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The performance of single-shot off-axis digital holographic microscopy (DHM) is determined by the optimum 
utilization of the space-bandwidth product and by the contrast of the recorded digital hologram. While the 
former can be easily achieved through an afocal-telecentric DHM, the finding in nature of samples with non- 
homogeneous transmittance leads to the recording of digital holograms with contrast ranging from zero to 
unity. In this work, the effect of the sample transmittance and the bit depth of the digital camera on the per-
formance of quantitative phase imaging in DHM is studied. A theoretical model that links the contrast of the 
recorded interference fringes, in a transmission-mode DHM, to the bit depth of the digital camera is derived. The 
model is implemented in an open-source visual script for easy consultation and predicts that, when recorded with 
a 16-bit-depth camera, digital holograms of samples that have regions with transmittance below 1% can be 
successfully processed to render reliable phase information. The theoretical and computer-modeled results are 
validated with experimental results from a complex sample of the mouth of a honeybee and from endothelial 
cells slide.   

1. Introduction 

Quantitative phase imaging (QPI) of microscopic samples plays a key 
role in material and life sciences [1]. In the former, reflective samples 
are imaged in microscopes operating in reflection mode to accurately 
measure high differences. In life sciences, transmissive specimens are 
imaged in microscopes operating in transmission mode to quantify the 
phase differences between the specimen and the surrounding medium. 
Among the multiple methodologies to implement QPI, digital holo-
graphic microscopy [2–4] (DHM) has attracted special interest because 
of its intrinsic simplicity of implementation, ample amount of infor-
mation available, commercial and open-source developments of hard-
ware [5–7] and software [8–10], and the reliable results that can be 
obtained. 

The hallmark of DHM is the single-shot label-free QPI capability for 
both reflective and transmissive samples. While heights with nanometric 
sensitivities have been successfully measured in the reflection mode 
[11,12], in DHM operating in transmission mode phase differences have 
been measured with sensitivities of fractions of hundredths of radians 
[3,11,13,14]. DHM is based on recording on a digital camera the 
amplitude superposition between an object wave and a reference wave. 

The former corresponds to the complex-valued wavefield scattered by 
the object that is imaged at the camera plane, and the latter is usually 
chosen to be a plane wave impinging with a given angle to the plane of 
the digital sensor. The squared modulus of this amplitude superposition, 
known as the digital hologram, can then be digitally processed to 
retrieve the complex-valued amplitude scattered by the sample at the 
sensor plane. This complex-valued wavefield can also be calculated at 
different depth planes by means of a numerical propagation based on the 
scalar diffraction integral [15–17]. This feature gives DHM an a-poste-
riori numerical depth of focus [18–20] well-suited, for instance, for 
particle velocity studies [21]. 

Different methods can be utilized to retrieve the complex-valued 
object wavefield from the digital hologram. For DHM to operate in a 
single-shot approach, the microscope must be arranged in an off-axis 
architecture [2,4,22,23]. When operating off-axis, the best possible 
DHM configuration is an afocal-telecentric arrangement, which gua-
rantees that the retrieved object complex-valued wavefield is not 
affected by the phase curvature introduced by the imaging microscope 
objective and that the optimal optical performance of the microscope is 
reached [23–25]. For this configuration, the numerical aperture and 
magnification of the microscope objective, the pixel size of the digital 
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camera, and the interference angle between the object and the reference 
waves must be finely chosen, as is clearly described elsewhere [23]. 
Operating in an afocal-telecentric configuration the retrieving of the 
object complex-valued wavefield is easily done by spatial filtering in the 
Fourier domain [26–28], a task for which even automatic methods are 
widely available [28,29]. The performance of the spatial filtering 
method depends, to a large extent, on having a Fourier spectrum with 
non-overlapping diffracted orders that can be easily isolated. The precise 
setup in the afocal-telecentric arrangement [23] guarantees an opti-
mized use of the space-bandwidth product in terms of the location of the 
diffracted orders. On the contrary, the contrast of the interference 
fringes of the digital hologram controls their weight, namely, how 
visible they are in the Fourier spectrum. Conventionally, as inherited 
from optical holography [30], the said contrast is sought to be unitary, 
which is achieved by tunning the intensity ratio between the object and 
reference waves; the closer the contrast is to unity, the easier and more 
precise the recovery of the complex-value wavefield can be done. For a 
reflection-mode DHM, the digital hologram can be set up at contrast 
values close to unity with relatively low effort. However, in 
transmission-mode DHM, the local variations of the sample trans-
mittance make it challenging or outright impossible to have a homo-
geneous and global contrast value of the digital hologram all over the 
sample. Indeed, it is possible to even have nearly opaque object regions 
with near-zero contrast in the corresponding interference fringes. 

In this work, the effect of the sample transmittance and the bit depth 
of the digital camera on the performance of QPI in digital holographic 
microscopy is reported. Even though previous works have studied the 
performance of DHM operating at very weak signals and under alter-
native architectures [14,22,31–36], most of them are focused on in-
tensity images. To the best knowledge of the authors, there is no 
reported study on the combined influence of both effects. Herein, a 
theoretical model that quantifies the interference fringes contrast, in a 
transmission mode single-shot DHM, and that links it to the bit depth of 
the digital camera is derived. The main outcomes from the model are 
two predictions: First, that even in object regions with transmittances 
below 1 % it is possible to recover reliable phase information. And 
second, that holograms from translucent samples can be well repre-
sented in a reduced bit depth without detriment to the quantitative 
phase map. The simulated and experimental results confirm the validity 
of the model and these two predictions. 

2. Fundamentals of Digital Holographic Microscopy: Digital 
Hologram Contrast and Quantization 

The common arrangement of an off-axis DHM operating in an afocal- 
telecentric configuration [23] is illustrated in Fig. 1. The distance be-
tween the microscope objective (MO), and the tube lens (TL), equals the 
sum of their focal distances fMO, fTL, in that order. The digital camera 
records the squared modulus of the amplitude superposition of the ob-
ject wave, Oi( x→), and the reference wave, R( x→), 

I( x→) = |αoOi( x→) + αrR( x→)|
2
; (1)  

with x→= (x, y) being the transverse coordinates of the system at the 
imaging plane and where αoand αr are constants that allow precise 
scaling of the amplitudes of the object and reference waves, respectively. 
The object wave is the coherent image of the sample at the digital sensor 
plane [15], as given by 

Oi( x→) = O
(

x→

M

)

⊗ h( x→) = t( x→)eiϕ( x→). (2) 

In Eq. (2), ⊗ is the 2D convolution, h( x→) is the amplitude impulse 
response of the microscope, and M = − fTL/fMO is the lateral magnifica-

tion of the microscope. O
( x→

M

)
= to

( x→
M

)
eiϕo( x→

M ) is a complex-valued 
quantity that accounts for the spatially distributed transmittance, 

to
( x→

M

)
, and phase, ϕo

( x→
M

)
, of the sample at the object plane. The refer-

ence wave is generally considered a plane wave that impinges on the 
digital sensor traveling at the angle given by the tilted beam-splitter; this 

angle can be represented by the wave vector k
→

, such that 

R( x→) = A( x→)ei k→⋅ x→, (3)  

where A(x) describes the amplitude spatial distribution of the reference 
wave. Explicitly writing Eq. (1) yields [37], 

I( x→) = α2
ot( x→)

2
+α2

r A( x→)
2
+2αoαrt( x→)A( x→)γcos

(
k
→⋅ x→− ϕ( x→)

)

=(αrA( x→))
2

[

1+
(

αot( x→)

αrA( x→)

)2

+2γ
αot( x→)

αrA( x→)
cos

(
k
→⋅ x→− ϕ( x→)

)
]

(4)  

with γ being the complex degree of spatial coherence that accounts for 
the capability of the object and reference waves to interfere [38], thus 
determining to a great extent the contrast of the fringes of the digital 
hologram. For conciseness, and without any lack of generality, the 
analysis to follow is restricted to the one-dimensional case, whose 
extension to two dimensions is straightforward. As the digital hologram 
in Eq. (4) is recorded in a digital camera with a pixel of size Δx the mth 

pixel records an intensity given by 

Im =

∫

(

m+1
2

)

Δx

(

m− 1
2

)

Δx

I(x)
Δx

dx. (5) 

For the calculation in Eq. (5), one can consider that both the object 
and reference waves are smooth enough over the pixel area, such that 
A(x), t(x), and ϕ(x) are approximately constant across the length 

[
x − Δx

2 ,

x + Δx
2

]
. Upon this consideration, 

Im = (αrA(x))2

[

1+
(

αot(x)
αrA(x)

)2

+ 2γ
αot(x)
αrA(x)

sinc
(

kΔx
2

)

cos(kmΔx − ϕ(x))

]

.

(6)  

with sinc(…) =
sin(…)

(…)
. By defining r(x) = αot(x)

αrA(x) as the ratio of the relative 
amplitudes of the reference and the object waves, eq. (6) can be written 
as. 

Im = (αrA(x))2
[

1+(r(x))2
+ 2γr(x)sinc

(
kΔx

2

)

cos(kmΔx − ϕ(x))
]

. (7) 

In Eq. (7), the intensity recorded in the mth pixel is expressed in terms 
of the parameters that control the contrast of the digital hologram; 
namely, γ, r, and the modulation transfer function (MTF) of the digital 
camera with a pixel fill factor of 1, sinc

(
kΔx

2

)
[39]. From Eq. (7), the 

contrast of the digital hologram, defined as Michelson’s visibility [40], 
for the case of t(x) and A(x) as constants, is given by 

Fig. 1. Schematic illustration of an off-axis DHM. MO = Microscope objective, 
TL = Tube lens. 
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V(x) =
[Im]max − [Im]min

[Im]max + [Im]min
= 2γ

r(x)
1 + r(x)2 sinc

(
kΔx

2

)

. (8) 

The visibility of the digital holograms is therefore controlled by the 
complex degree of spatial coherence and the amplitude ratio between 
the interfering object and reference waves. The MTF of the digital sensor 
modulates the said visibility, indicating that the larger the pixel size the 
smaller their effect on the visibility. This condition indicates that, to 
keep the best possible balance between the angle of interference of the 
object and the reference waves and the MTF of the digital camera, a 
detailed design of the DHM microscope must be considered. The angle 
must be small enough to guarantee the correct sampling of the digital 
hologram and large enough to produce the smallest possible penaliza-
tion on the contrast of the digital hologram by the MTF. 

In order to consider the recording of a digital hologram with the 
visibility expressed in Eq. (8), the quantized nature of the recorded in-
tensity by the digital sensor must be taken into account. Im is limited to 
have values q(mΔx) within the interval {q(mΔx) ∈ R,

0 ≤ q(mΔx) ≤ 2b − 1}, with b being the bit depth of the digital sensor’s 
analog-to-digital converter, and R the set of real numbers. This value 
range is determined by engineering parameters of the sensor like its 
exposure time, electronic gain, and gamma factor, among others. 
Several conditions can thus be imposed to simplify modeling the 
quantization process: i) the sensor has a linear response with the in-
tensity, ii) the lowest gray level of the registered hologram is zero, 
corresponding to the sensitivity threshold of the sensor, iii) the sensor 
parameters can be adjusted so that the maximum intensity in the sensor 
plane corresponds to the largest gray level of the registered image, and 
iv) the sensor cannot reach its saturation limit. Under these consider-
ations, the q(mΔx) value for the position mΔx is therefore given by 

q(mΔx) = Im(mΔx)
2b − 1
[Im]max

, (9)  

where [Im]max = (αrA(x))2
[1 + r(x)2

+ 2γrsinc(kΔx /2)], is the 
maximum intensity of the digital hologram. The value of q(mΔx) must 
now be quantized to one of the integer numbers Z within the range 
{qm ∈ Z ∧ 0 ≤ qm ≤ 2b − 1}. To do so, the ceiling operator ⌈f⌉ maps f to 
the nearest integer greater than or equal to f ; explicitly, ⌈f⌉. =
i : i ∈ Z ∧ i ≥ f ∧ {∀ j> f : j ∈ Z, i ≤ j}. The application of the ceiling 
operator to eq. (9) yields 

qm =

⎡

⎢
⎢
⎢
⎢
⎢

(
2b − 1

)
1 + r(x)2

+ 2 γ r(x)sinc
(

kΔx
2

)

cos(kmΔx − ϕ(x))

1 + r(x)2
+ 2 γ r(x) sinc

(
kΔx

2

)

⎤

⎥
⎥
⎥
⎥
⎥

(10)  

for the quantized value of the recorded intensity of the digital hologram. 
At the core of the herein presented study is the non-homogeneous 

transmittance of the specimens imaged in DHM. The dimensionless 
parameter r(x) introduced in the derivation of Eq. (10) allows the 
analysis of highly inhomogeneous samples that might include both 
transparent, t(x) = 1, and totally opaque, t(x) = 0, regions. The 
spatially distributed values for the r parameter describe the also spatially 
distributed intensity of the digital hologram. The maximum quantized 
intensity possible is still bounded by qm = 2b − 1, which represents the 
saturation level of the detector for the case of total transparency of the 
sample t(x) = 1. Consequently, the maximum real value of the intensity 
recorded by the detector, when the amplitude of the reference wave is 
unitary A(x) = 1, reduces to 

[Im]max = (αr)
2[1+ r2

α + 2γrαsinc(kΔx / 2)
]

(11)  

with rα = αo/αr constant. This, in turn, allows the quantized value qm in 
Eq. (10) to be rewritten as 

qm =

⎡

⎢
⎢
⎢
⎢
⎢

(
2b − 1

)
1 + r(x)2

+ 2 γ r(x) sinc
(

kΔx
2

)

cos(kmΔx − ϕ(x))

1 + r2
α + 2γrαsinc

(
kΔx

2

)

⎤

⎥
⎥
⎥
⎥
⎥

(12)  

whose values are equally limited as those in Eq.(10). 
These quantized intensity values form the digital hologram from 

which the QPI information is retrieved. The reconstruction is carried out 
by spatial filtering of the digital hologram to isolate one of the diffracted 
orders [26], from which the complex-valued wavefield at the detector 
plane is retrieved. Under the afocal-telecentric configuration, the sample 
is imaged in focus and, consequently, the retrieved complex-valued 
amplitude can be directly used to compute any of the sample’s wave-
field properties, like its intensity or phase distribution [4,23]. In 
particular, the phase information is codified in the distortion of the 
carrier fringes. Thus, this reconstruction method is supported by the 
possibility of detecting these distortions in the resulting pattern from the 
interference between the reference and the object waves. It is therefore 
necessary to evaluate how many qm values are needed to adequately 
represent the range of quantized intensity of the digital hologram. The 
limit values of the fringe pattern can be determined from a pair of 
π-shifted phase values of the sample. If the whole range of the fringe 
intensity values must be represented in at least NL quantized values in 
the digital hologram, it follows that 

qm|φ=0 − qm|φ=π ≥ NL, (13)  

where φ = kmΔx − ϕ(mΔx). Replacing the corresponding values of 
qm|φ=0 and qm|φ=π, 
⎡

⎢
⎢
⎢
⎢
⎢

C +
(
2b − 1

)
2 γ r sinc

(
kΔx

2

)

1 + r2
α + 2γrαsinc

(
kΔx

2

)

⎤

⎥
⎥
⎥
⎥
⎥

−

⎡

⎢
⎢
⎢
⎢
⎢

C −
(
2b − 1

)
2 γ r sinc

(
kΔx

2

)

1 + r2
α + 2γrαsinc

(
kΔx

2

)

⎤

⎥
⎥
⎥
⎥
⎥

≥ NL (14)  

where 

C =
(
2b − 1

) 1 + r2

1 + r2
α + 2γrαsinc(kΔx/2)

. (15) 

A limit case that is customarily performed at the laboratory is the use 
of fully spatially coherent light sources, like laser light, for which γ = 1. 
Additionally, the tunning of the relationship between the reference and 
the object wave illumination can be chosen to be unitary, rα = 1, and the 
digital hologram can be assured to be sampled at the Nyquist limit [15] 
such that Δx = π/k. For these conditions, Eq. (14) reduces to 
⌈
0.3055

(
2b − 1

)(
1+ β2 + 1.2732β

)⌉
− ⌈0.3055

(
2b − 1

)(
1+ β2 − 1.2732β

)
⌉

≥ NL
(16)  

with β(x) =
t(mΔx)
A(mΔx) being bounded between zero and one 0 ≤ β ≤ 1. 

Both equations, (14) and (16), for general and a particular case, indicate 
the tight link between the number of quantized levels in which the 
digital hologram is recorded, NL, and the physical parameters that in-
fluence the performance of any QPI measurement in DHM. To provide 
further insight into this regard, as part of the present work, a MATLAB® 
Live Script resource that plots eq. (14) while allowing the user to modify 
the experimental parameters at will, was made available at Ref. [41]. 

Presented in Fig. 2 are different plots for a particular set of param-
eters of interest for the current work. The complex degree of coherence 
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has been set to one, γ = 1, for representing the full spatial coherence of 
the utilized laser light. Each panel plots the sample transmittance t(x) vs 
the number of levels in which the digital hologram is quantized. The 
amplitude of the reference wave A(x) is chosen to be uniform, and at a 
1:1 intensity relation with the object illumination as given by rα = 1. The 
number of the available quantization levels is therefore determined by 
the bit-depth of the digital camera, which is shown at the top of each 
panel. The MATLAB® Live Script resource allows choosing the number 
of levels NL that satisfies the condition stated in Eq. (14). For the 
modeling shown in this figure NL has been set to 3. This value has been 
experimentally found as the best fit for the experimental observations 
when coherent noise also affects the measurements. It shows good 
compliance with the realistic numerical modeling presented in the next 
section. The blue and red stepped lines denote the maximum and min-
imum values, in that order, of the quantized digital hologram. Note that, 
from now on, the transmittance of the object is represented as the pro-
portion of transmitted light. The MATLAB® Live Script resource evalu-
ates the fulfillment of the NL condition and represents it by shading in 
red the region of the plotting area where it fails; the remaining area is 
green-shaded to indicate the fulfillment of the condition. The boundary 
between these areas marks the limit sample transmittance for which the 
digital hologram can correctly record, and allow the retrieval, of a 
trustable QPI map. Remarkable conclusions can be extracted from the 
panels in Fig. 2. For example, when a regular 8-bit camera is utilized to 
record the digital hologram, thrustable QPI images from samples with 
transmittances as low as 1.4% can be obtained. In the case of using a 16- 
bit camera, the sample transmittance can be as low as 0.005 %. 
Conversely, the model predicts that holograms from fully transmissive 
samples could be appropriately represented in as low as 3 bits without 
affecting the possibility of retrieving their phase information. 

Most commercially available digital cameras integrate at least 8-bit 
analog-to-digital converters, with 12-bit and 16-bit sensors being 
increasingly common. The results from this model thus suggest that a 

DHM system equipped with a modern camera could retrieve information 
from almost opaque samples, possibly around 1 % of transmittance. It 
must be noted that these enhancements in the intensity quantization 
resolution come at the expense of an increased size of the digital files, 
which demand the use of high-capacity and bandwidth storage for time- 
extended DHM imaging. However, from these same observations, the 
model suggests that if translucent samples are being studied, as is 
commonly the case for DHM applications, the recordings could be saved 
in a compressed representation without affecting the QPI capabilities of 
the technique. Consequently, new compression algorithms could be 
developed under this principle [42,43]. These figures thus encourage 
the numerical modeling of QPI imaging in realistic platforms [10,29,44] 
and the realization of experiments with transmissive samples exhibiting 
remarkably low values, and the compressed representation of fully 
transmissive targets. 

The specific values that motivate these observations are based on the 
calculation with NL = 3. In its current form, this value is experimentally 
estimated rather than deduced. However, the predictions of the model 
are equally valid for other near values of NL. This can be readily tested in 
the supplementary software tool [41]. In particular, the predicted 
transmittance limits for the most common camera sensors (that is, equal 
to or above 8 bits) are only slightly changed by either increasing or 
decreasing the NL value in one unit. Likewise, the observation that ho-
lograms from fully transmissive samples can be accurately represented 
in as low as 3 bits holds without issue for that same uncertainty. 

3. Numerical Modeling 

To validate the proposed theoretical model, the transmittance limits 
predicted by Eq. (14) and summarized in Fig. 2 were evaluated through 
a numerical recreation of a DHM recording setup. The realistic simula-
tion platform reported in  [10,44] was employed to produce digital 
holograms with bit-depth representations varying from 1-bit to 16-bit. 

Fig. 2. Sample transmittance vs Quantization levels. All the panels use the graph convention illustrated in the lower-right corner. See the text for details.  
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The recording system was assumed to operate with a fully-coherent 633 
nm illumination, to use 10x/0.25 microscope objective, and to record in 
a digital sensor with 1080 × 1080 square pixels with 5.04 μm of side 
length. As the sample target for this simulation, the synthetic phase 
object illustrated in panel (a) of Fig. 3 was used. This object was 
designed as 9 identical phase structures with a difference of 2 radians 
between the flat top and the background, thus being of equal optical 
path length. A different value of transmittance was assigned to each of 
the structures, ranging from 80 % to 0 % in 10 % decrements, and 
keeping a 100 % translucent background. The resulting 16-bit hologram 
is shown in panel (b) of the same figure. From the accompanying insets is 
seen that the fringe contrast inside the regions corresponding to the 
imaged structures decreases with the reduced transmittance. As the 
quality of the phase maps retrieved from these holograms depends on 
the possibility of adequately representing the fringe pattern over the 
available intensity levels, perturbations are bound to appear as the bit 
depth is decreased. Indeed, this effect can be seen comparing panels (c), 
(d), and (e). Panel (c) shows the phase map retrieved from the 16-bit 
representation; as expected, all the non-zero-transmittance structures 
are correctly retrieved without any perturbation. Panel (d) shows the 
reconstruction from the 4-bit hologram, in which the structures above 
50 % are retrieved without distortion, those between 40 % and 10 % 
have partially altered shapes, and only the 0 % structure is severely 
corrupted. Conversely, panel (e) shows the reconstruction from the 2-bit 
hologram, in which none of the structures is adequately recovered, those 
between 80 % and 30 % are altered in various degrees, and those below 
20 % are indistinguishable. In these last three panels, the green, yellow, 
and red arrows mark the transitions between elements that are, 
respectively, correctly retrieved without perturbation, retrieved with 
partial alterations, and those for which the phase information is 
unretrievable. 

This described experiment was then repeated for transmittances 
between 8 % and 0 % with 1 % variations, 0.8 % to 0 % with 0.1 % 
variations, and 0.08 % to 0 % with 0.01 % variations. For each simu-
lation, the same 16 cases of bit-depth representations were generated 
and reconstructed. To quantify the affectations on the retrieved phase, 
the standard deviation of the phase values was measured in the flat top 
region of the structures, which was represented in each case by 

approximately 80 × 80 pixels of the phase map. These measurements 
were then used to plot the trends illustrated in Fig. 4. To establish the 
maximum acceptable value, the standard deviation of the background 
was taken as the reference. For the selected simulation conditions, the 
average deviation of this 100 % transmissive region was measured at 
0.01 rad. The transmittance limit was estimated by the position where 
the trends exceeded the acceptable deviation range, that is, if the 
measured standard deviation surpassed more than two times that of the 
background. While the results, which are summarized as annotations in 
the corresponding panel of Fig. 4, predict slightly higher limits for the 
limit transmittance values, the overall behavior is consistent with the 
theoretical model. Namely, that 16-bit recordings allow the phase 
retrieval from regions of the sample with transmittances below 0.1 %, 
and that translucent regions can be adequately represented with bit- 
depths as low as 3-bit. These observations must now be further vali-
dated in an experimental setting. 

4. Experimental Validation 

From the described model, two observations can be readily drawn 
regarding single-shot DHM quantitative phase imaging: i) imaging of 
highly opaque regions of a transmission sample can be sought if a 
camera with a high enough bit-depth range is employed, and ii) phase 
maps of a translucent sample can be retrieved from low-bit-depth 
holograms. 

To verify these observations, a calibration phase-only target [45] was 
initially used. This sample is fabricated from an acrylate polymer 
deposition over a Corning Eagle XG glass substrate, making it a 
pure-phase object and, thus, fully transmissive. As the polymer de-
positions are height-calibrated and the refractive index of the material is 
accurately known, the phase delays introduced by the target can be 
readily predicted and used as a quantitative reference for phase retrieval 
under extreme conditions of sample transmittance. The sample is 
composed of several calibration structures. For this experiment, a 
40-spoke Siemens star with 200 nm of height and 400 µm of diameter 
was selected. All the experimental recordings were performed in a 
single-shot DHM operating in an afocal-telecentric setup. The DHM was 
configured with a 633 nm laser illumination source, a 10X/0.25 mi-
croscope objective, and a passively-cooled Quantalux monochrome 
sCMOS camera (CS2100M-USB). The object and reference paths of the 
DHM were set in a 1:1 relation of intensities at the detector in the 
absence of a sample; that is, αo/αr ≈ 1. The digital sensor was composed 
of 1920 × 1080 square pixels with 5.04 μm of side length, each with a 
full-well capacity of at least 23 000 e− , and it was equipped with a 
16-bit ADC with less than 1.5 e− RMS. 

For the first observation, due to the translucent nature of this sample, 
an emulation of low transmittance values had to be sought. To do so, the 
object arm of the DHM system was prepared with a tunable set of 
neutral-density filters in close contact with the target. By gradually 
increasing the attenuation of the object arm, an effective reduction in 
the r(x) parameter is achieved. This involves two key considerations:  

i. Strictly, this is a reduction in the value of αo instead of t(x); however, 
as r(x) =

αot(x)
αrA(x), the net effect is equivalent as long as the values for αr,

t(x), and A(x) are kept constant.  
ii. To ensure that this approach truly emulates reductions in t(x), the 

value of [Im]max, as given by Eq.(11), must also be kept constant. By 
configuring all the camera parameters before introducing either the 
sample or any neutral-density filter, and keeping them unchanged 
throughout the experiment, the [Im]max is ensured to be taken for 
rα ≈ 1. 

Under these considerations, holograms from the calibrated phase 
target were taken at three different levels of attenuation. To measure the 
reduced value of r(x), which represents changes in t(x) for the herein- 

Fig. 3. Modeled object for numerical estimation of transmittance limits. (a) 3D 
representation of the simulated sample, composed of 9 equal-phase elements 
with transmittances varying from 80% to 0%. (b) Resulting 16-bit hologram. 
The insets show the difference in fringe contrast between the two regions with 
60% and 0% transmittance. Presented in c/d/e panels are the reconstructed 
phase maps with non-/partially-/fully-distorted features for holograms with 16- 
bit/4-bit/2-bit. In these panels, the green, yellow, and red arrows indicate the 
transition between fully-recovered, partially-recovered, and unrecoverable 
phase values, respectively. The phase color scale bar applies to the three panels. 
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developed model, two additional images were taken at each attenuation 
case: one of the object intensity and one of the reference intensity, 
mechanically blocking the other beam in each case. The former yields a 
quantized measure of |αot(x)|2, while the latter likewise measures 
|αrA(x)|2; thus, by taking the square root of the coefficient between these 
two measurements, an estimation of the r(x) parameter can be obtained. 

Average r(x) measurements of 81.2 %, 7.8 %, and 0.6 % were ob-
tained for the three attenuation cases on this sample. The corresponding 
phase maps, as retrieved from each of these holograms, are presented in 
Fig. 5 in that same order. To validate the preservation of accurate QPI 
measurements after the attenuation, a line plot was taken over a curved 
path of constant radius at the same position for the three retrieved im-
ages, marked by a color line overlaid on the phase maps in that same 
figure. Using the widely known relation [3] 

Δh =
λΔϕ

2π
(
nsample − nair

), (17)  

the phase delay measurements Δϕ are transformed into height differ-
ences Δh for the given illumination wavelength λ = 633 nm and the 
refractive index of the sample nsample = 1.52. The resulting measure-

ments for all three cases adequately conform to the expected value of 
200 nm, which is represented in the plot of Fig. 5 by a shaded region. By 
direct comparison of the line plots in this figure, it is seen that the 
quantitative measurements are well preserved under severe reduction in 
the r(x) parameter. The only noticeable difference is the noise level of 
the reconstruction. However, such an effect is to be expected, as at lower 
object intensities, its information gets increasingly closer to the elec-
tronic noise level of the digital detector. 

This observation was then further validated with a non-calibrated 
sample for which there are no known reference values, but whose 
intrinsic transmittance inhomogeneities pose a challenge to the DHM 
system. For this evaluation, a commercially prepared slide of a honeybee 
mouth was used. As presented in panel (a) of Fig. 6, the bright-field 
image shows that the sample has regions of varied degrees of trans-
mittance, ranging from highly transmissive to almost opaque. Three 
interest zones with opaque features were selected, as marked by the red 
squares in the same panel. Panels (b), (e), and (h), show a magnified 
view of these zones, as acquired by a conventional optical microscope. 
These same portions of the sample were then imaged using the same 
DHM system as the previous sample. The resulting holograms acquired 
with this setup are illustrated in panels (c), (f), and (i) of Fig. 6. At each 
of the shown holograms, the overlay labels indicate the average value of 
the r(x) parameter in the X-marked regions, calculated from intensity 
recordings of the object and reference waves as described for the cali-
brated phase target. As expected, the fringe contrast of the interference 
pattern is severely degraded at the lower transmittance values. The 
accompanying insets of panel (c) further show this reduction, with a 
magnified view of the fringes in a background region, and in the selected 
5 %, 4 %, and 1 % regions, in that order. In the last case, the pattern is 
barely visible. 

Notwithstanding the poor contrast of the fringes in the low- 
transmittance areas, the use of a 16-bit camera should allow the 
retrieval of phase information from regions below the 1 % transmittance 
threshold. Indeed, as can be seen in the phase maps from panels (d), (g), 

Fig. 4. Determination of transmittance limit by numerical simulation of a phase object with variable opacity. The vertical color bars mark the limit transmittance for 
each bit depth. 

Fig. 5. Experimental imaging of a calibrated phase target at three different 
levels of r(x) using a 16-bit camera. While there is an increase in the noise level 
at reduced transmittances, the quantitative measurements are 
mostly unaffected. 
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and (j), the reconstructed information is free from the numerical-noise 
artifacts that could be expected from an ill-recorded hologram. 
Instead, the full details of the sample are retrieved. It must be noted that 
a direct comparison between these QPI maps and the brightfield images 

in panels (b), (e), and (h) is not appropriate. While they correspond to 
the same regions of the sample, the information that they convey is 
completely different. The brightfield images are used as a visual guide to 
the overall structure of the sample, and to convey the stark 

Fig. 6. Experimental imaging of a honeybee mouth. (a) Bright-field image of the sample. (b,e,h) Optical microscope images of selected zones with quasi-opaque 
features, and (c,f,i) their respective digital holograms where the overlaid values correspond to the average transmittance of each marked region. (d,g,j) Quantita-
tive phase images reconstructed from each hologram. 

Fig. 7. Phase map of an endothelial cells sample retrieved from a hologram represented in (a) 16-bit, (b) 8-bit, (c) 4-bit, (d) 3-bit, (e) 2-bit, and (f) 1-bit. The 
accompanying inset in each panel shows the Fourier spectrum of the corresponding hologram. The color scale bar applies equally to all panels. 
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inhomogeneity in the light transmittance across the sample. 
To verify the second observation, the single-shot DHM setup from the 

previous experiment but changing the microscope objective to a 20x/0.4 
piece, was used to record a 16-bit hologram of a commercial slide of 
endothelial cells. Being translucent biological specimens, they can be 
considered to have an effective transmittance of almost 100 %. Conse-
quently, hologram recordings of bit depths as low as b = 3 should be able 
to adequately code their phase information. The 16-bit experimental 
hologram was thus rescaled into new representations varying from 16- 
bit to 1-bit of intensity quantization. The phase map of the cell slide 
was then retrieved from each hologram, from which the main results are 
summarized in Fig. 7. Panel (a) shows the reconstruction from the 16-bit 
hologram, which constitutes the best-case phase map. The phase images 
extracted from all the reduced cases between the 16-bit and a 4-bit 
representation yield almost identical results, without any noticeable 
affectation on the retrieved information. While it is highly unlikely that 
any modern DHM will be equipped with a sensor with less than 8 bits, 
this possibility of changing the representation of the original 16-bit 
hologram into an image of only 4 bits without significant detriment to 
the retrieved QPI map opens new development avenues for compression 
algorithms. 

This can be verified in panels (b) and (c) from the same figure, which 
illustrate the phase maps obtained from the 8-bit and 4-bit cases, 
respectively. However, by comparing the Fourier spectrum of these 
holograms, shown in the accompanying insets of each panel of Fig. 7, the 
emergence of the additional Fourier order in the 4-bit hologram can be 
noticed. These undesirable replicas can be attributed to the increasingly- 
distorted sampling conditions of the hologram, which gradually transfer 
more power of the spectrum into the aliases of the ill-sampled frequency. 
Further reduction in the bit-depth of the hologram representation is thus 
inevitably accompanied by increased power allocation on these replicas, 
which in turn introduces noise to the reconstruction and hinders the 
sample’s information. This can be seen in panels (d) and (e), which show 
the phase maps recovered from the 3-bit and 2-bit representations of the 
hologram. While the overall information can be identified, it is severely 
distorted by noise. Likewise, the accompanying insets show the now 
visible presence of additional replicas in the Fourier spectrum. Finally, 
panel (f) shows the phase map obtained from the 1-bit hologram. In this 
case, the specimens are completely obstructed by the noise, and almost 
none of the retrieved information remains usable. 

Similar to the experimental results for the first observation, there is 
not a known value for the QPI measurements of the selected endothelial 
cells sample. Thus, while the results in Fig. 7 allow a preliminary vali-
dation of the QPI information preservation, a quantitative study is 
desirable. To do so, the same element of the calibrated phase target was 
used. A 16-bit hologram of the fully translucent object was recorded in 
the DHM system and then rescaled into new bit-depth representations 
under the same parameters used for the endothelial cells. The retrieved 
QPI maps are summarized in Fig. 8 for the original 16-bit case, and the 
reduced representations of 8 bits, 4 bits, and 2 bits. By visually 
comparing the original phase map and the one retrieved from the 4-bit 
hologram, it is readily seen that the overall information is unaffected. 
This is further confirmed by the accompanying line plots, taken over a 

constant-radius path, where the nominal height of 200 nm is consis-
tently retrieved for the first three cases. The transformation of the phase 
measurements into height information was performed in the same 
manner as described for Fig. 5. The 2-bit case also supports the previous 
result from the endothelial cell slide. While the line plot shows that the 
overall trend is consistent with the expected value, the information is 
severely degraded by noise and makes unfeasible the use of the QPI 
information. 

The above-summarized experimental results confirm the two main 
predictions of the model; namely: that quantitative phase images from 
highly opaque regions of a transmission sample can be successfully 
obtained with a high-bit-depth camera, and that phase maps from a 
translucent sample can be retrieved from holograms with a low-bit- 
depth digital representation. It must be noted that all the experimen-
tally retrieved QPI maps are presented as directly obtained from the 
reconstruction process of the corresponding holograms. No noise 
reduction or contrast enhancement algorithms were applied to avoid 
introducing experimental biases to the validation. The presented images 
show the raw capabilities of the described DHM system under these 
unusual operation conditions; thus, an experimental application of these 
observations can expect enhanced-quality reconstructions if such algo-
rithms are employed. 

5. Conclusions 

Digital Holographic Microscopy (DHM) is one of the most utilized 
technologies to perform Quantitative Phase Imaging (QPI), due to its 
simplicity, robustness, and wide availability of both commercial and 
non-profit tools for its implementation. When using DHM for QPI 
analysis of transmissive samples, it is typically assumed that the suc-
cessful recording of a digital hologram from which the complex-valued 
wavefield can be later retrieved depends on the targets being trans-
parent or semi-transparent. However, the limit of sample transmittance 
after which the QPI retrieval is unfeasible has not been studied. 

This work presents a study on the performance limits of single-shot 
off-axis DHM for the QPI analysis of samples with extreme conditions 
of transmittance, and its relation to the number of bits utilized for the 
digital recording. A theoretical model of the recording process was 
developed and implemented in a publicly available script. With this tool, 
the performance limits can be estimated as a function of the intensity 
relation of the interferometer arms, the transmittance of the sample, the 
coherence degree of the illumination, and the bit-depth of the digital 
camera. The model predicts that, for the commonly available cameras, 
DHM can perform well even with almost opaque samples, and that ho-
lograms from translucent samples could be represented in low bit depths 
without noticeable detriment. Particularly, for any camera beyond 8 
bits, transmittances below 1 % should yield holograms from which a QPI 
map could be successfully retrieved. 

The model predictions were contrasted with a realistic DHM-imaging 
platform used to generate holograms for varying degrees of sample 
transmittance with a fixed phase distribution. By comparing the devia-
tion of the retrieved phase values against the ground truth, the previous 
observations were confirmed. Finally, these predictions were validated 

Fig. 8. QPI maps from a calibrated phase target retrieved from holograms with varying bit depth. The height measurements are unaltered down to a 4-bit 
representation. 
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on three experimental samples: a calibrated phase target, a honeybee 
mouthpiece, and an endothelial cells slide. The results confirmed that 
QPI maps could be retrieved from highly opaque regions, with trans-
mittance below 1 %, using a 16-bit camera and that holograms from 
translucent regions, with almost 100 % transmittance, could be 
remapped into very low bit-depths without losing the ability to retrieve 
the phase information. 
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[9] Castañeda R, Trujillo C, Doblas A. pyDHM: a Python library for applications in 

digital holographic microscopy. PLoS One 2022;17:e0275818. 
[10] Buitrago-Duque C, Garcia-Sucerquia J. Realistic simulation and real-time 

reconstruction of digital holographic microscopy experiments in ImageJ. Appl Opt 
2022;61:B56. 

[11] Kühn J, Charrière F, Colomb T, Cuche E, Montfort F, Emery Y, Marquet P, 
Depeursinge C. Axial sub-nanometer accuracy in digital holographic microscopy. 
Meas Sci Technol 2008;19. 
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