F. Ladisch. Character Correspondences Connected with Fully Ramified Sections.

Let G be a finite group and $L, K \triangleleft G$ normal subgroups. Let $\varphi \in \operatorname{Irr}(L)$ be invariant in G and fully ramified in K, that is, $\operatorname{Irr}(K | \varphi) = \{\theta\}$. Let $H \subseteq G$ be a subgroup with HK = G and $H \cap K = L$. Under additional conditions, there is a degree proportional character correspondence between $\operatorname{Irr}(G | \theta)$ and $\operatorname{Irr}(H | \varphi)$.

Using ring theoretic methods, one can give surprisingly elementary proofs of some of the results below. Let e_{φ} be the central primitive idempotent associated with φ and set $S = \mathbf{C}_{\mathbb{C}Ke_{\varphi}}(L)$. Then S is a $n \times n$ matrix ring over \mathbb{C} , where $n^2 = |K/L|$, and H/L acts on S. Every representation $\sigma : H/L \to S$ inducing the action of H/L on S defines an isomorphism $\mathbb{C}Ge_{\varphi} \simeq \mathbf{M}_n(\mathbb{C}He_{\varphi})$. If $\chi \in \operatorname{Irr}(G \mid \theta)$ and $\xi \in \operatorname{Irr}(H \mid \varphi)$ correspond under the resulting bijection, then $\chi_H = \psi \xi$, and $\xi^G = \bar{\psi}\chi$, where ψ is the character of σ .

Such a magic representation exists in the following cases:

1. |G/K| and |K/L| are coprime (trivial proof). The unique magic character of determinant 1 is even rational and nonzero everywhere, and if |G/L| is odd, $\psi - 1 = 2\beta$ for some character β of H/L. (cf. Lewis, Nonabelian fully ramified sections, Canad. J. Math. 48 (1996), no. 5, 997-1017 and Character correspondences and nilpotent fully-ramified sections, Commun. Algebra 25 (1997), no. 11, 3587-3604)

2. There is $M \triangleleft H$ with (|M/L|, |K/L|) = 1 and $\mathbf{C}_{K/L}(M) = 1$. (cf. Everett C. Dade, Characters of groups with normal extra special subgroups, Math. Z. 152 (1976), 1-31 and I. M. Isaacs, Character correspondences in solvable groups, Advances in Math. 43 (1982), 284-306)

3. K/L is abelian of odd order. Here ψ was investigated by Isaacs (Characters of solvable and symplectic groups, Amer. J. Math. 95 (1973), 594-635). Our approach significantly simplifies the proof of the existence of a canonical character correspondence. We can also easily derive some values of ψ .

Now assume that in the last situation φ is only semi-invariant in G, that is, every Gconjugate of φ is Galois conjugate to φ (over the rationals). Let f be the central primitive
idempotent of $\mathbb{Q}L$ with $\varphi(f) \neq 0$ We show that $\mathbb{Q}Gf \simeq \mathbf{M}_n(\mathbb{Q}Hf)$, provided that there is $M \subseteq G$ which induces a coprime and fixed point free action on K/L. As a consequence,
the Isaacs part of the Glauberman-Isaacs correspondence preserves Schur indices.