
Improving Instruction Set Architecture Learning Results

José M. Claver, María I. Castillo, Rafael Mayo
Dept. of Computer Science and Engineering

University Jaume I
12080 Castellón (Spain)

E-mail: {claver|castillo|mayo}@uji.es

Abstract

In this article, we put forward a new methodology
and strategy for teaching the Instruction Set
Architecture in a “Computer Organization” unit.
This unit belongs to the second year of the
undergraduate program in Computer Science at
our University. In particular, we have centered our
effort on the development of laboratory sessions,
focused on an adequate introduction of assembler
language of a general purpose processor. Our
methodology has taken into account, among other
aspects, the choosing of processor and tools, the
pace with which concepts are introduced and the
responsibility of learning. Thus, we obtain a less
traumatic approach for our students to one of the
most important subjects in the background of our
future computer engineers and scientists.
 Results obtained show students response is
positive. This effect is reflected in student’s
interest and the ease with which they are been able
to solve the exercises we set them to do. Because
of that, an improvement on learning in this subject
and this aspect is reflected in the subsequent
evaluation of students.

1. Introduction

Generally, Computer Architecture units taught in
Computer and Computer Engineering
undergraduate programs begin during the first
year, and are followed in subsequent years, with
varying intensity and depth depending
specialization. The contents of these units include
many aspects that are fundamental for the training
of future computer scientists and engineers. It is
lively that these aspects will retain their
importance in the syllabus for the next 10 to 20

years [2], since the development of applications
and their performance requirement have an
important impact on the architecture, structure and
organization of computers [9, 10, 12]. From
another point of view, we do not foresee over the
next years any important modifications to the way
computers work and are constructed. Nowadays,
in the architecture of current processors we are
using some ideas that appeared more than 30
years ago. However, we are expecting new
developments that will make possible very
different approaches to the widely used
computational models, like quantum and
molecular computing [3].
 There is a generalized consensus about the
contents that must be taught in the first computer
architecture courses [1, 2], but there are different
alternatives with respect to the kind of processors
and tools used for describing and studying how
they work [5]. In this sense, it is particularly
interesting to study processor organization,
instruction set architecture (mainly assembler
programming), memory use and input/output
control. These contents are, for this reason, the
core of first units on Computer Architecture.
Nevertheless, the high sophistication and
configuration variety of current computers means
that these must be studied in varying depth
according to the final course goals [6]. An
important complement of computer architecture
contents is the study of the technological aspects
of computer design, but we do not consider these
aspects in our article.
 As we will see in this paper, the choice of
processor and the tools used to teach this subject
are very important, but the pace of the course and
responsibility have also a decisive influence on
the learning of the concepts and techniques we
want our students to learn. These two elements

determine whether or not students can achieve the
planned goals. If care is not taken to adequately
adjust the pace of the course and encourage a
responsible attitude on the part of the students,
many of them will lose the thread of studies and
finally drop out.
 The rest of this paper is organized as follows.
In section 2, we review some more outstanding
aspects related to teaching in introductory
Computer Architecture subjects. In section 3, we
compare the experience of teaching this subject at
other Universities. In section 4, we show the more
important aspects of our teaching methodology. In
the last section, we explain the principal
conclusions derived from our experience.

2. Introductory teaching in Computer
Architecture

Introductory Computer Architecture units include,
among other digital aspects, the study of
following lecture topics:

• Processor: Structure and organization, data

path, instruction set and machine language,
assembler language and their relation to high
level languages.

• Memory: Organization and management,
instructions and data storing, and cache.

• Input/Output: Asynchronous control by status
register and exceptions, and protocols.

• Performance: Analysis and comparatives.

 These contents must be transmitted to students
both in theoretical lectures in the classroom and in
laboratory work. In this way, they can acquire the
knowledge and abilities set out in the unit
syllabus.
 The most important conceptual aspects must
be given a firm basis in theoretical lectures and
then extended and elaborated in laboratory work
where the conceptual elements are given practical
application. In this context, the pace and the order
of laboratory work must be adjusted to theoretical
lectures. Furthermore, in laboratory work students
acquire the ability to perform analysis and
synthesis. For that, it is often to enhance
assembler language study (exoarchitecture) by
using a real machine or simulator of an
architecture strongly related to the model

explained in previous theoretical lectures
(associated to endoarchitecture and
microarchitecture [7]), preferably the same.
 There is a time in the design of an academic
project in which we must adopt, among various
alternatives, an example processor and a tool to
teach this subject.

2.1. Processor

It seems clear that it is preferable to choose a real
processor rather than a hypothetical one as this
will mean that it can be used as a part of a real
device such a commercial computer or a
development system designed for laboratory. It is
impossible to do this with a hypothetical
processor. Nevertheless, real processors introduce
some special features that cannot be extended to
other processors, since its design is the result of
practical and economic considerations. These
special features can introduce, during the first
years, additional complexities in the learning
process. Furthermore, the perspective acquired by
students may be not adjusted to more extended
processor architecture. So, it is important to
choose an suitable processor.
 On the other hand, hypothetical processors
can be better adapted to academic needs at each
moment, in function of student knowledge level.
Thus, it is easier for them to assimilate and apply
the concepts and techniques involved. These
processors are often designed by choosing
different abstraction levels of some more extended
general-purpose processors.

2.2. Tools

The tool chosen to teach this subject may be a
commercial computer, a development system, or a
simulator. A commercial computer can be directly
used if a real processor is chosen. In this case, the
assembler and software development used must be
adapted to the characteristics of a particular
processor, as well as its possibilities and
restrictions. In this situation, processor analysis is
indirect and limited by the organization of a
particular machine (memory, cache, bus, etc.).
 When a simulator is used, it can be designed
for a real or hypothetical processor (original or as
abstraction of a real processor). Simulators of
hypothetical processors could be better adapted to

the needs of a particular unit. Furthermore,
complexity can be increased in subsequent
courses by extending and modifying initial
abstractions. Thus, it is possible to introduce more
advanced concepts one at a time without students
needing to learn about new tools or assembler
languages.
 In both the above cases, it is possible to use
computer resources (directly or no), although
these resources are always more limited if we use
simulators.

3. Experience in other Universities

In recent years, teaching experience on
introductory computer architecture subjects has
featured by following characteristics:

• Choose, for the first year, a simple

hypothetical processor instead of a real 8 bit
processor (i8085, Z80, MC6800, R6500, etc.).
The main goal is to reduce the gap between
student knowledge and introductory concepts
in the first years of computer architecture.

• In the second year, it is typical to opt for one
of the well-known real 16 bit CISC processors
produced in the 80’s (Intel i8086, Motorola
MC68000, etc.). In some cases, a 32 bit RISC
processor is selected (MIPS R2000, ARM,
MC88010, etc.), in order to reach a better
approach to the complexity of current
commercial processors [5].

• Simulators, alone or combined with
development systems and market processors,
are used to show the relationship between
assembly/machine languages and architecture,
to appreciate the challenge of producing
efficient and correct programs, and to develop
applications with real hardware.

4. Our proposal

In the first year of our Computer Science program,
the “Introduction to Computers” unit presents
elementary concepts about how computers work,
and the basic switching logic. In the second year,
“Computer Organization” course presents a more
detailed study of computer architecture and
organization. Important parts of this unit are the

instruction set architecture and the assembler
programming.
 Until last year, the processor we were using
(since 1992) to teach “Computer Organization”
was the Motorola MC68000, one of the most
elegant exponents of CISC architecture. There are
a lot of reasons why MC68000 is the most used
processor to teach Computer Architecture (its
streamlined architecture combined a powerful
instruction set with moderately easy-to-learn
assembly language). Nevertheless, its architecture
is far from the seminal processors of current
superscalar architectures.
 In laboratory classes, students used a
MC68000 based development system with a
tedious environment which cannot be used outside
laboratory. Each laboratory session was organized
as follows: it began with a lecture by the teacher,
in which many new concepts were presented and
the goal of each session was fixed. These goals
were well specified, but very ambitious, and close
attention by students was required. Furthermore,
before students began to work, they need a
meticulous study of its paper description, in which
was included an abstract of the principal concepts
explained by teacher. These two tasks take up the
greater part of the laboratory sessions. Because of
this, students had little time to develop the
proposed exercises.
 Laboratory sessions were designed in
increasing order of complexity, as students were
to analyse and design assembler programs, of
variable complexity, from the first session. These
programs included data declaration, different
kinds of instructions, and a great variety of
addressing modes. This situation is habitual in the
assembler language teaching of analyzed
universities.
 All the above circumstances encourage us to
plan an alternative in order to make it easier and
more comfortable for our students to reach the
goals we set them in these laboratory sessions. We
base this change on the following initial goals:
1. Simple processor architecture.
2. Abstraction of a more advanced real

processor.
3. Simulator easy to use.
4. Laboratory work can be continued at home.
5. Self-learning.
6. No need to attend with fixed timetable.

7. Personalized rate of learning (asynchronous
learning)

In order to obtain the two first conditions we
opted for a non-segmented abstraction of the
MIPS R2000 processor, which has easier structure
and is easier to program than a real R2000
processor [12]. This is a RISC processor;
therefore, it has a simple instruction set and
reduced addressing modes. Furthermore, in more
advanced units we can use the same or similar
processor (as the hypothetical, but realistic, DLX
processor), without current abstractions [8, 10].
 Conditions 3 and 4 are obtained by using the
SPIM simulator. Concretely its graphic version
called XSPIM, developed by James R. Larus from
the Wisconsin University, which works under
Linux and DOS/Windows operating systems [11].
This is an integrated simulator, where all
information about processor and memory can be
shown, and it is easy to use. The latest version
(from the 6.3) of this simulator can show original
R2000 programming difficulties, activating
delayed load and delayed branch functionalities.
Furthermore, as this simulator is a freeware
software and multiplatform, students can use it at
home.

Simulator

Data in memory

Load/Store

Arithmetic-Logic

Conditionals/Loops

Stack/Subroutines

Input/Output

Exceptions

Figure 1. Contents of corresponding laboratory sessions.

 The last three conditions are reached thanks to
the planning and development of an adequate
laboratory textbook. Each part of this textbook is
associated with one or several laboratory sessions
and is self-contained. In each chapter new
concepts are presented, the more advanced the
unit, the more complex they become and it is
supposed that only previous session concepts are

known. Figure 1 shows a concentric vision of
contents corresponding to laboratory sessions.
 We have taken special care with students
learning rate when designing the contents of each
session. We don’t forget the maxim that says: first
analyze and after synthesize. For that reason, all
sessions begin with a little introduction and
several example programs that students must
analyze and understand the behavior of. In the
following step, we propose some changes to
previous example programs that students must
analyze at another time. Thus, students increase
their participation and make some simple guided
synthesis. Finally, synthesis problems, such as
short development projects, are proposed in order
to test the correct understanding of the techniques
and concepts introduced. In the next
chapter/session, students begin with other
example programs that they must analyze, and
follow the same steps again. These steps are
shown in Figure 2.

example

analysis

modification

synthesis

Enforcement
Advance

Figure 2. Learning flow of laboratory sessions.

 Thus, laboratory work is structured as a
consecutive set of questions which require from
students: to analyze an example of assembler
program, to modify them, and complete a design
based on the concepts and techniques they have
learned (see Figure 3 for an example of this
structure work). A textbook containing laboratory
work is also electronically obtainable from the
unit website [4].
 When students have doubts about some
concept or technique, they only have to review
earlier sessions. Thus, there is no need for a
teacher to be near the student at all times, and

students work, systematically, solving questions
and learning actively, because there is no
obligatory attendance at laboratory sessions.
Logically, students work at their own learning
pace. Students needing more time on a particular
session know that they have to work outside
laboratory programmed sessions, either in free
time access or at home, to finish all laboratory
sessions. Only in this way, do students have any
guarantee of passing the evaluation of assembler
programming. 0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10
Results

N
º o

f s
tu

de
nt

s

Assembler 98/99
Assembler 99/00
Assembler 00/01
Tendency 99/00
Tendency 00/01

Example Made a file with the following code:

 …
Description:
 …

Analysis Question 1. What code does …? ¿What is
the value of...?
Question 2. Show which instructions
do...?
Question 3. If datum ... has a 5 what
happens...?

Modification Question 4. Modify the code to

Synthesis Question 5. Implement a program

Figure 4. Histogram of the last three years assembler
evaluation results.

5. Concluding Remarks

Our new methodology for the laboratory has
shown that it is good to choose an RISC processor
abstraction and a simulator for introductory
computer architecture units. Although, it is also
important that students follow their own pace and
are actively responsible in this process.
Sometimes it does not happen because students
don’t know how to do it. Our textbook [4] is an
auxiliary tool to guide them in this way.
Furthermore, in this new laboratory methodology,
students advance more quickly, and see more
contents in this unit, as input/output control and
treatment of exceptions.

Figure 3. General structure of laboratory work.

 Since simulator use is not an end goal of this
laboratory, students don’t have to show their
ability to use it in the evaluation tests. Otherwise,
in the laboratory they analyze, modify and design
little programs by using concepts and techniques
shown in theoretical lectures, and these subjects
are the core of evaluation tests.

 This methodology, as well as our textbook,
has been adopted as a guide to other computer
science programs at our University and at other
Spanish universities. Evaluation results show that
this is a good methodology improving instruction
set architecture and assembler programming
learning.

 Figure 4 shows the number of students who
have passed (results great than or equal to 5) and
the overall of results obtained at course 00/01, in
which the new methodology is introduced, have
increased respect to early years (98/99 and 99/00).
Tendency lines of last two years highlight this
behaviour.

References
 The number of students attending exams rose

20%, as dropouts are reduced (these are greater in
the first year this unit is coursed). However, these
are very poor test results (between 0 and 3), which
constitute at least 16% of students presented.
However, this percentage is less than 23%
compared to the course 99/00.

[1] ACM/IEEE-CS Joint Curriculum Task Force.
Computing Curricula 1991.
http://computer.or/education/cc1991.
[2] ACM/IEEE-CS Joint Curriculum Task Force.
Computing Curricula 2001.
http://computer.or/education/cc2001.
[3] A. Barenco, A. Ekert, A. Sanpera, C.
Machiavello. Un saut d’échelle pour les

http://computer.or/education/cc1991
http://computer.or/education/cc2001

calculateurs. La Recherche, Nov 1996,
http://www.qubit.org/intros/comp/comp.html.
[4] M.I. Castillo, J.M. Claver. Prácticas guiadas
para el Ensamblador del MIPS R2000 (in
spanish). Dep. of Computer Science and
Engineering. University Jaume I Editions. 2001,
http://yan.act.uji.es/E38.
[5] A. Clements. Selecting a Processor for
Teaching Computer Architecture.
Microprocessors and Microsystems, may 1999.
[6] A. Clements. The Undergraduate Curriculum
in Computer Architecture. IEEE Micro, pp. 13-22,
may - june 2000.
[7] S. Dasgupta. Computer Architecture - A
Modern Synthesis. John Wiley & Sons, 1989.

[8] E. Farquhar, P.J. Bunce. The MIPS Progra-
mmer’s Handbook. Morgan Kaufmann, 1993.
[9] J.P. Hayes. Computer Architecture and
Organization. McGraw-Hill, 1998.
[10] J.L. Hennessy, D.A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, 3th edition, 2003.
[11] J.R. Larus. MIPS. A R2000/3000 Simulator.
University of Wisconsin,
http://www.cs.wisc.edu/~larus/spim.html.
[12] D.A. Patterson, J.L. Hennessy. Computer
Organization and Design. The Hardware/
Software Interface. Morgan Kaufmann, 2nd
edition, 1997.

http://www.qubit.org/intros/comp/comp.html
http://yan.act.uji.es/E38
http://www.cs.wisc.edu/~larus/spim.html

