University of Valencia logoLogo CSIC Logo del portal

  • Gimeno-Alcañíz JV, Matallana E. (2001) Performance of industrial strains of Saccharomyces cerevisae during wine fermentation is affected by manipulation strategies based on sporulation. Syst Appl Microbiol 24, 639-644.
  • Pedreño Y,Gimeno-Alcañíz JV,Matallana E, Argüelles JC (2002) Response to oxidative stress caused by H2O2 in Saccharomyces cerevisiae mutants deficient in trehalase genes. Arch Microbiol 177, 494-499.
  • Pérez-Torrado R, Carrasco P, Aranda A, Gimeno-Alcañiz JV, Pérez-Ortín JE, Matallana E, Del Olmo M. (2002) Study of the first hours of vinification by the use of osmotic stress-specific response genes as probes. Syst Appl Microbiol, 25, 153-161.
  • Pérez-Torrado R, Gimeno-Alcañiz JV, Matallana E. (2002) Wine yeast strains engineered for glycogen overproduction display enhanced viability under glucose deprivation conditions. Appl Environm Microbiol 68, 3339-3344.
  • Ramón D, Genovés S, Gil JV, Herrero O, MacCabe A, Manzanares P, Matallana E, Orejas M, Uber G, Vallés S. (2005) Milestones in wine biotechnology. Minerva Biotec 17, 33-45.
  • Pérez-Torrado R, Bruno-Barcena JM, Matallana E. (2005) Monitoring stress related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making. Appl Environm Microbiol 71, 6831-6837.
  • Aranda A, Jiménez-Martí E, Orozco H, Matallana E, del Olmo M. (2006) Sulfur and adenine metabolisms are linked and both modulate sulfite resistance in wine yeast. J Agric Food Chem, 54, 5839-5846.
  • Espinazo-Romeu M, Cantoral JM, Matallana E, Aranda A. (2008) Btn2p is involved in ethanol resistance and biofilm formation in flor yeast. FEMS Yeast Res 8, 1127-1136.
  • Garre E, Pérez-Torrado R, Gimeno-Alcañiz JV, Matallana E. (2009) Acid trehalase is involved in intracellular trehalose mobilization during postdiauxic growth and severe saline stress in Saccharomyces cerevisiae. FEMS Yeast Res 9, 52-62.
  • Garre E, Matallana E. (2009) The three trehalases Nth1p, Nth2p and Ath1p participate in the intracellular trehalose mobilization required for recovery from saline stress in S. cerevisiae. Microbiology 155, 3092-3099.
  • Pérez-Torrado R, Gómez-Pastor R, Larsson C, Matallana E. (2009) Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth. Appl Microbiol Biotechnol 81, 951-960.
  • Garre E, Raginel F, Palacios A, Julien A, Matallana E. (2010) Oxidative stress responses and lipid peroxidation damage are induced during dehydration in the production of dry active wine yeasts. Int J Food Microbiol 136, 295-303.
  • Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, RosJ, Matallana E. (2010) Reduction of oxidative cellular damage by overexpression of thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass. Microb Cell Fact 9, 9.
  • Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Matallana E. (2010) Transcriptomic and proteomic insights of the wine yeasts biomass propagation process. FEMS Yeast Res 10, 870-884.
  • Gómez-Pastor R, Pérez-Torrado T, Matallana E. (2010) Improving yield of industrial biomass propagation by increasing Trx2p dosage. Bioeng Bugs 1, 5.
  • Lavara-Culebras E, Muñoz-Soriano V, Gómez-Pastor R, Matallana E. Paricio N. (2010) Effects of pharmacological agents on the lifespan phenotype of Drosophila DJ-1beta mutants. Gene 462, 26-33.
  • Gómez-Pastor R, Pérez-Torrado R, Matallana E. (2012) Modification of the TRX2 gene dose in Saccharomyces cerevisiae affects Hexokinase 2 gene regulation during wine yeast biomass production. Appl Microbiol Biotechnol 94, 773-787.
  • Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Ros J, Matallana E. (2012) Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation. Microb Cell Fact 11, 4.
  • Orozco H, Matallana E y Aranda A (2012) Oxidative stress tolerance, adenylate cyclase and autophagy are key players in yeast chronological life span during winemaking. Applied and Environmental Microbiology , 78(8), pp. 2748 - 2757 . ISSN: 0099-2240
  • Orozco H, Matallana E, Aranda A. (2012) Wine yeast sirtuins and Gcn5p control aging and metabolism in a natural growth medium.Mech Ageing Develop 133, 348-358.
  • Orozco H, Matallana E, Aranda A. (2012) Two-carbon metabolites, polyphenols and vitamins influence yeast chronological life span in winemaking conditions. Microb Cell Fact 11, 104.
  • Gamero-Sandemetrio E, Gómez-Pastor R,Matallana E. (2013) Zymogram profiling of superoxide dismutase and catalase activities allows Saccharomyces and non-Saccharomyces species differentiation and correlates to their fermentation performance. ApplMicrobiolBiotechnol97, 4563-4576.
  • Orozco H, Matallana E, Aranda A. (2013) Genetic manipulation of age-related genes is a tool to regulate yeast life span and metabolite production during winemaking. Microb Cell Fact 12, 1.
  • Casani S, Gómez-Pastor R, Matallana E, Paricio N. (2013) Antioxidant compounds prevent oxidative damage in a Drosophila model of Parkinson’s disease. Free Rad Biol Med 61, 151-160.
  • Gómez-Pastor R, Garre E, Pérez-Torrado R, Matallana E. (2013) TRX2p-dependent regulation of Saccharomyces cerevisiae oxidative stress response by the Skn7p transcription factor under respiring conditions. Plos One 8, e85404.
  • Gamero-Sandemetrio E, Gómez-Pastor R, Matallana E. (2014) Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast. Biotechnol J9, 1055-1064.
  • Rodriguez ME, Orozco H, Cantoral JM, Matallana E, Aranda A. (2014) Acetyltransferase SAS2 and sirtuin SIR2, respectively, control flocculation and biofilm formation in wine yeast. FEMS Yeast Res 14, 845-857.
  • Pérez-Torrado R, Matallana E (2015) Enhanced fermentative capacity of yeasts engineered in storage carbohydrate metabolism. Biotechnol Progr 31, 20-24.
  • Picazo C,Gamero-Sandemetrio E, Orozco H,Albertin W,Marullo P,Matallana E, Aranda A. (2015) Mitochondria inheritance is a key factor for tolerance to dehydration in wine yeast production. Lett Appl Microbiol 60, 217-222.
  • Picazo C. Orozco H. Matallana E. Aranda A. (2015) Interplay among Gcn5, Sch9 and mitochondria during chronological aging of wine yeast is dependent on growth conditions. Plos One 10, e0117267.
  • Pérez-Torrado R, Gamero E, Gómez-Pastor R, Garre E, Aranda A, Matallana E. (2015) Yeast biomass, an optimised product with myriad applications in the food industry. Trends Food Sci Technol 46, 167-175.
  • Gamero E, Torrellas M, Rábena MT, Gómez-Pastor R, Aranda A ,Matallana E. (2015) Food-grade argan oil supplementation in molasses enhances fermentative performance and antioxidant defenses of active dry wine yeast. ApplMicrobBiotechnol Express5, 75.
  • Orozco H,Sepúlveda A,Picazo C, Matallana E, Aranda A. (2016) RNA binding protein Pub1p regulates glycerol production and stress tolerance by controlling Gpd1p activity during winemaking. Appl Microbiol Biotechnol 100, 5017-5027.
  • Matallana E, Aranda A. (2017) Biotechnological impact of stress response on wine yeast. Lett Appl Microbiol 64, 103-110.
  • Gamero-Sandemetrio E, Gómez-Pastor R,Matallana E. (2017) Zymography methods to simultaneously analyze superoxide dismutase and catalase activities: novel application for yeast species identification. Meth MolBiol 1626, 189-198.
  • Vallejo B, Orozco H,Picazo C, Matallana E, Aranda A. (2017) Sch9p kinase and the Gcn4p transcription factor regulate glycerol production during winemaking. FEMS Yeast Res 17.
  • Vallejo B,Picazo C, Orozco H,Matallana E, Aranda A. (2017) Herbicide glufosinate inhibits yeast growth and extends longevity during wine fermentation. Sci Reports 7, 12414.
  • Gamero-Sandemetrio E, Payá-Tormo L, Gómez-Pastor R, Aranda A, Matallana E. (2018) Non-canonical regulation of glutathione and trehalose biosynthesis characterizes non Saccharomyces wine yeasts with poor performance in active dry yeast production. Microb Cell 5, 184-195.
  • Picazo C, Matallana E, Aranda A (2018). Yeast thioredoxin reductase Trr1 controls TORC1-regulated processes. Sci Reports 8,16500.
  • Gamero-Sandemetrio E, Gómez-Pastor R, Aranda A, Matallana E. (2019) Validation and biochemical characterisation of beneficial argan oil treatment in biomass propagation for industrial active dry yeast production. Innov Food SciEmergTechnol51, 156-166.
  • Picazo C, Brian McDonagh B, Peinado J, Bárcena JA, Matallana E, Aranda A (2019). Yeast thioredoxin reductase Trr1 controls TORC1-regulated processes. Appl Environ Microbiol 85, e02953-18.
  • Orozco H, Matallana E, Aranda A. Stress Response in Yeasts Used for Food Production. En:  Food Molecular Microbiology Cap 10, pp 183-206. (Paramithiotis S and, ‎ Patra JK, eds) CRC Press.  ISBN 9781138088085.
  • Aranda A, Orozco H, Picazo C, Matallana E (2019). Yeast life span and its impact on food fermentations. Fermentation 5 (2), 37.
  • Grijalva-Vallejos N, Aranda A, Matallana E (2020). Evaluation of yeasts from Ecuadorian chicha by their performance as starters for alcoholic fermentations in the food industry. Int J Food Microbiol 317 (in press). https://doi.org/10.1016/j.ijfoodmicro.2019.108462.
  • Vallejo B, Matallana E, Aranda A (2020). Saccharomyces cerevisiae nutrient signaling pathways show an unexpected early activation pattern during winemaking. Microbial Cell Fact. 19, 124. https://doi.org/10.1186/s12934-020-01381-6.
  • Torrellas M, Rozès N, Aranda A, Matallana E (2020). Basal catalase activity and high glutathione levels influence the performance of non-Saccharomyces active dry wine yeasts. Food Microbiol 92, 103589. (https://doi.org/10.1016/j.fm.2020.103589).
  • Vallejo B, Peltier E, Garrigós V, Matallana E, Marullo P, Aranda A (2020). Role of Saccharomyces cerevisiae nutrient signaling pathways during winemaking: a phenomics approach. Front Bioeng Biotechnol 8, 853. doi: 10.3389/fbioe.2020.00853.