+` (x)
(

1

R(x; x `)
− ik

)
e ik R(x;x`)

(R(x; x `))2
d2x ,

(38)
with U+` (x) given by Eq. (4), and where
R(x; x `)=

√
|x − x `|2 + b2. Introducing again the polar

coordinates in the microlens exit pupil and sensor plane
(υ, ω) and (r , θ), respectively, where υ = |x | and ω= arg{x},
r = |x `| and θ = arg{x `}, we obtain

U s
` (r , θ)=

∫ 2π

0

∫
∞

0
U
(
υ

Mp
, ω, a; po

)
Pn`(υ, ω)

e
−i k

2 fn`
υ2

e
i k

Mp a

∣∣∣ δ`Mp
+̃c`−ce

∣∣∣υ cos(ω−ω`)

(
1

R(υ, ω; r , θ)
− ik

)
e ik R(υ,ω;r ,θ)

(R(υ, ω; r , θ))2
υdυdω,

(39)

Fig. 10. Comparison of the Fresnel approximation and the exact
R-S integrals in diffraction consideration from the microlens for
two distinct defocus values, with geometric defocus at the sensor
of µs

geo = 10 µm and µs
geo = 15 µm, respectively, and a main lens

defocus at the MLA of µ= 1.65re and µ= 1.35re . Simulations are
rendered for a system with physical parameter values of Re = 1 cm,
re = 75 µm, fL = 10 cm, fn` = 3 mm, a = 26.9 cm, and b = 2 mm.
The microlens has a small Fresnel number of NF ≈ 5. Odd rows are
simulated using Eq. (40) with the exact R-S integral, while even rows
are simulated using Eq. (33) with the Fresnel approximation. Evidently
the fringes are somewhat more pronounced in the simulation using
the exact R-S integral solution to the LF-PSF, with marginal focal shift
effect due to the small Fresnel number of the microlens. Aside from
this, the Fresnel approximation clearly serves as a good approximation
to the R-S diffraction integral.

where R(υ, ω; r , θ)=
√

r 2 + υ2 − 2rυ cos(ω− θ)+ b2 and
ω` = arg{ δ`Mp

+ c̃` − ce }. Let us suppose once again that the

main lens APSF incident on the MLA is aberration-free as given
by the V 0

0 (ρ
′) function from the ENZ theory. Then we have

U s
` (r , θ)=

∫ 2π

0

∫
∞

0
V 0

0

(
NA′

λMp

√
υ2 + δ2

` + 2δ`υ cos(ω− ϕ`)

)

Pn`(υ, 0)e
−i k

2 fn`
υ2

e i k
Mp a

∣∣∣ δ`Mp
+̃c`−ce

∣∣∣υ cos(ω−ω`)

(
1

R(υ, ω; r , θ)
− ik

)
e ik R(υ,ω;r ,θ)

(R(υ, ω; r , θ))2
υdυdω.

(40)

This is the final expression of the irradiance distribution in
the sensor plane for an aberration-free system for a main lens
under the Debye approximation and for a microlens under the
Rayleigh–Sommerfeld integral. Figure 10 shows a comparison
of the simulation results from Eq. (33) and (40), which clearly
confirms the high accuracy of the model. The similarity in the
fringe patterns and the defocus demonstrates this fact. The
slightly stronger defocus predicted by the RS integral can be
explained by the focal shift effect.
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Fig. 11. Schematic of ray geometry of the image formation in a plenoptic camera. An object point P is imaged from5o by the main lens forming
the intermediate (virtual) image at P ′, which is then imaged by the microlens to produce the focused image at P ′

`. The pupil planes of the main lens
and microlens are shaded in gray, while principal planes are shaded in blue. The main lens chief ray intersects the center of the main lens pupils and
spans an angle of αo and α′o in object and image space, respectively, in reference to the optical axis. The image observed at the sensor5s has position
vector x ideal

` and is defined by the microlens chief ray which intersects both the microlens exit pupil and P ′

`.

5. DIFFRACTIVE DISTORTION CONSEQUENT
OF VIGNETTING

What makes the vignetting problem particularly interesting
in the LF camera is that, contrary to aberrations, vignetting is
not rectifiable but is rather an inherent property of the system.
One practical application of a diffraction model is to assess
the nature of distortion due to vignetting. For us to isolate and
determine the significance of vignetting on distortion, the
analysis shall be restricted to the aberration-free system. This is
useful because it allows us to comprehend and approximate the
general dependencies of this form of distortion on systematic
parameters. To determine and assess the presence of distortion,
it is necessary to consider the first-order moment or center of
mass of the intensity PSF, measured relative to the ideal image
point. Figure 11 shows an illustration of the image formation
in the case of a system composed solely of a thin lenses. For a
general thick lens microlens, the vector coordinates for the ideal
image points x ideal

` are obtained by tracing the chief ray through
the center of the microlens’s exit pupil to the sensor. Therefore,
given the microlens image point X ′` it must generally follow
from the geometry that

x ideal
` = c̃` +

b
(
X ′` − c̃`

)
z′n` −1

′
e ,n`

, (41)

where z′n` is the distance of the microlens’ image distance
from its second principal plane, and 1′e ,n` is the microlens’
second principal plane to the exit pupil distance. The microlens
image point forms along the emergent ray through the second
principle point. This ray is also parallel to the ray through the
microlens’ first principal point, giving

X ′` = c̃` +
z′n`
(
X ′o − c̃`

)
p ′o − a −1e ,n`

, (42)

where p ′o is the image distance of the main lens from its
exit pupil and 1e ,n` is the microlens’ entrance pupil to the
first principal plane distance. The main lens’ intermediate
image point may also be expressed by the linear projection
X ′o = p ′o (̃co − ce )/a + ce where ce is the center of the effective
exit pupil of the main lens and in general may depend on the
object point coordinates. By eliminating X ′` in Eq. (41) and X ′o
in Eq. (42) with the formulas above, we may write x ideal

` solely in
terms of the vectors c̃o , c̃`, and ce as

x ideal
` = c̃` + κ

[
p ′o (̃co − ce )− a (̃c` − ce )

]
, (43)

where κ = b/[a(1−1′e ,n`/z
′
n`
)(p ′o − a −1e ,n`)]. By the

conjugate equation, 1/ fn` = 1/z′n` − 1/(p ′o − a −1e ,n`),
allowing us to eliminate z′n` in κ , yields

κ =
b

a
[(

1−1′e ,n`/ fn`

)(
p ′o − a −1e ,n`

)
−1′e ,n`

] . (44)

By now defining the center of the microimage c′` as the image
point formed when the main lens and microlens chief ray are
equivalent (i.e., c′` = x ideal

` |δ`=0), then

c′` = c̃` + κ(p ′o − a) (̃c` − c̄e ) . (45)

Above, c̄e is the center of the effective exit pupil of the
main lens for this special case. Note that in [17], this was
derived for a thin microlens with the stop at the lens; i.e., where
1e ,n` =1

′
e ,n`
= 0. These approximations simplify Eq. (45)

to c′` =
(
1+ b

a

)
c` − b

a c̄e . By expressing the ideal image coor-
dinates in terms of the microimage center as given by Eq. (45),
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Fig. 12. Schematic of the imaging of an aberration-free plenoptic
camera composed of an ideal (thin) main lens and thin microlenses
with stops at the lenses. The diagram illustrates how the ray geom-
etry of Fig. 11 is reduced when the distances 1=1e =1

′

e = 0 and
1n` =1e ,n` =1

′

e ,n`
= 0 with Mp = 1.

Fig. 13. Figure depicting a corresponding zoom upon the illumi-
nated region of the MLA, with the top most microlens subject to main
lens vignetting.

Eq. (43) may be rewritten as

x ideal
` = c′` − κ

[
(p ′o − a)(ce − c̄e )− p ′oδ

−

`

]
, (46)

with c′` as given by Eq. (45) in the general case.
Once again, when the parameters 1e ,n` =1

′
e ,n`
= 0, we

obtain κ = b/[a(p ′o − a)], which simplifies Eq. (46) to

x ideal
` = c′` +

b
a
(c̄e − ce )+

bp ′o
a(p ′o − a)

δ−` . (47)

There are two important types of optical systems to be consid-
ered that are of frequent interest in light field photography.

Case I: In the presence of a thin main lens with the stop at the
lens, ce ≡ c̄e = 0, yielding x ideal

` =
(
1+ b

a

)
c̃` + κ p ′oδ

−

` .
Setting1e ,n` =1

′
e ,n`
= 0, the image point reduces further to

x ideal
` =

(
1+

b
a

)
c̃` +

bz′o
a(z′o − a)

δ−` , (48)

where z′o is the image distance of the main lens from the plane of
the lensas shown in Figures 12 and 13.

Case II: Alternatively, for a telecentric main lens, ce = c̃o and
c̄e = c̃`, for which Eq. (46) gives x ideal

` = c̃` + κaδ−` as c′` = c̃`.
Again, if1e ,n` =1

′
e ,n`
= 0, then

x ideal
` = c̃` +

b
p ′o − a

δ−` . (49)

In general, for notational convenience and clarity, all unit vec-
tors from now on shall be ascribed with a hat symbol.

Now, define r` = x ideal
` − c′` and r̂` = r`/|r`| as its unit vec-

tor. Then observe that δ̂` = ε r̂`, δ̂` · r̂` = ε, where ε = sign(κ)
when the general equations for the image point hold in case I and
case II above. If x ideal

` may be further simplified to either Eq. (48)
or Eq. (49), then ε = sign(p ′o − a).

By definition, the distortion vector is the displace-
ment from the ideal image point to the true image point;
i.e., v` = xobs

` − x ideal
` . From the LFC theorem, since the

diffraction pattern has a mirror symmetry along the line of polar
angle ϕ` through the microimage center O ′` with vector coor-
dinates c′`, then the center of mass of irradiance has a position
vector of the form es

` = e s
` r̂`, where xobs

` = c′` + es
`. Using these

formulas and, by definition of v`, we finally obtain

v` = (e s
` − κ p ′o )r̂`, v` = (e s

` − κa)r̂`,

e s
` =

∫ 2π
0

∫
∞

0 r 2 cos(θ −ψ)I s
` (r , θ)dr dθ∫ 2π

0

∫
∞

0 I s
` (r , θ)r dr dθ

, (50)

which are the two corresponding distortion equations, respec-
tively, for v` when the image point is described by the general
equations of case I and case II.

Above, we define ψ = ϕ` − πχ[a ,∞)(p ′o ). Having expressed
the distortion vector v` in terms of the radial unit vector r̂`, the
sign of v` is indicative of the type of distortion characteristic in
the microimage. According to geometric optics, the sign reverses
according to the sign of defocus at the sensor plane in regions
where the vignetting is significant. More specifically, a positive
sign of distortion corresponds to a radially outward pincushion
distortion, which is expected to occur when the final image
of the microlens is real. On the other hand, a negative sign of
distortion corresponds to a radially inward barrel distortion,
in the case in which the final image of the microlens is virtual.
The center of the microimage O ′`, is the center of all such radial
distortions from vignetting. Image points closest to O ′` are least
distorted due to minimal vignetting, while image points closer
to the edge of the microimage, form with reduced illuminance
and a stronger radial distortion with respect to O ′`.

In Fig. 6, simulations elicit the potential formation of asym-
metry in the LF-PSF, which becomes increasingly pronounced
for a stronger defocus in the presence of vignetting, and gives a
reason to suspect distortion from vignetting. In Fig. 14, the solid
orange line curve representing the flux of irradiance transmitted
through the microlens can be seen as a measure of this vignet-
ting, which consequently leads to an increasing magnitude of
distortion. This is calculated using Eq. (B2) from Appendix B.
The dotted orange line curve corresponds to the encircled
energy about the position vector x ideal

` relative to O ′`.
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Fig. 14. Line curves depicting the dissipation of the transmitted
radiant flux through the microlens aperture due to vignetting, the
consequent encircled energy of the intensity PSF within the expected
blur radius in the sensor plane and the corresponding diffractive distor-
tion. The physical parameters of the considered system take the values
Re = 1 cm, re = 75 µm, fL = 10 cm, fn` = 3 mm, a = 26.9 cm, and
b = 2 mm. Three distinct defocus setting are considered: The top and
bottom rows correspond to opposite signs of defocus that give an equal
geometrical defocus in the sensor, while the middle row corresponds
to the in-focus plane. The point source is then moved radially from the
center of the microlens’s field of view. The narrow blue banded region
represents the region in which quantization may potentially dominate
the effects of optical distortion.

Corresponding to the graphs of Fig. 14, the image of a recti-
linear object under a microlens for these three defocus cases is
illustrated in Fig. 15.

If µs
geo is the radius of the geometric blur in the sensor

plane, then µs
geo = re |1− b/(z′n` −1

′
e ,n`
)| by similar triangle

geometry. For simplicity, we shall proceed with the analy-
sis by assuming a thin microlens with the stop at the lens, so
that Mp = 1 and 1e ,n` =1

′
e ,n`
= 0. Thus, we easily obtain

µs
geo = re b|1/b + 1/(a − z′o )− 1/ fn` |, having used the conju-

gate equation to eliminate z′n` . Furthermore, since the radius of
the Airy disk is given byµs

Airy = 0.61bλ/re , the encircled energy
E s of interest is the ratio of encircled energy within the expected
blur radius µs

=max{µs
geo, µ

s
Airy}, to the total energy of the

LF-PSF within the sensor plane, as given by

Fig. 15. Diffractive radial distortion corresponding to Fig. 14 in the
order from top left to bottom, simulated for a single microimage when
imaging a rectilinear object within the field of view of the microlens.

E s(ε)=

∫ 2π
0

∫ µs

0 I s
` (%, ϑ; ε)%d%dϑ∫ 2π

0

∫
∞

0 I s
` (%, ϑ; ε)%d%dϑ

, (51)

where I s
` (%, ϑ; ε) represents the intensity response when the

ideal image coordinates satisfy ε= |x ideal
` − c′`|, and (%, ϑ)

are polar coordinates centered on c′` + x ideal
` . The geometric

defocus of the main lensµ is given by the projection of the main
lens exit pupil to the MLA plane. Therefore, if the radius of the
main lens exit pupil is Re , we find from similar triangles that
µ= Re |1− a/p ′o |. When this defocus satisfies µ> re , the
microlenses always cause vignetting, while image points suffi-
ciently near the border of the microimage also suffer from main
lens vignetting. We may then define the region of vignetting
of interest as corresponding to δ` >µ− re where δ` = |δ`|.
This corresponds to instances for which there is an asymmetric
illumination of the microlens exit pupil due to only a partial
overlap between the microlens and the illuminated region of the
MLA. In the remaining region of δ` ≤µ− re , the distortions
are generally expected to be minimal due to a more homogenous
illumination of the microlens entrance pupil. As it will be seen,
the results confirm this for the setup considered.

As Fig. 14 shows, it generally holds true that v`|δ`=0 = 0,
because the intensity LF-PSF is a radially symmetric distribu-
tion centered on the ideal image point. The severity of distortion
becomes increasingly prominent and diverges in the negative
direction from where the encircled energy E s (ε) deteriorates,
until the system’s response is no longer measurable. However,
the δ` value for which the flux of irradiance transmitted through
the microlens aperture deteriorates, does not necessarily serve
as an accurate estimate of the point from which the distortion
diverges. The same is true at the boundary δ` =µ− re .

For the setup considered, when imaging the focus refer-
ence plane for which the geometric defocus µs

geo = 0, we find
that on the interval δ` ≤µ− re , the distortion magnitude
satisfies v` < 2.4� 8 µm=µs . Therefore, relative to the
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microimage center with origin O ′`, the centroid of irradiance
has position coordinates xobs

` ≈ x ideal
` . However, the mean and

standard deviation of distortion magnitude on this interval are
v̄` = 1.5 µm and σv` = 0.3 µm, respectively. Both of these
statistical quantities are on a subpixel scale in the absence of
main lens vignetting.

So, if the point source lies in the focus reference plane,
the model shows that, as expected, the diffraction spot is
minimal in size, yielding minimal distortion when δ` ≤µ− re .
Thus, even from the perspective of diffraction considerations
in the aberration-free case, the image point is quite accu-
rately given by the pinhole model. As we depart from the
focus reference plane, we find that the distortion magnitude
becomes increasingly severe and unstable. For example, when
µs

geo = 20 µm, we find that on the interval δ` ≤µ− re , it holds
that v` < 5.4� 20 µm=µs , while the mean and standard
deviation of distortion magnitude for µ= 1.6re increase to
v̄` = 3.7 µm and σv` = 1.6 µm, respectively. However, for
the same absolute defocus at the sensor but of opposite sign, the
defocus at the MLA may change substantially depending on
the optical configuration. In this case, the defocus at the MLA is
vastly greater at µ= 13.6re , with v` < 4.4 µm, v̄` = 2.6 µm,
andσv` = 0.9 µm.

These statistics above are surprising, because they reveal the
true complexity of radial distortion that is neither anticipated in
the literature of plenoptic imaging nor predicted by geometrical
optics. In fact, it was expected that whenever δ` <µ− re , the
distortion would be zero independent of the defocus valueµs

geo.
Remarkably, however, the distortion is of a measurable signifi-
cance and becomes increasingly prominent for larger µs

geo. As
the defocus increases, the asymmetric LF-PSF is larger in size,
leading to a larger mean distortion magnitude. On the other
hand, the fine structure of the fringe pattern in the intensity
response continuously changes with δ` (and thus the radial
position of the image point in the microimage), which leads
to a larger overall fluctuation of the distortion; i.e., an increase
inσv` .

Note that for microlenses of larger Fresnel numbers in which
the Fresnel focal shift effect is negligible because most of the
energy of the LF-PSF is encircled within the expected blur
radius µs , the centroid of irradiance typically falls within this
region for arbitrary defocus and vignetting. For the given setup,
it was further discovered that for a vignetting of up to 84%
of the maximum transmittable flux by the microlens, it con-
strains the distortion magnitude by the expected blur radius,
(i.e., v` <µs ). This is an elegant result because an immediate
corollary of this inequality is that objects within the scene that
are fully confined within the depth of field can only lead to
subpixel distortions because v` <µs

≤ p , where p is the pixel
size. It also means that under such circumstances, the value of
µs serves as a good upper bound to the distortion magnitude
whenever most of the PSF’s energy is locally confined to this
region. One potential practical application of this result can be
used as a constraint for rectification algorithms when correcting
for radial distortions within the microimages. The distortion
magnitude may exceedµs , but typically when the vignetting has
become so severe that the normalised transmitted radiant flux
through the microlens is close to 0 (e.g., Co (δ`) < 0.2).

6. CONCLUSION

In this paper, we use what we believe is a novel mathematical
approach to present generalized semi-analytical expressions
for the PSF of plenoptic cameras. As argued in [22], the unre-
strictive range of defocus values permissible in the solution to
the Debye diffraction integral provided by the ENZ theory
also provide an appealing alternative to numerical Fourier
transform methods when the defocused pupil functions require
exceedingly large sampling densities. Adopting these results, the
generalized semi-analytical equations ultimately allow accurate
and efficient computational imaging for a general system, with
arbitrary transmission functions and defocusing. By making
less stringent assumptions to state-of-the-art methods, this
diffraction model specifically provides a comparatively com-
pact expression for the LF-PSF compared to those formerly
proposed. The solution is perceptibly less complex and more
extensive in applicability. The model’s practical appeal can
be found in the form of the solution in Eq. (33) that helps cir-
cumvent the iterative issue of numerical integration. This was
procured by introducing an appropriate shifted coordinate
frame to express the solution to the diffraction integral as a
series of separable functions in which the Hankel transforms are
solely of radial dependency. Consequently, this representation
enhances the computational efficiency as the Hankel transforms
have contours on circles in this shifted coordinate frame. An
efficiency improved, yet approximating, solution to the LF-PSF
was further derived in Appendix B given by Eq. (C6), which
may be applied to render diffraction in novel architectures such
as Fourier light field microscopy [4,5].

This model is also advantageous over former approaches
heavily reliant on numerical methods, which are inefficient
for computational imaging and potentially impractical for
real-time image processing [21]. Additionally, each numerical
integral will amplify residual errors in the overall calculation, but
any subsequent analytical solutions to these diffraction integrals
can help eradicate this problem for both higher accuracy and
efficiency.

The derived series of Hankel transforms in the diffraction
solution are rigorously proven to be convergent using bounds
and the estimation lemma from complex analysis, as shown
in Appendix A. In addition, in Section 4, the accuracy and
legitimacy of the model is well verified against the gold standard
Rayleigh–Sommerfeld diffraction integral, where high accuracy
is demonstrated for even a few terms in the series expression of
the LF-PSF.

In Section 3, for microlenses local to the optical axis of the
main lens when paraxial imaging applies, a simple proof of the
universal existence of diffractive mirror symmetries was also
shown along axes intercepting the microimage centers. Image
points at the same radial distance from the microimage cen-
tre only transform the LF-PSF by rotation, yielding isotropic
radially distorted microimages. This is consistent with the LFC
theorem as proven in [15]. The property is inevitable under the
condition that the irradiance distribution incident on the MLA
is radially symmetric and that the apertures are all circular. It is
also self-evident from the solution that the diffractive response
of the system is periodic between microimages of the same type.
These results were easily shown because the formulation of



1464 Vol. 40, No. 7 / July 2023 / Journal of the Optical Society of America A Research Article

the model explicitly reveals the underlying symmetries of the
system’s response in the mathematical form of its expression.

After establishing these general properties, it was additionally
shown that one particular source of microimage radial distor-
tion is vignetting, which we scrutinized in the diffraction limited
plenoptic camera. To the best of our knowledge, this phenom-
ena has not been previously studied. The analysis demonstrated
the predicted distortions exceed those which would otherwise be
estimated by a geometrical optics formalism, further justifying
the necessity of an approach based on wave optics.

From where the encircled energy deteriorates about the ideal
image point within the radius of the geometrical defocus in the
sensor plane, the distortion diverges in severity toward the edge
of the field of view of the microlens. By considering the mean
and standard deviation, the severity and instability of these
distortions were shown to increase with defocus at the sensor,
even prior to when microlenses are subject to the edge effects
of the main lens vignetting. Remarkably, distortions may be of
measurable significance for an aberration-free system even for
a perfectly focused image for which the geometric distortion
is expected to be 0. Furthermore, for the setup considered,
distortions were found to be typically bound by the expected
blur radius defined by the maximum of the Airy disk radius
and the radius of geometric defocus in the image plane. Thus,
objects confined to the depth of field give rise to merely subpixel
distortions. More counterintuitively, for equal and opposite
geometrical defocus in the sensor plane, the distortions were
found to be asymmetric. Although this can be well explained by
the fact that imaging from depths that give equal absolute defo-
cus at the sensor, often occur with a highly variable defocus at the
MLA. More specifically, the distortion severity was found to be
greater for lower image redundancy (i.e., for a smaller defocus of
the main lens PSF at the MLA plane, in which a greater portion
of the outer ring of the microimage suffers from vignetting).

Ultimately, radial distortions shear the epipolar geometry on
the local scale of the microimages; therefore, a study of distor-
tions to better comprehend and minimize the degradation they
pose on the accuracy and resolution of depth maps is desirable.
It is thus fitting that, in future work, quantification of the noise
level in retrieved depth maps under different algorithms is made
to comprehend the severity of these radial distortions on 3D
scene reconstruction.

APPENDIX A: PROOF OF CONVERGENCE OF A
SERIES FORMULA FOR THE LF-PSF

For the appendixes below, define ‖ X‖∞ = sup{|X (t)| : t ∈ T}
as the supremum norm assigned to real or complex-valued
bounded functions X defined on a set T.

Lemma
(a) Given z, w ∈C, |z+w| ≤ |z| + |w|. (b) Any abso-

lutely convergent series of complex numbers is convergent;
that is, given (c j )

∞

j=0 ⊂C :
∑
∞

j=0 |c j |<∞⇒|
∑
∞

j=0 c j | ≤∑
∞

j=0 |c j |<∞.

Proposition
∀s ∈N, ∃M ∈R : |Hs{u s (ρ); γ /C}| ≤ M

s !

(
γ

2

)s
, for terms

u s (ρ)= g s (ρ)U(ρ)e iαn`ρ
2
,γ =Cγo and C = re + δ`.

Proof
Given the functions g s(ρ)= 2φ̄δ`(ρ)sinc(s φ̄δ`(ρ))χ�(ρ),
∀s ∈N, ρ ∈R+ where �= [max{0, δ` − re }, δ` + re ), clearly
|g 0(ρ)| = 2|φ̄δ`(ρ)|χ�(ρ)≤ 2πχ�(ρ) as |φ̄δ (̀ρ)| ≤ π , while
|g s (ρ)| ≤

2
s χ�(ρ)≤ 2χ�(ρ),∀s ∈N\{0},ρ ∈R+.

Therefore, we finally obtain |g s (ρ)| ≤max{2πχ�(ρ),
2χ�(ρ)},∀s ∈N,ρ ∈R+,

⇒|g s (ρ)| ≤ 2πχ�(ρ), ∀s ∈N, ρ ∈R+. (A1)

Next, from [30], holds |J s (z)| ≤
∣∣ z

2

∣∣s e |Im(z)|

0(s+1) , s ≥− 1
2 ,

where 0 is the gamma function and Im(z) is the imaginary
part of z. Since the amplitude PSF of the main lens in the MLA
plane U(ρ) is continuous, on any closed interval it is then
bounded so that ‖U‖∞ <∞. It may be shown that a choice of
U(ρ)=

√
π NA′

λ
V 0

0 (ρ) is bounded above.

There further holds |e iαn`ρ
2
| = 1, for ρ ∈R+. By definition

of u s (ρ)= g s (ρ)U(ρ)e iαn`ρ
2
, given C = re + δ`, we find

∴ |u s (ρ)J s (γoρ)ρ| ≤
2πρ ‖U‖∞

s!

(γoρ

2

)s
χ�(ρ)

≤
2πC ‖U‖∞

s!

(
Cγo

2

)s

χ�(ρ), (A2)

∀s ∈N, ρ ∈R+.
One may writeγo (ε)=

k
b ε, where 0≤ ε < re + r̄` in restrict-

ing evaluation points to the microimage.
⇒‖γo‖∞ ≤

k
b (re + r̄`). Therefore,γo is bounded.

Therefore, since u s (ρ)J s (γoρ)ρ is a complex-
valued continuous function that is clearly bounded
on the contour R+ from Eq. (A2), then the esti-
mation lemma holds; therefore, using the integral∫
∞

0 χ�(ρ)dρ =
∫
[max{0,δ`−re },δ`+re )

dρ ≤ 2re , where the
constant M = 4πC ‖U‖∞re ,

∣∣∣∣∫ ∞
0

u s(ρ)J s(γoρ)ρdρ

∣∣∣∣≤ ∫ ∞
0
|u s(ρ)J s(γoρ)ρ| dρ, (A3)

⇒|Hs{u s(ρ); γ /C}| ≤
M
s!

(γ
2

)s
, (A4)

whereγ =Cγo .

Corollary
Let SN(ε, ψ)=

∑N−1
s=0 εs i s cos(s ϕ(ψ))Hs{u s(ρ); γo(ε)}.

Then S(ε,ψ) := limN→∞SN(ε,ψ) <∞ and an error estimate
of the Nth partial sum of S(ε, ψ) is given by the uniform bound

‖S − SN‖∞ ≤
2M(‖γ ‖∞/2)N

N! min
{
e ‖γ ‖∞/2, 1

1−‖γ ‖∞/2(N+1)

}
,

for N >‖γ ‖∞/2− 1, where the supremum norm ‖·‖∞ is
considered on the set D` := [0, re + δ`)× [0, 2π).

Proof
Let u s (ρ)= u0

0s (ρ). Then, as |εs| ≤ 2, |i s
| ≤ 1,

| cos(s ϕ(ψ))| ≤ 1, ∀s ∈N, ψ ∈ [0, 2π) by the lemma and
the proposition,∀N ∈N, (ε, ψ) ∈ D`,
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|SN(ε, ψ)| ≤ 2
N−1∑
s=0

|Hs{u s (ρ); γo (ε)}|

≤ 2M
N−1∑
s=0

(
γ (ε)

2

)s

s!
< 2Me γ (ε)/2 < 2Me ‖γ ‖∞/2 ,

⇒

∣∣∣∣∣
∞∑

s=0

εs i s cos(s ϕ(ψ))Hs{u s(ρ); γo (ε)}

∣∣∣∣∣<∞,
(A5)

where the supremum norm ‖γ‖∞ = kC
b (re + r̄`) is on the set

D` with C = re + δ`.
The last two steps in the proof above follow because∑N
s=0

(
γ (ε)

2

)s
/s! is a bounded monotonically increasing

sequence of partial sums, which converges to e ‖γ‖∞/2, so the
partial sum SN(ε, ψ)must also converge as N→∞.

Now, consider the tail of the proven convergent series above,
for which we find∀N ∈N and (ε, ψ) ∈ D`,

|S(ε, ψ)− SN(ε, ψ)| ≤ 2
∞∑

s=N

|Hs {u s (ρ); γo (ε)}|

≤ 2M
∞∑

s=N

(
γ (ε)

2

)s

s !

≤ 2M

(
γ (ε)

2

)N

N!

(
∞∑

s=0

N
(
γ (ε)

2

)s

5s
k=0(N + k)

)

≤ 2M

(
γ (ε)

2

)N

N!

∞∑
s=0

(
γ (ε)

2

)s

s !

⇒ |S(ε, ψ)− SN(ε, ψ)| ≤ 2M

(
γ (ε)

2

)N

N!
e γ (ε)/2, (A6)

having used the power series of the exponential function.
However, we also have for N > γ(ε)/2− 1 and (ε, ψ) ∈ D`,

|S(ε, ψ)− SN(ε, ψ)| ≤ 2M

(
γ (ε)

2

)N

N!

(
∞∑

s=0

N
(
γ (ε)

2

)s

5s
k=0(N + k)

)

≤ 2M

(
γ (ε)

2

)N

N!

∞∑
s=0

(
γ (ε)

2

N + 1

)s

⇒|S(ε, ψ)− SN(ε, ψ)| =
2M

(
γ (ε)

2

)N

N!
(

1− γ (ε)

2(N+1)

) .

(A7)

Since the inequalities above given by Eq. (A6) and Eq. (A7)
hold for all (ε, ψ) ∈ D` and N >

γ (ε)

2 − 1, then we finally have
the uniform error bound

‖S − SN‖∞ ≤

2M
(
‖γ ‖∞

2

)N

N!
min

{
e
‖γ‖∞

2 ,
1

1− ‖γ ‖∞
2(N+1)

}
,

(A8)
for N >‖γ‖∞/2− 1.

APPENDIX B: MICROLENS POWER
TRANSMISSION

Consider an image that comes into focus at the sensor plane.
Furthermore, in (ρ, φ) coordinates, consider a general distri-
bution Ũ(ρ, φ) about c̃o in 5̃ and let γ ′` be the angle of the
ray through the image point P ′

o and the differential element
in the microlens exit pupil with respect to the perpendicular
to the sensor. From radiometry, the radiant flux transmitted
through the microlens pupil defined by S` arriving at P ′

o , may
be expressed as

8(δ`, ϕ`)=

∫∫
S`

cos4(γ ′`)|Ũ(ρ, φ)|
2ρdρdφ, (B1)

where Ũ(ρ, φ)= e−i kro
zo ρ cos(φ−θo )U(ρ, φ), relates the incident

field of an extra-aerial source to that of an axial source.
If b� re so that γ ′`≈α

′

` and the axial ampli-
tude distribution U is circularly symmetric
(i.e., U(ρ, φ)=U(ρ)), then, by separation of variables,

the flux is now 8(δ`, ϕ`)= cos4(α′`)
∫ δ`+re /Mp

max(0,δ`−re /Mp )

|U(ρ)|2ρ
(∫ ϕ`+φ̄δ` (ρ)

ϕ`−φ̄δ`
(ρ)

dφ
)

dρ, which upon integration over

φ gives

8(δ`)= 2 cos4(α′`)

∫ δ`+re /Mp

max(0,δ`−re /Mp )

φ̄δ`(ρ)|U(ρ)|
2ρdρ,

(B2)
becauseχ[a ,b)(ρ) represents the usual characteristic function.

The energy normalized aberration-free APSF is given by
U(ρ)=

√
π NA′

λ
V 0

0 (ρ), where the radiant flux can be expressed

as8(δ`)= 2π cos4(α′`)
(

NA′

λ

)2 ∫∞
0 φ̄δ`(ρ)|V

0
0 (ρ)|

2ρdρ.
Next, we define 8o =maxδ`≥0{8(δ`)} and consider the

function Co (δ`)=8(δ`)/8o : [0,∞)→[0, 1].
This is simply the fractional power transmitted through a

microlens with respect to the maximum transmitted power.
To compare intensity distributions realistically across

microlenses by considering the effects of main lens vignetting,
define the pre-factor power transmission coefficient

Cδ` =
Co (δ`)∫ 2π

0

∫
∞

0 I s
` (r , θ)r dr dθ

. (B3)

APPENDIX C: ALTERNATIVE EXPRESSION FOR
THE LF-PSF

The rate of convergence of the series expressions of the LF-
PSF as given by Eqs. (26) and (33) decreases dramatically for
δ`� re . Recall from Eq. (6) that the general expression for the
amplitude distribution incident on the sensor plane in terms of
the microimage coordinates x ′`, can be expressed as

U s
` (x
′

`)=

∫∫
R2

e iαn` |x |
2
U
(

x − δ`
Mp

, a; po

)

Pn (̀x)e
−i k

b

[
x ′
`
−

bδ`
M2

p a

]
·x

d2x . (C1)

When δ`� re , the curvature of the circular arc contours of
the radial amplitude light distribution are sufficiently small in



1466 Vol. 40, No. 7 / July 2023 / Journal of the Optical Society of America A Research Article

the microlens entrance pupil, so they may be approximated by
linearization.

Next, define the rotated coordinate frame x ′ defined by the
coordinate transformation x = R(ϕ`)x ′, where the 2D rotation
matrix

R(ϕ`)=
(

cos ϕ` − sin ϕ`
sin ϕ` cos ϕ`

)
, (C2)

rotates counterclockwise byϕ`.
For a change of variables in the integration domain to the x ′

frame, and given that |R(ϕ`)x ′| = |x ′|, we obtain

U s
` (x
′

`)=

∫∫
R2

e iαn` |x
′
|
2
U
(

R(ϕ`)x ′ − δ`
Mp

, a; po

)

Pn`(R(ϕ`)x
′)e
−i k

b

[
x ′
`
−

bδ`
M2

p a

]
·R(ϕ`)x ′

d2x ′

≈

∫ re

−re

e iαn` x ′2U
(
δ` + x ′

Mp

)
e

i k
b

(
x ′
`
·δ̂`−

bδ`
Mp a

)
x ′

∫ √r 2
e −x ′2

−

√
r 2
e −x ′2

e iαn` y ′2 e
−i k

b x ′
`
·

(
R(− π2 )δ̂`

)
y ′

dy ′

 dx ′,

(C3)

where the approximation follows for having assumed that
the contours of the incident amplitude distribution are
parallel to the y ′ axis. From geometry, a reasonable condi-
tion for the approximation’s validity can be shown to obey
δ`[1− cos(φ̄δ`(δ`))]� re , which simplifies to δ`� re .

Equation (C3) above may be simplified further to give a more
elegant result, in the special caseαn` = 0 (i.e. b = fn` ).

As before, introducing the polar coordinates (r , θ), where
r = |x ′`|, θ = arg{x ′`}, we find that x ′` · δ̂` =−r cos(θ − ϕ`)

and x ′` · (R(−
π
2 )δ̂`)= r sin(θ − ϕ`). Allowing x ′ = re cos τ ,

upon substitution and integrating with respect to y ′ yields

U s
` (r , θ)≈−

2re
k
b r sin(θ − ϕ`)

∫ π

0
U
(
δ` + re cos τ

Mp

)

e
−i kre

b

(
r cos(θ−ϕ`)+

bδ`
Mp a

)
cos τ

sin

(
kre

b
r sin(θ − ϕ`) sin τ

)
sin τdτ . (C4)

To determine the LF-PSF, we are now left to evaluate a single
integral for each point in the sensor plane. It is thus preferable to
extract the polar coordinates (r , θ) from the integrand.

By exploiting Euler’s formula and successively applying the
Jacobi–Anger expansion, we find that the product of terms

e−i kre
b r cos(θ−ϕ`) cos τ sin

(
kre

b
r sin(θ − ϕ`) sin τ

)

= 2i
∞∑

s=1

(−i)s sin(s τ) sin(s (θ − ϕ`))J s

(
kre r

b

)
. (C5)

Substituting the expression above into Eq. (C4), and simpli-
fying after applying term-by-term integration gives us the final
result of the incident field distribution incident on the sensor
plane. Taking the squared modulus and neglecting the constant
pre-factor, we obtain

I s
` (r , θ)≈

∣∣∣∣∣
∞∑

s=1

a s(δ`)
sin(s(θ − ϕ`))

sin(θ − ϕ`)

J s (kre r /b)
(kre r /b)

∣∣∣∣∣
2

, (C6)

where the integral coefficients can be computed by the

formula a s (δ`)= (−i)s
∫ π

0 U
(
δ`+re cos τ

Mp

)
e
−i

kδ`re
Mp a cos τ

sin τ

sin(s τ)dτ . It is worth pointing out that the coefficients a s

are also in the form of a Fourier sine transform, as given by
f̂ s (ν)= 1

2π

∫
∞

0 f (τ ) sin(ντ)dτ of the complex function given

by f (τ )= 2π(−i)s U
(
δ`+re cos τ

Mp

)
e
−i

kδ`re
Mp a cos τ

sin(τ )χ[0,π ](τ ).

The advantage of this form of the expression is that rather than
having to iteratively compute for every (r , θ) coordinate the
double integral in Eq. (C1), we may analytically calculate the
intensity response everywhere in the microimage as an expan-
sion series of Bessel functions of the first kind with a fixed set of
integral coefficients a s (δ`).

Equation (C6) has immediate practical use for computational
super-resolution in the novel FLFM with unprecedented res-
olution [4–6] where the defocus of the main lens PSF is large
by comparison to the microlens aperture size and the MLA to
sensor distance is set to the focal length of the microlens. It may
be further proven that Eq. (C6) is also convergent, through a
similar proof of the above proposition and corollary by simply
using the additional bound

∣∣ sin(s (θ−ϕ`))
sin(θ−ϕ`)

∣∣≤ s , ∀θ ∈ [0, 2π),
which follows from L’Hôpital’s rule.
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