
A New Hardware Efficient Link Scheduling

Algorithm to Guarantee QoS on Clusters ?

J.M. Claver1, M.C. Carrión2, M. Canseco1, M.B. Caminero2, and F.J. Quiles2

1 Dept. of Computer Science and Engineering. E.S.T.C.E.
Univ. Jaume I, 12071 - Castellón, SPAIN.

{claver,canseco}@icc.uji.es
2 Dept. of Computer Science, Escuela Politécnica Superior.

Univ. de Castilla-La Mancha, 02071 - Albacete, SPAIN.
{carmen,blanca}@info-ab.uclm.es

Abstract. Contemporary router/switch technology for high-performance
local/system area networks (LANs/SANs) should provide the capacity
to fit the high bandwidth and timing requirements demanded by current
applications. The MultiMedia Router (MMR) aims at offering hardware-
based QoS support within a compact interconnection component. One
of the key elements in the MMR architecture is the link scheduling algo-
rithm. This algorithm must solve conflicts among data flows that share an
input physical link. Required solutions are motivated by chances for par-
allelization and pipelining, while providing the necessary support both to
multimedia flows and to best-effort traffic. In this work, a cost-aware link
scheduling based on the temperature coding of priority value associated
to every head flit is studied.

1 Introduction

Current applications include not only best-effort traffic such as ftp or e-mail but
also multimedia QoS-aware applications. Numerous examples can be highlighted
from web-based applications, streaming media, visualization, interactive simula-
tions, virtual meeting and collaborative design environments.Clusters are being
commonly used as back-end servers for these applications, so some QoS support
is needed within the underlying interconnection network.

Router/switch technologies developed for high-speed multiprocessor inter-
connection networks or LAN/SANs were optimized for providing low latency to
best-effort traffic. Available commercial SAN/LAN fabrics such as IBM SP2 [1],
Myrinet2000 [2], or Quadrics [3] are not designed to permit concurrent guaran-
tees of communication performance to multiple applications. Also, commercial
Gigabit Ethernet switches with QoS support seem to be best suited to large
enterprise backbone networks, and to interfacing with MANs and WANs, rather
than to cluster environments [4]. QoS support in Ethernet switches for LAN
environments is limited to providing two or four queues with different priority
levels per port [5]. Also, while in the mid 90s several clusters where built around
ATM interconnects, nowadays high-performance clusters [6] are built around

? This research was partially supported by the CICYT Projects TIC2003-08154-C06-
04 and TIC2003-08154-C06-06



2 J.M. Claver, M.C. Carrión, M. Canseco, M.B. Caminero, and F.J. Quiles

high-performance networks such as Myrinet [2], Quadrics [3] or InfiniBand [7]
because ATM switches are too complex and slow for this environment.

The problem of providing architectural QoS support within switching ele-
ments in cluster and local area environments is still an open issue. Thus, the
MultiMedia Router3 (MMR) architecture [8] arises as a solution to provide
hardware-based QoS support within an interconnection component targeted for
use in cluster and LAN environments. The MMR organization is based on input
queues and a multiplexed crossbar internal switch.

In order to achieve high link bandwidth utilizations and to provide the QoS
needed by the applications the MMR requires efficient traffic scheduling algo-
rithms. These algorithms decide which data must be transmitted at each time,
so their behaviour will determine whether QoS guarantees are fulfilled or not.
Most of the scheduling solutions appearing in the literature for such organiza-
tion seek to maximize the link and internal switch utilization [9][10], and do not
address QoS issues. Some recent research on scheduling algorithms tries to offer
both high throughput and QoS support [11].However, these are almost theoret-
ical solutions. Compact and fast hardware implementations of these algorithms
are hardly feasible, which prevents their use in high-speed interconnection net-
works. Moreover, most scheduling solutions for input-buffered switches need to
run at speeds higher than links to provide QoS guarantees and high link uti-
lization, or lack the needed flexibility to concurrently accommodate different
connection requirements.Thus, in this paper, a new link scheduling algorithm is
presented, the Temperature-IABP (TIABP). The main features of this algorithm
are shown to provide high-throughput and QoS guarantees to the different mul-
timedia flows, according to their reservations, while being suitable for a simple
low cost hardware implementation. Preliminary performance evaluation results
and implementation on a Xilinx Virtex 2000E FPGA of a Temperature-IABP
based link scheduling are presented. Due to the complexity of this device high
level language like HandelC is used.

The rest of the paper is organized as follows. First, Section 2 outlines the main
characteristics of the Multimedia Router architecture. Then, in Sections 3 and 4
the new resource scheduling algorithm proposed for the MMR and its hardware
architecture features are explained. Extensive evaluation results follow, which
reveal the effectiveness of the proposed link scheduling algorithm. Finally, some
conclusions are given.

2 The Multimedia Router

Figure 1 depicts the general organization of the Multimedia Router. In the fol-
lowing paragraphs, the basic building components will be briefly described [8].

a) Input Buffers: To support a large number of multimedia connections, the
storage buffers at each input link are organized as a set of virtual channels. One
virtual channel is provided per connection, in order to consider the QoS of each
flow. This approach also avoids HOL-blocking [12].

3 The MultiMedia Router is devised as a link-layer interconnection element. The term
“router” is inherited from the interconnection elements used in multicomputer and
multiprocessor networks, rather than from the IP world.



Title Suppressed Due to Excessive Length 3

Switch

Routing Unit

Phit Buffers

VCM+LS

VCM+LS

VCM+LS

VCM+LS

Switch Scheduler

Ph
ys

ic
al

 I
np

ut
 L

in
ks

Ph
ys

ic
al

 O
ut

pu
t L

in
ks

M
ux

M
ux

M
ux

M
ux

M
ux

M
ux

M
ux

M
ux

Phit Buffers

VCM - Virtual Channel Memory
LS - Link Scheduler

Fig. 1. MultiMedia Router organization.

The MMR avoids losing data due to buffer overflow by using per connection
flow control at the link level. The selected scheme is credit-based flow control,as
InfiniBandSM does [7]. The flow control unit will be referred to as a flit.

b) Routing Unit: The MMR uses a hybrid switching technique: a connection-
oriented scheme (Pipelined Circuit Switching (PCS) [13]) for the multimedia
flows, and Virtual Cut-Through (VCT) [14] for best-effort messages. Then, the
routing unit computes the path to follow a flow according to the Exhaustive
Profitable Backtracking (EPB) routing algorithm [15]. On the other hand, best-
effort messages are routed according to a fully adaptive routing algorithm [16].

c) Internal Switch: Due to the large number of virtual channels, the MMR
internal switch is a multiplexed crossbar with as many ports as physical channels.
This crossbar organization implies several arbitration tasks. First, the LS module
solves conflicts at the input side selecting the virtual channel that will use the
crossbar input port in the next flit cycle. Then, the Switch Scheduler module
does a second arbitration, because several input channels might request the
same output link for the same flit cycle. These arbitration tasks are carried out
by the link and switch scheduling algorithms, respectively.

In the MMR, link bandwidth and switch port bandwidth are split into flit
cycles 4. The number of flit cycles in a round is an integer multiple K (K > 1) of
the number of virtual channels per link. The allocated flit cycles will be assigned
to the requesting connection every round.

The choice of the link and switch scheduling algorithms are critical parame-
ters for the MMR. Both scheduling algorithms must cooperate to guarantee that
the bandwidth allocated to each connection is available during data transmission.
Besides, these algorithms must be well suited to parallelization and pipelining.
In order to meet these design goals, the link and switch scheduling algorithms
proposed for the MMR are partitioned into three basic decisions: Candidate Se-
lection, Port Ordering and Arbitration. The Candidate Selection phase is carried
out by the link schedulers. Thus, it is performed in parallel for every input link.
Its purpose is to select a set of one or more virtual channels, with flits ready for
transmission, called candidates. The switch scheduler, also known as crossbar
arbitration, tackles the other two phases. They are aimed at selecting a set of
conflict-free input/output port matchings among the candidates chosen by link
schedulers.
4 A flit cycle is the time taken for a flit to be transmitted through the router and

across the physical link. Flit cycles are grouped into rounds.



4 J.M. Claver, M.C. Carrión, M. Canseco, M.B. Caminero, and F.J. Quiles

3 A Cost-effective link scheduling

The link scheduling algorithm carries out the Candidate Selection phase of the
scheduling problem, thus is, it chooses a small set of candidates per every physical
input link. Selection will be based on a biased priority schemeassociated to every
head flit. The key point in our scheme is that priorities are biased according to
the ratio between the QoS a flit is receiving and the one it should receive.

To be more precise we proposed the Inter-Arrival Biased Priority (IABP)
scheme. In this case, the priority of a flit is computed as the ratio between the
queuing delay, and the inter-arrival time (IAT) for the flits in the connection.
The effect is that the priority grows as queuing delay grows. Moreover, priority
grows faster for those flits belonging to high-bandwidth consuming connections,
that is, there are more chances that they will be forwarded sooner through the
switch.

In a first approach, looking for a more practical implementation biasing func-
tion, the Simple IABP (SIABP) algorithm has been devised. The idea is to apply
the same rationale introduced by the IABP algorithm, that is, to relate the band-
width required by the connection to the experienced queuing delay, but replacing
the division with some other less expensive operation. Equations 1 and 2 show
how the priority of the header flit is computed and updated:

Priority(0) = NumCycles (1)

Priority(t) = Priority(0) << n (2)

where NumCycles is related to the bandwidth reserved for a connection and n is
the position of the highest significant bit set to 1 in the register that holds the
queuing delay. In this way the QoS needed (represented by the initial priority
value) is also related to the QoS received by the flit (the queuing delay).

An important hardware area reduction is got by using this algorithm. Nev-
ertheless, and focusing as well on hardware reduction we propose a new link
scheduling: the Temperature IABP, TIABP. The purpose of the TIABP algo-
rithm is not only to get low area cost but also to improve some critical aspects
of the SIABP algorithm. Considering equations 1 and 2, which describes how
is computed and updated the SIABP priority, we can be aware that inversion
priority can happen. The priority of the header flit allocated in a virtual channel
increases with the time being waiting for the output port. Nevertheless, if the
header flit remains there for a long time, its priority could decrease. In partic-
ular, whether the inicial priority value is a power of two, the priority updated
can down to zero. In order to avoid priority inversion, extra hardware must be
added to control overflow by freezing the priority of a virtual channel when the
most significant bit of the register that holds the priority is equal to 1. However,
this is not a solution if priorities are not power of 2. Being aware of this problem,
the TIABP priority biasing function is computed as follows:

a) A counter stores the queuing delay of a flit and it is updated every router
cycle, in the same way as in the IABP and SIABP algorithms.

b) The initial value for the priority is (2k+1
− 1), where k is the position of

the highest significant bit set to 1 of the bandwidth required by the connection



Title Suppressed Due to Excessive Length 5

expressed as the flit cycles per scheduling round reserved to service the average
bandwidth of the connection (MSB(NumCycles)).

c) Next, the priority of the flit is computed as the product of the queu-
ing delay times the bandwidth requirements. But, in order to achieve a simpler
hardware design, and similar to SIABP, the product is replaced by shifting op-
erations. More precisely, the priority value is updated by shifting to the left its
current value (i.e., it is multiplied by 2) and by setting the less significant bit.
We should remark that the shifter operation is done each time the queuing delay
becomes greater than 1, 2, 4, . . . , 2n, i.e., every time a bit in the queuing delay
counter is set for the first time since it was reset.

The TIABP algorithm is summarized in equations 3 and 4:

Priority(0) = 2k+1 − 1, k = MSB(NumCycles) (3)

Priority(t) = (Priority(0) << n) + (2n − 1) (4)

where n is the position of the highest significant bit set to 1 in the register that
holds the queuing delay.

As in the SIABP algorithm, TIABP implementation is just reduced to a
shifter and some combinational logic. Nevertheless, using TIABP priority biasing
function, priority inversion is not possible because a priority value can not ever
decrease. If the priority of the header flit allocated in a virtual channel increases,
with the time being waiting for the output port, the maximum priority value
is 2r+1

− 1, where r is the priority register bitwidth. So, extra hardware to
control register overflow is not necessary. Moreover, when the priority is increased
on SIABP, a minimum of 2 bits change their values before overflow. By using
TIABP, a maximum of 1 bit changes its value every time the priority is increased.
This behavior has direct effects on power dissipation.

The priority temperature coding used on the TIABP also simplifies the sort-
ing stage circuitry of the link scheduler which generates the candidate vector that
is sent to the Switch Scheduler. This stage, called SORT, is a sorting bitonic net-
work, and their basic elements are comparators. By using temperature coding,
the design of this comparators are less complex.

4 FPGA Hardware Architecture

In order to implement a MMR on a single chip we have studied the design and
implementation of some of their more important modules on an FPGA based
board. As a result of this work, a more simple and lower power dissipation
circuitry has been obtained.

We have centred our effort on the design of SIABP and SORT modules, which
are the core of the Link Scheduler (LS). Thus, we have developed a new version
of LS using TIABP and TSORT (Temperature-SORT) modules.

4.1 Hardware Implementation

In order to evaluate the results of TIABP design, we have used the Celoxica
RC1000 PCI based FPGA board [17]. The RC1000 is a PCI bus plug-in card for
PC. It has one large Xilinx FPGA (in our case a Virtex 2000E, with 2 million



6 J.M. Claver, M.C. Carrión, M. Canseco, M.B. Caminero, and F.J. Quiles

equivalent gates) with four banks of memory for data processing operations and
two PCI Mezzanine Cards(PMC) for input/output with the outside world. The
Virtex 2000E is based on slices that contain two 4-bit LUTs each one.

The FPGA Virtex has been programmed using HandelC [18] and the Celoxica
DK1 environment. HandelC is a behavioral C based hardware description system
developed by Celoxica that allows Co-simulation. Parallelism of process and
synchronization are taken from the CSP model, in particular, from the Occam
language. HandelC uses standard data types with user defined bitwidths. So,
HandelC provides an efficient use of hardware resources.

The SIABP module updates the priority connection each time the queuing
delay is increased to the next power of 2, following the HandelC macro

shl0(Priority) = ((Priority <– (width(Priority) − 1)@0b0,

while the TIABP module updates the priority following the HandelC macro

shl1(Priority) = ((Priority <– (width(Priority) − 1)@0b1,

where @ is the concatenation operator. Both, SIABP and TIABP modules, up-
date Priority in 1 clock cycle.

The bitonic network of SORT and TSORT modules is builded recursively
with basic sorter blocks which sort 2 virtual channels in function of its priority.
These basic sorter blocks use a comparator, implemented as a boolean macro,
called Prio greater. For the SORT module this macro is expressed as

Prio greater(Priority1, P riority2) = (Priority1) > (Priority2),

while for the Temperature-SORT (TSORT), it is expressed as

Prio greater(Priority1, P riority2) = ((Priority1)|(Priority2)) == (Priority1).

A bitonic network needs O(log2(ncv)2ncv) modules of Prio greater and
O(1/2log2(ncv)2) clock cycles to compute a candidate vector, where ncv is the
number of virtual channels per input link.

5 Performance evaluation

This section presents the implementation results in Xilinx Virtex 2000E FPGA
and the performance evaluation of the link scheduling proposed in this paper
being used inside the MMR.

We first present preliminary scaling results expressed in terms of FPGA area
and maximum clock rate for the SIABP/TIABP and SORT/TSORT modules.
Then, the performance evaluation of the link scheduling is done by using a
discrete-event C++ simulator.

5.1 Area/Delay Results

For the purpose of this evaluation, we scaled the design of SORT/TSORT mod-
ules to handle a different number of virtual channels from 4 to 128. The bitwidth
used to represent priority of each virtual channel is 16 bits in all cases. For each
result, we report the FPGA area (in equivalent NAND gates) and maximum
clock rate provided by the Celoxica DK1 tools.

Figure 2 reports FPGA area/delay results obtained by SORT and TSORT
designs for 4, 8, 16, 32, 64, and 128 virtual channels. As the number of virtual
channels increase from 4 to 128, the area used by SORT and TSORT designs



Title Suppressed Due to Excessive Length 7

1,00E+03

1,00E+04

1,00E+05

1,00E+06

4 8 16 32 64 128

Number of Virtual Channels

A
re

a 
(in

 N
A

N
D

s)

0

50

100

150

200

250

300

350

400

C
lo

ck
 (

M
H

z)

SORT Area

TSORT Area

SORT Clock

TSORT Clock

Fig. 2. Area/Clock Rate estimation for SORT and TSORT implementation with dif-
ferent number of Virtual Channels.

increases linearly. But in all cases the TSORT implementation uses between
9% and 13% less area than SORT. Respect to the maximum clock rate, both
designs obtain similar results. Thus, maximum clock rate decrease in a logarith-
mical way when the number of virtual channels is increased. This similar delay
between both SORT and TSORT implementations is due to the fact that TSORT
in completely instantiated by the DK1 tool using FPGA LUTs, but SORT is
instantiated using LUTs (in all cases a number greater than in TSORT) and
other FPGA specific resources that accelerate the Prio greater modules used in
its design.

In the case of biased function, we have found that there is not important
differences between SIABP (without support of overflow control) and TIABP.
For an initial priority bitwidth of 12 bits, the SIABP module design utilizes 50
LUTs (53 LUTs if overflow control is included) while the TIABP module utilizes
51 LUTS. The maximum clock rate in both designs is 294 MHz.

5.2 Simulation Results

Having into account the previous results we are going to evaluate the perfor-
mance of a single 4×4 MMR, with full-duplex 1.24 Gbps 16 bit-wide links. This
gives a router cycle of 12.9ns. The number of virtual channels per input link is
128. Flits are 1024 bit long. The MMR buffers have capacity to store one flit per
virtual channel. The scheduling round size, determined by the K parameter, has
been been set to K = 16.

Constant and Variable Bit Rate traffics (CBR and VBR traffic, respectively)
have been considered in simulations. The CBR traffic model is composed of a
mix of synthetic connections with 64 Kbps, 1.54 Mbps, and 55 Mbps average
bandwidth. These are representative of several applications, such as audio, video,
and high-definition video transmission, respectively. The VBR traffic model is
based on traces obtained from real MPEG-2 video sequences. This is a typical
type of multimedia flow [19].

Traffic sources inject their flits into buffers located in the corresponding NIC
attached to every input/output port. Input workload is measured as a percentage



8 J.M. Claver, M.C. Carrión, M. Canseco, M.B. Caminero, and F.J. Quiles

of link bandwidth. Destination ports have been randomly selected using a uni-
form distribution. No statistical information is gathered until some scheduling
rounds have been completed in order to get data only when the system is stable.
Simulations have been carried out for long enough to record significant data on
applications performance. Due to space limitations, only the most significant
results are presented in this paper.

First, the TIABP scheme is compared with both the IABP and SIABP algo-
rithms. Average delay since generation for the most demanding CBR flows and
the VBR traffic are presented in Figures 3(a-c). Results show slightly difference
when load is under saturation point. Close to saturation, the TIABP algorithm
improves the other two proposals for low and medium CBR flows but, the per-
formance of the TIABP algorithm degrades for high CBR and VBR traffics.

Nevertheless, in order to know whether the multimedia flows are receiving the
requested QoS, we have depicted the distribution of flit delays and frame delays
for the CBR and VBR flows, respectively. This distribution is computed as the
percentage of flits/frame that suffered a delay lower than a set of thresholds. It
can be seen that lowest deadlines are fulfilled with the TIABP algorithm but for
all the cases the scheme obtains reasonable deadlines for all the flits. Note that
thresholds are related to the QoS needs of the connection.

From the analysis above, it can be concluded that the router with the TIABP
scheme is able to provide QoS guarantees to the multimedia flows at a lower
hardware cost than the IABP algorithm.

10

20

30

40

50

60

70

80

90

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 d
el

ay
 (

m
ic

ro
se

cs
)

Generated workload (%)

IABP
SIABP
TIABP

3

6

9

12

15

18

21

24

27

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 d
el

ay
 (

m
ic

ro
se

cs
)

Generated workload (%)

IABP
SIABP
TIABP

25

50

75

100

125

150

175

200

225

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 d
el

ay
 (

m
ic

ro
se

cs
)

Generated workload (%)

IABP
SIABP
TIABP

(a) CBR-1.54Kbps (b) CBR-55Mbps (c) VBR

0

10

20

30

40

50

60

70

80

90

100

42 168 675 2700 10800 43200

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

IAT

IABP
SIABP
TIABP

0

10

20

30

40

50

60

70

80

90

100

1.2 9.5 75.7 605.4 4843 38748

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

IAT

IABP
SIABP
TIABP 0

10

20

30

40

50

60

70

80

90

100

2.06 8.25 33 132 528 2212

N
um

be
r 

of
 fr

am
es

 (
%

)

Thresholds (milisec)

1 s

IABP
SIABP
TIABP

(d) 85% load. CBR-1.54Kbps (e) 85% load. CBR-55Mbps (f) 85% load. VBR

Fig. 3. IABP vs TIABP: Delay since generation (a)-(c) and Distribution delay(d)-(f).

For reference purposes, the performance obtained when using the practical
TIABP algorithm is compared to that achieved when introducing a couple of
classical algorithms acting as link schedulers. The algorithms chosen for this
purpose are Virtual-Clock (VC) [20] and Weighted Fair Queuing (WFQ) [21].
Like TIABP does, both VC and WFQ assign priorities to flits according to the
bandwidth requirements of the connection they belong to.



Title Suppressed Due to Excessive Length 9

The plots shown in Figures 4(a) and 4(d) correspond to the average delay
since generation obtained with the three link switch schedulers, for the CBR
connections with medium and highest requirements. While TIABP outperforms
the others algorithms for low and medium CBR flows, saturation is reached at
lower loads than using VC algorithm for the most demanding CBR flows. On the
other hand, considering the distribution delay of the algorithms, Figures 4(b)
and 4(d), we can appreciate that little differences are found between the results
obtained with VC and TIABP. Moreover, when WFQ is used a large amount
of flits (30% of the generated flits, approximately) cannot fulfil even the most
relaxed thresholds. Note that plots depict the distribution of flits delay for a
workload of 85%.

The conclusion is that when WFQ is used, the connections with the highest
bandwidth requirements cannot meet their QoS requirements, because they do
not receive their share of bandwidth. On the other hand, VC and TIABP exhibit
better behavior when operating in this way.

Last, Figures 4(c) and 4(f) show average jitter. TIABP is able to provide an
almost constant average jitter over all the workload range, below or equal the
values obtained for the other two algorithms.

10

20

30

40

50

60

70

80

90

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 d
el

ay
 (

m
ic

ro
se

cs
)

Generated workload (%)

TIABP
VC

WFQ

0

10

20

30

40

50

60

70

80

90

100

42 168 675 2700 10800 43200

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

IAT

TIABP
VC

WFQ
5

10

15

20

25

30

35

40

45

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 ji
tte

r 
(m

ic
ro

se
cs

)

Generated workload (%)

TIABP
VC

WFQ

(a) Average Delay (b) Distribution Delay (c) Jitter

3

6

9

12

15

18

21

24

27

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 d
el

ay
 (

m
ic

ro
se

cs
)

Generated workload (%)

TIABP
VC

WFQ

0

10

20

30

40

50

60

70

80

90

100

1.2 9.5 75.7 605.4 4843 38748

N
um

be
r 

of
 fl

its
 (

%
)

Thresholds (microsec)

IAT

TIABP
VC

WFQ
0.5

1

1.5

2

2.5

3

3.5

4

4.5

50 55 60 65 70 75 80 85 90 95

A
ve

ra
ge

 ji
tte

r 
(m

ic
ro

se
cs

)

Generated workload (%)

TIABP
VC

WFQ

(d) Average Delay (e) Distribution Delay (f) Jitter

Fig. 4. TIABP versus VC and WFQ: CBR 1.54Mbps (a)-(c) and CBR 55Mbps(d)-(f).

6 Conclusion

The main goal pursued by the MultiMedia Router (MMR) project is to design
a single-chip router able to efficiently handle multimedia flows and best-effort
traffic in LAN/SAN environments. In order to achieve this goal, solutions to
many difficult resource management and scheduling problems must be provided,
while keeping into account that these solutions must be simple enough to permit
effective single-chip implementation.

The link scheduling algorithm is one key element on the MMR design to
provide QoS guarantees to the multimedia flows. Thus, in this work the pro-
posed Temperature-IABP scheme is analysed. We have obtained a simplified



10 J.M. Claver, M.C. Carrión, M. Canseco, M.B. Caminero, and F.J. Quiles

link scheduling design based on the temperature coding of the priority value
associated to every head flit and used in the candidate selection phase. Thus,
TSORT design uses about 10% less FPGA area than the previous SORT design.
Then, the new TIABP link scheduling algorithm reduce the hardware cost while
is available of giving QoS guarantees to multimedia flows.

References

1. C. B. Stunkel et al., “The SP-2 high-performance switch,” IBM Syst. Jour.:
Scalable Parallel Computing, vol. 34, no. 2, 1995.

2. Myricom, Inc, Guide to Myrinet-2000 Switches and Switch Networks, August 2001.
3. F. Petrini et al., “The Quadrics network: High-performance clustering technology,”

IEEE Micro, January/February 2002.
4. R. Froom, M. Flannagan, and K. Turek, Cisco Catalyst QoS: Quality of Service

in campus networks, chapter Exploring QoS in Catalyst, Cisco Press, 2003.
5. A. Pandey and H.M. Alnuweri, “Quality of Service support over switched Eth-

ernet,” in IEEE Pacific Rim Conf. on Communications, Computers and Signal
Processing, 1999.

6. “Top 500 Supercomputer sites,” URL http://www.top500.org/, November 2003.
7. G. Pfister, High Performance Mass Storage and Parallel I/O, chapter 42: An

Introduction to the InfiniBand Architecture, IEEE Press and Wiley Press, 2001.
8. J. Duato, S. Yalamanchili, M. B. Caminero, D. Love, and F. J. Quiles, “MMR: A

high-performance multimedia router - Architecture and design trade-offs,” in Intl.
Symp. on High Performance Computer Architecture (HPCA-5), 1999.

9. Y. Tamir and H.C. Chi, “Symmetric crossbar arbiters for VLSI communication
switches,” IEEE Trans. on Parallel and Distributed Systems, vol. 4, no. 1, 1993.

10. N. McKeown, “iSLIP: A scheduling algorithm for input-queued switches,” IEEE
Trans. on Networking, vol. 7, no. 2, 1999.

11. I. Stoica and H. Zhang, “Exact emulation of an output queuing switch by a
combined input and output queuing switch,” in IEEE/IFIP Intl. Workshop on
QoS (IWQoS’98), May 1998.

12. M. J. Karol, M. G. Hluchyj, and S. P. Morgan, “Input versus output queuing on a
space division packet switch,” IEEE Trans. on Communications, December 1987.

13. P. T. Gaughan and S. Yalamanchili, “A family of fault-tolerant routing proto-
cols for direct multiprocessor networks,” IEEE Trans. on Parallel and Distributed
Systems, May 1995.

14. P. Kermani and L. Kleinrock, “Virtual Cut-Through: A new computer communi-
cation switching technique,” Computer Networks, vol. 3, 1979.

15. P. T. Gaughan and S. Yalamanchili, “Adaptive routing protocols for hypercube
interconnection networks,” IEEE Computer, May 1993.

16. F. Silla and J. Duato, “Improving the efficiency of adaptive routing in networks
with irregular topology,” in Conf. on High Performance Computing (HiPC), 1997.

17. Celoxica, RC1000 Software Reference Manual, 2001.
18. Chapell S. Sullivan, C., “Handel-C for co-processing an co-design of field program-

mable systems on chip,” in Proc. of the JCRA’02, 2002.
19. “Generic coding of moving pictures and associated audio. Rec. H.262. Draft Intl.

Standard ISO/IEC 13818-2,” 1994.
20. L. Zhang, “Virtual Clock: A new traffic control algorithm for packet switching

networks,” ACM Trans. Comp. Sys., May 1991.
21. A. Demers, S. Keshav, and S. Shenker, “Analysis and simulations of a fair queuing

algorithm,” in ACM SIGCOMM, 1989.


