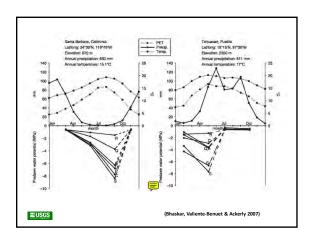
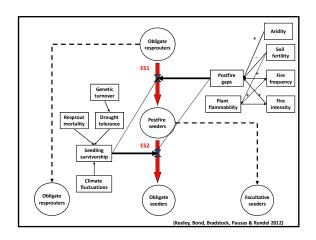
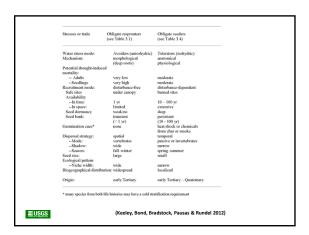

Recruitment on fire-prone landscapes

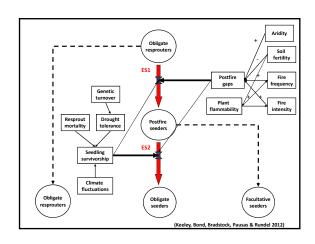

- Q1: Continuous vs delayed recruitment

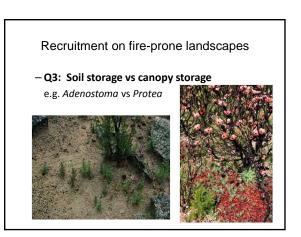

Many theories:

- Lack of postfire seeding is a reflection of pre-MTC origins, i.e., "non-adaptive ...ecological phantoms...unchanged in the face of changing ecological conditions"
- Fire-prone landscapes provide multiple selective peaks favoring both continuous and delayed reproduction



Recruitment on fire-prone landscapes


- Q2: Facultative vs obligate seeding

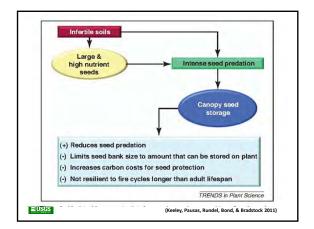

Factors selection for obligate seeding

Analogous to tradeoffs between semelparity
and iteroparity (where fire cycles ~ annual)
Charnov & Shaffer (1973) iteroparity
selected for when P/C >>1

→ Resprouting success is high and/or
→ Seedling recruitment success is low
.

■USIGN

Recruitment on fire-prone landscapes


- Q3: Soil storage vs canopy storage

Why the discrepancy in distribution of serotiny between northern and southern hemispheres?

Many theories:

- 1) Higher rainfall predictability favors serotiny
- 2) Higher surface seed predation favors serotiny

Species	Life form	Chaparral		Sage scrub		Percentage by year				
		# sites	X ± SE	# sites	X ± S.E.	1	2	3	4	5
Obligate-Seeders										
Ceanothus crassifolius		10	62,100 ± 17,800	3	1,500 ± 800	99	1	0	0	0
C. cuneatus	8	1	14,000	2	9,800 ± 9,800	97	3	0	0	0
C. greggii	8	8	$18,500 \pm 18,500$	1	1,000	100	0	0	0	0
C. megacarpus		9	55,700 ± 24,200	2	$11,000 \pm 7,000$	96	4	0	0	0
C. oliganthus		6	103,900 ± 95,500	0		100	0	0	0	0
C. tomentosus	8	2	56,300 ± 700	0	-	99	1	0	0	0
Dendromecon rigida	99	1	53,000	0	-	95	5	0	0	0
Helianthemum scoparium	su	12	$33,500 \pm 17,500$	3	109,200 ± 75,200	73	13	7	0	7
Lotus scoparius	яu	39	46,100 ± 8,400	43	77,600 ± 33,900	72	9	2	1	16
Facultative Seeders										
Adenostoma fasciculatum		31	104,500 ± 22,800	11	23,700 ± 12,700	94	3	0	0	3
Artemisia californica	98	12	$11,600 \pm 4,800$	41	$31,500 \pm 10,600$	41	42	13	1	4
Calystegia macrostegia	su	25	$49,700 \pm 12,100$	34	38,630 ± 7,200	92	5	2	0	1
Ceanothus spinosus		9	36,600 ± 25,100	1	2,000	92	3	0	0	5
Encelia farinosa	98	0		8	21,100 ± 8,500	10	19	18	0	53
Eriodictyon crassifolium										
& E. trichocalyx	99	4	3,100 ± 800	1	1,000	52	24	10	12	2
Eriophyllum confertiflorum	su	25	$168,700 \pm 42,900$	30	24,000 ± 8,500	20	33	24	10	13
≅USGS					(Keel	ey, Fotheringham & Keeley 2006)				

