University of Valencia logoLogo CSIC Logo del portal

This project will contribute to the identification of the molecular mechanism of action of probiotic microorganisms, based on the identification of the synthesis pathways of molecular patterns relevant to their functional action. A double approach is proposed: computational and experimental. Thus, a series of metabolic models will be developed at a genomic scale (GEM) from the annotated sequences of bifidobacteria genomes.
The central intent of SETH is the generation of a knowledge base, a suite of useful strains and a portfolio of matching genetic technologies for enabling a new type of large-scale industrial and environmental processes mediated by whole bacterial cells but executed under (very) low-water conditions. This endeavor builds on the success of the precedent HELIOS project but goes much beyond by capitalizing on the wealth of biological activities found in desiccation-tolerant bacteria and their repurposing for the design of live catalysts able to work under an unprecedented variety of physicochemical settings.
The main objective is to exchange information and knowledge between countries affected by diseases caused by Xylella fastidiosa in order to gather all available data on the bacterium, its vectors, the situation of affected crops in Ibero-American countries and the prevention and control activities that are being carried out. The aim is to generate knowledge to contribute to the development of a technological alert and surveillance system that allows local or national governments to take the necessary measures to follow, contain and eradicate the disease.