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Abstract – Within the context of Tele-Laboratories for 
Education the use of the Internet as communication media 
permits any researcher/student to perform remote experiments 
in a simple and reliable manner. Moreover, this situation 
introduces many interesting issues like network protocols for 
Internet robots, the effects of variable bandwidth and time-
delays on telerobotics, etc. In this paper we present a 
comparative analysis of using several Internet transport 
protocols when performing a remote experiment within the 
UJI Industrial Telelaboratory. TCP, UDP, Trinomial and 
TEAR protocols are analyzed using the NS2 simulator. 
Conclusions show a set of characteristics the authors of this 
paper consider very important when designing an End-to-End 
Congestion Control transport protocol for Internet 
Telerobotics. These ideas are the basis for the definition of the 
SNRTP (Simple Network Robot Transport Protocol). 

Keywords: Networked Robots, Internet Congestion Control 
Protocol, Telerobotics, E-Learning, Industrial Robotics 
Telelaboratory. 

1 Introduction 

One of the multiple applications of Networked Robotics is 
enabling Internet access to expensive devices (e.g. 
industrial robots, FPGA systems, conveyor belts, etc.) 
organized as telelaboratory for education. Thus, students 
and researchers can program their own robotic 
experiments via Internet and then obtain the results 
through, for example, a simple webpage [1-3]. 

One essential part of a Telelaboratory is the 
interconnection of sensors, cameras, and robots via a 
networked system [4-6]. In the scientific literature several 
works can be found that propose different ways and 
architectures to organize task-oriented applications of 
multiple network robots [7, 8]. Some of these 
architectures are focused on Internet software frameworks 
(e.g. Web Services at the application OSI layer) and have 
been extended from previous works in single-robot 
telerobotics. 

Other works focus not only on the application protocols, 
but also at other levels of the OSI layers like transport and 
network, which enable real-time control and teleoperation 
of network robots over IP. In fact, as explained in [9, 10], 
solutions can be found to cope with the problems 
associated to the Internet in order to control networked 

robots: (1) time-varying transmission delay, and (2) not-
guaranteed bandwidth. 

 

Figure 1. The UJI Industrial Telelab networking 
configuration 

 

In the following paper we will present first the network 
architecture of the UJI Industrial Telelaboratory, including 
the application layer SNRP protocol for simple HTTP 
robots interconnection. 

After that, we will focus on the transport protocols that 
enable the end-to-end congestion control in a TCP-
Friendly manner [11] for teleoperation and tele-
programming of robot arms. Simulations using TCP, 
UDP, trinomial [10], and TEAR [12] (TCP Emulation at 
Recievers) protocols are presented within the UJI 
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Industrial Telelaboratory in order to obtain some 
conclusions. Then, from this results, a set of ideas are 
presented in order to define the working in progress 
SNRTP (Simple Network Robot Transport Protocol). 

2 The UJI Industrial Telelaboratory Network 
Architecture 

In Figure 1 we can see the Network connectivity of the 
UJI Industrial Telelaboratory. In fact, in this system we 
consider that every device (i.e. industrial robot, conveyor 
belt, FPGA, etc.) is connected to the same Ethernet 
network, and they act as single Network Robots that 
communicate with each other through the SNRP web-
based protocol. This architecture offers many advantages 
like scalability and maintainability, and it introduces 
interesting issues like device synchronization, bandwidth 
and time-delays, and end-to-end congestion control. 
 
In order to make the SNRP simple to use and implement, 
it uses the HTTP protocol as basis, which give him more 
interoperability and flexibility. However, for this kind of 
situation the HTTP does not provide the following 
features: (1) Event Notification, and (2) Support for 
structured information. These two characteristics are very 
important to design the SNRP framework in the industrial 
robotics area. To accomplish this, we have incorporated 
into the SNRP protocol the REST model [13], which 
permits the implementation of state-oriented applications 
and a simple scenario to design event notification and 
structured information features. 
 

 
Figure 2. SNRP network architecture 

 

Simplicity is maybe the most important challenge of a 
network robotics architecture, due to the fact that it must 
be possible for a very broad range of devices to be part of 
it. In fact, as explained in [14], thanks to this simplicity 
we were able to implement a prototype of SNRP Network 
Camera using a FPGA. 

First of all, as we want enable the devices to be accessed 
through the internet, they should be able to manage the IP 
protocol. On top of it, the SNRP framework enables the 

device to accept TCP, and UDP connections. As explained 
in the next section, UDP and TCP are not the best 
solutions to perform remote control through the Internet, 
so the SNRP framework provides the possibility to 
transport the internet datagrams through other transport 
protocols like “trinomial”, TEAR, or SNRTP. 

 
3 Transport Protocols for Remote Control of 

Network Robots 

The basic transport protocol available in the Internet for 
implementing remote control applications are the 
following:  

(1) UDP (User Datagram Protocol) [15] that is based in 
the idea of sending a datagram from a device to another 
as fast as possible (i.e. best effort). This protocol does 
not guarantee that the information will reach the 
destination, and besides this, it does not manage any 
network congestion situation.  

(2) TCP (Transmission Control Protocol) [16]. This 
guarantees the application level that the information 
will reach de destination performing the necessary 
retransmissions. Moreover, TCP takes care of the 
network congestion and adjust the transmission 
accordingly.  

UDP is a protocol that does not maintain a connection 
with the Server side, it does not make retransmission of 
lost packets, it does not control the network congestion, 
and neither manages any confirmation of the packets that 
have reached the destination. The advantage of UDP, for 
remote control of devices via Internet is that having good 
network conditions the communication is accomplished 
without significant delays and without important 
fluctuations (i.e. delay jitter). Moreover, UDP does not 
assure that the packets have reached the destination in the 
proper order as they were sent, if fact, UDP does not 
inform if packets have even been received or not. Besides 
this, UDP does not perform any congestion control 
mechanism, which means the sending rate is not adapted 
according to the real bandwidth available. This situation 
implies that we need another protocol for controlling 
remotely devices via Internet.  

On the other hand, TCP is a very sophisticated protocol 
that establishes a virtual connection between the sender 
and the receiver. Moreover, as TCP manages the 
confirmation of packets received properly, we can assure 
that the communication will be reliable. However, when 
TCP was designed they had in mind the reliable 
communication for application like e-mails and files (ftp), 
and not controlling devices like robots. The congestion 
control mechanism and the connection establishment 
implies having big delay jitter (fluctuation), a situation 
that is not appropriate for applications such as internet 
teleoperation of a robot manipulator using a haptic device. 
In the following figure we can see the results obtained 
when controlling a robot using both, TCP and UDP.  



 
Figure 3. Delay response when controlling an industrial 

Motoman robot via Internet using UDP and TCP (i.e. On 
campus) 

The majority of current telerobotic applications using the 
Internet (e.g. telelaboratories) use TCP or UDP. For this, 
the variable time-delay and bandwidth effects are resolved 
in the application level by using intelligent sensors, 
predictive displays, and high level commands . On the 
other hand, if we really need to perform a teleoperation, 
we need to find applications that are closer to real time 
[17]. In this situation we need more specific protocols 
[18]. 

As this is a very emergent research field, in the scientific 
literature we cannot find many articles describing specific 
protocols to teleoperate networked devices (i.e. like 
robots) via Internet. On the other hand, we can find many 
protocols to design networked applications that require the 
transmissions of Multimedia content via Internet: (1) 
TFRC (TCP-Friendly Rate Control Protocol) [19], RAP 
(Rate Based Adaptation Protocol) [20], LDA (Loss-Delay 
Adjustment Protocol) [21], SIMD (Square-
Increase/Multiplicative-Decrease Protocol) [22], and RTP 
(Real Time Protocol) [23]. These protocols are not very 
convenient for telerobotics due to the fact that they use an 
intermediate buffer to compensate the delay jitter when 
receiving video and audio. In telerobotics using buffers 
implies obtaining an overall higher delay that affects 
enormously to the immediate control of robots.  

Some of the few works that specifically design protocols 
for teleoperation are the following:  

(1) Trinomial method [10]: It is a rated-based protocol, 
which means it manages the network congestion by 
adjusting the inter-packet gap (IPG) instead of the window 
size schema that uses TCP. Thus, the protocol controls the 
number of datagrams per second depending on the 
available bandwidth. The trinomial method uses UDP as 
basis. It means that the trinomial is able to adapt to the 
network congestion and available bandwidth without 
affecting very much the way the user teleoperates the 
robot. As observed in [10], the trinomial protocol provides 
a sending curve that is quite smooth and better uses the 
available bandwidth, obtaining then a very good 
efficiency compared to the UDP and TCP protocols. In the 

following section we will study some parts of the 
trinomial that we consider can be improved in order to be 
applied in the telelaboratories field. 

(2) Real-Time Network Protocol (RTNP) [24] is a very 
simple protocol that uses an identification in the 
UPD/TCP headers to inform the real-time operating 
system that the received packet has the category of “real 
time”, in order to give it the maximum priority when 
passing the packet to the application level. The RTNP 
shows that the overall time-delay between the client and 
the server depends not only on the network but also on the 
software provided by the operating system. 

(3) Interactive Real-Time Protocol (IRTP) [25] is a 
protocol that takes the advantages of both, TCP and UDP, 
to improve the response in teleoperation systems. It is a 
connection-oriented protocol that implements congestion 
control and error control. To enhance the efficiency, the 
IRTP protocol simplifies the packet header as much as 
possible, getting then a major relationship between the 
data that is sent by the application level and the control 
information. 

Moreover, in the telelaboratories context there are 
situations where the student/researcher is performing an 
experiment from home using an ordinary ADSL 
connection. This kind of asymmetric communication 
gives normally a poor upload link and a good download 
bandwidth. The TEAR protocol (TCP Emulation at 
Receivers) [12] is specifically designed to the 
transmission of multimedia streams on asymmetric 
connections. In the next section we will provide some 
simulations to compare the performance of the trinomial, 
TCP, and TEAR protocols within the telelaboratories 
context. 

4 RTT behaviour 

In this section we are going to observe the RTT behaviour 
of trinomial, TCP and TEAR protocols on a simple 
scenario where 3 computers (e.g. students) access 
information from a remote host (e.g. robot) via a router. 
 

 
Figure 4. Nodes configuration of the RTT experiment 
As seen in Figure 4, we are having the node 0 that 
represents the industrial robot of the telelaboratory. Node 
1, represents the router that gives access to every device in 
the telelaboratory. Nodes 2 and 3 represent 2 students that 
are connected to the telalaboratory, and they are 



monitoring the experiment performed by node 4. The 
Node 4 represents a student that is performing a 
teleoperation (or visual servoing) experiment on the 
industrial robot (i.e. node 0). For the simulation the traffic 
from nodes 2 and 3 is TCP based, and the traffic from 
Node 4 (i.e. the experiment) will vary from trinomial, TCP 
and TEAR. 
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Figure 5. Results of the RTT behaviour NS-2 simulation 

when Node 4 uses the Trinomial protocol 
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Figure 6. Results of the RTT behaviour NS-2 simulation 

when Node 4 uses the TCP protocol 

TEAR
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Figure 7. Results of the RTT behaviour NS-2 simulation 

when Node 4 uses the TEAR protocol 

As we can observe from figures 5, 6, and 7, the trinomial 
almost consumes the available bandwidth through the 
router, obtaining an average RTT of 74,25 milliseconds. 
Moreover, there are packets that reaches the 110 
milliseconds of RTT. The trinomial protocol sets the 
router buffers to the maximum load, which implies 
increasing the RTT average between the student and the 

robot. On the other hand, the trinomial protocol is the one 
that sends more packets per second, increasing the 
information that comes from the student to the robot and 
vice versa. 
 
The TCP protocol consumes the 80% of the available 
bandwidth, at an average RTT of 74,63 milliseconds. We 
can observe that TCP is more TCP-friendly than trinomial. 
On the other hand, as TCP performs retransmissions the 
number of received packets at Node 0 is not so significant 
than using the trinomial protocol. 
 
For the TEAR protocol, it sets the router buffers at the 
50% of the available bandwidth, at an average RTT of 67 
milliseconds. In some situations the RTT of the trinomial 
protocol goes twice the TEAR one. 
 
 Generated 

packets 
Dropped packets 
at router 

Lost 
packets 

Trinomial 11140 906 230 
TCP 9638 3 63 
TEAR 8584 4 56 
 
In summary, the TEAR has an RTT more stable and 
shorter, using less bandwidth and sending less packets 
between the student and the robot. The trinomial uses 
more bandwidth (in our simulation it reaches the 100% 
available bandwidth). It has the biggest RTT and loses 
more packets than any other. The TCP loses less packets 
than any other, but it has the highest RTT and uses 80% of 
the available bandwidth. 
 
5 Visual Servoing at home NS-2 simulation within 

the Industrial Telelaboratory 

In this section we are going to study the behaviour of the 
TCP and TEAR protocols for the transmission of the 
monitoring camera on the telelaboratory.  
 
As we can see in Figure 8, there is a student that performs 
a visual servoing experiment from home over the 
industrial telelaboratory (i.e. Node 10). At the same time, 
several students “on campus” are accessing to the 
information from the telelaboratory cameras for 
monitoring purposes. 
 
In the simulation, the student’s experiment sends a UDP 
packet to the FPGA, which returns the grasping line of the 
object at the robot scenario. It applies a control law 
following the on-hand visual servoing control until the 
grasping line is centered at the middle of the gripper. As 
shown in figures 9 and 10, the TEAR protocol is smoother 
than the TCP, which is very much appropriate for the 
monitoring camera link. 
 
However, as we can see in the figures the TEAR and the 
TCP protocols does not use the 100% of the available 
bandwidth, fact that is accomplished by the trinomial 
protocol. However, the trinomial protocol is specifically 



designed for the robot interaction and not for multimedia 
transmission. As well, as we have seen in the previous 
section, it sets the communication link to the maximum 
bandwidth (which is very convenient), but to the 
maximum time-delay too. In fact, for performing visual 
servoing experiments the time-delay must be minimized. 
 

 
Figure 8. Nodes configuration of the visual servoing 

experiment NS-2 simulations 
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Figure 9. Telelaboratory experiment using TCP for the 

monitoring Camera. 
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Figure 10. Telelaboratory experiment using TEAR for the 

monitoring Camera. 

 
6 Conclusions 

Within the telelaboratories context for education the UDP 
and TCP protocols can be improved in order to acquire 
better performance and smoothness. The trinomial 
protocol is a nice solution which uses as much bandwidth 
as possible, providing smoothness for a bilateral 
teleoperation via Internet. However, it introduces extra 
time-delay due to the fact that it sets the router buffers to 
the maximum load. As well, as seen in the RTT section, 
depending on the parameters configuration it can be not so 
TCP-Friendly like other protocols. The RTT behaviour is 
very important for some experiments like visual servoing 
and teleoperation. Please note these conclusions about the 
trinomial are extracted from the simulations done by the 
authors of this article, as they are not available via other 
alternatives. 
 
The TEAR protocol is more conservative than the 
trinomial and the TCP (i.e. it uses less bandwidth and 
RTT), in a very smooth way. However, for the 
telelaboratory context this is not sufficient, due to the fact 
that we need to set priorities for every data flow in 
advance. For example, for the visual servoing experiment, 
the FPGA and robot flows must have the minimum RTT 
and priority, and the Camera flow does not need to have 
such configuration. 
 
For that, the requirements we have for the SNRTP (Simple 
Network Robot Transport Protocol) are the following: 
 

1. Smooth Congestion Avoidance: SNRPT will 
study the smooth equilibrium between bandwidth 
and time delay for master/slave teleoperations. 
This equilibrium depends on the robot 
configuration and the specific application. 

2. Differentiated Services: Including priorities in the 
SNRTP flows will allow the bandwidth allocation 
of cameras, robot control, and sensor information 
in a differentiated manner. 
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