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Wildfires are a natural disturbance in many ecosystems. However, their effect
on biotic interactions has been poorly studied. Fire consumes the vegetation
and the litter layer where many parasites spend part of their life cycles. We
hypothesize that wildfires reduce habitat availability for parasites with conse-
quent potential benefits for hosts. We tested this for the lizard Psammodromus
algirus and its ectoparasites in a Mediterranean ecosystem. We predicted that
lizards in recently burned areas would have lower parasite load (cleaning
effect) than those in unburned areas and that this phenomenon implies that
lizards spending their entire lives in postfire conditions experience a lower
level of parasitism than those living in unburned areas. We compared the
ectoparasite load of lizards between eight paired burned/unburned sites,
including recent (less than 1 year postfire) and older fires (2–4 years). We
found that lizards’ ectoparasites prevalence was drastically reduced in
recently burned areas. Likewise, lizards in older burned areas showed less
evidence of past parasitic infections. Fire disrupted the host–parasite inter-
action, providing the opportunity for lizards to avoid the negative effects of
ectoparasites. Our results suggest that wildfires probably fulfil a role in
controlling vector-borne diseases and pathogens, and highlight ecological
effects of wildfires that have been overlooked.
1. Background
Fire is an intrinsic and natural process in many ecosystems, and the need to
incorporate its role into the understanding of fire-prone ecosystems’ ecology
has been increasingly recognized [1,2]. The knowledge of the role of fire in
the ecology and evolution of plants is robust, with extensive breadth and
depth [1]. Whereas this understanding for animals is quickly growing [3–5],
little is known for other biodiversity components such as biotic interactions.

One of the most relevant interactions in nature is parasitism [6]. Parasites
cause adverse effects on a range of behavioural, physiological, genomic and
demographic factors of hosts [7,8]. Hosts have selected different antiparasitic strat-
egies (e.g. behavioural [9]; physiological [10]) among which the immunological
response is probably the most complex [11,12]. Nevertheless, developing an
immune response is energetically costly and it implies trade-offs with other
vital attributes [13]. Therefore, parasite prevalence is considered one of the
main factors modulating the dynamics of host populations [14] (reviewed in [15]).

In fire-prone ecosystems, fire abruptly consumes most vegetation and litter,
where many ectoparasites spend the independent terrestrial stages of their life
cycles [16,17]. Therefore, ectoparasite populations are likely to be reduced
immediately after a fire (cleaning effect). In fact, early humans and native cul-
tures have used fire for clearing the ground from parasites and diseases
[2,18], and agricultural societies use fire to reduce livestock diseases [19–21].
There are examples of livestock–parasite reduction (such as ticks and mites)
after prescribed burns [22,23]. These vertebrate parasites can in turn be vectors
for other parasites and pathogens such as Lyme disease [24] and
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hemogregarines [25,26]; thus, fire reduces the transmission of
vector-borne diseases by direct and indirect effects on vec-
tors. However, the role of fire in reducing parasites in wild
populations remains unexplored.

Fire may provide a significant parasite cleaning effect from
which hosts could benefit. This effect should be especially rel-
evant for host species with the ability to survive fires and
remain postfire living in burned areas. That is the case of
species with traits and strategies that confer some fire survival
[5,27,28] and that show limited mobility and small home
ranges; hosts with large home ranges may alternate between
burned and unburned patches and thus the potential cleaning
effect by fire may be blurred. In this study, we explore the
effect of fire on the biotic interaction of parasitism in wild con-
ditions. We selected a lizard as model system because many
lizard species survive wildfires by seeking refuge in burrows,
crevices, under rocks or among roots within the burn (e.g. bur-
rowing lizards [29–31]), and they often spend their entire lives
within a burned area due to their small home ranges [32], low
vagility and dispersal rates [33]. Specifically, we selected the
ground-dwelling Mediterranean lizard Psammodromus algirus
and its ectoparasites (mites) as a case study.

We hypothesized that wildfires reduce the habitat for ecto-
parasites, and thus lizards in postfire conditions benefit from
this clean environment by showing a lower parasite load than
those in unburned areas. To test this, we compared lizard’s para-
site load (number of ectoparasites) in recent burned (less than
1 year postfire) and in paired unburned sites. We also tested if
this cleaning effect of fire implies that lizards spending their
entire lives in postfire conditions show lower evidence of past
parasitic infections than those living in unburned areas. For
this, we compared an indicator of the cumulative parasitic infec-
tion (number of raised ventral scales), in lizards in older burned
(more than two years from fire) and in paired unburned sites.
2. Methods
(a) Study system
Psammodromus algirus is a medium-sized ground-dwelling lizard
with a lifespan of 3–5 years [34]; it is widespread in Mediterra-
nean landscapes of the Iberian Peninsula where high-intensity
fires are common. Although it is a habitat-generalist species
[35], it prefers habitats with low shrub cover [36]. Moreover,
P. algirus is often found in recently burnt areas, suggesting a
high ability to survive fire [37–39]. Dispersal ability of P. algirus
is low (less than 20 m [40]), and its home range (usually less than
100 m2 [41]) is smaller than the typical wildfires occurring in the
Mediterranean area [42,43]. Due to its relatively low mobility,
individuals of this species are appropriate candidates to benefit
from a postfire reduction of parasites as it is expected to fully
inhabit within the burned area.

In our study areas, endoparasite prevalence in P. algirus is
low, probably due to the xeric conditions of their habitat [44],
whereas ectoparasites are common. Specifically, we focused on
mites of the genus Ophionyssus (gamasid mites; Acari: Macronys-
sidae) that are ectoparasites of P. algirus [45] and act as vectors of
hemoparasites [26]. Ophionyssus species have a complex life cycle
that includes five developmental stages on both the host and the
soil [17]. The time for completion of the development of an indi-
vidual from egg to adult varies with environmental conditions,
being faster in wet and warm environments [17]. According to
morphological characteristics [46], we identified both larvae
and nymphs in our sampled lizards (electronic supplementary
material, figures S1–S3).
Ticks (Acari: Ixodidae) were also present in P. algirus, but a
preliminary analysis suggested a very low prevelance (only
approx. 2% of sampled adult lizards infected and no presence
on juveniles), and thus they were not considered in this study.

(b) Lizard sampling and parasite quantification
The study was undertaken on the east of the Iberian Peninsula,
an area that shows a typical Mediterranean climate where wild-
fires are common in summer [47,48]. Sampling locations were
dominated by shrublands (mainly Quercus coccifera, Cistus sp.
pl. Ulex parviflorus, Rhamnus alaternus, Pistacia lentiscus, Arbutus
unedo, Rosmarinus oficinalis, Juniperus oxycedurs, Chamerops humi-
lis, Brachypodium retusum), alternated with pine woodlands
(Pinus halepensis) and some evergreen oak patches (Quercus ilex).

We identified eight locations for the study, where wildfires
had occurred between 2012 and 2018 (electronic supplementary
material, table S1). The sampling was carried out between 2016
and 2018. In each of the eight locations, we sampled lizards in
the burned area and in an adjacent unburned area; both the
burned and unburned areas had similar pre-fire characteristics
(vegetation, topography). Lizards were collected by hand or
using a pole with a slip noose, always far from the edge of the
wildfire to ensure that the lizard’s home range was fully inside
or outside of the fire perimeter. All lizards were measured
(snout–vent length, SVL; ±0.01 cm) and weighed (±0.1 g). Sex
determination was carried out by observing lizards’ femoral
pores that are more conspicuous in adult males [49]; therefore,
the sex of juvenile individuals could not be determined. All indi-
viduals were released back to the location of capture.

Mites are usually found under the ventral scales and on the
dorsal scales of the tail of P. algirus (electronic supplementary
material, figure S4). Ventral scales of this species are smooth
and imbricate, but they raise up when an ectoparasite is present
[50,51] and some remain raised up even after ectoparasites
detach from the host [52] (see also electronic supplementary
material, figure S5). Successive parasitic infections increase the
number of raised ventral scales in lizards over time, so this
measurement provides an indicator of the level of parasitic infec-
tions that individuals have experienced through their lives.
Parasite load may vary due to the phenology of the parasites at
the moment of sampling [53]; therefore, while the number of
mites observed measures parasite load at the moment of sampling,
raised ventral scales are an indicator of past infection [52].

To test the cleaning effect of fire, we used three locations with
a time since fire of less than 1 year (hereafter ‘recent’ wildfires)
where we performed a direct count of mites (adults and
nymphs) on the lizards using a magnifying glass (10×). We care-
fully explored the cotton bags where lizards where kept until
processed and we added any mite found there to the parasite’s
load of the corresponding lizard. To test if as a result of the clean-
ing effect of fire, lizards in postfire conditions suffer less
cumulative parasitic infections than those living in unburned
areas, and considering the life expectancy of P. algirus (approx.
3 years [34]), we sampled lizards at five locations in which the
time since fire was 2–4 years (hereafter, ‘older’ wildfires). In
such cases, we counted the number of raised ventral scales of
the lizards in order to estimate the level of parasitism in lizards
that have spent most of their lives under postfire conditions.

(c) Statistical analyses
We calculated the body condition index (BCI) as the residuals of
the regression of body mass on SVL (log-transformed); this was
computed separately for each sex and age group [54].

Due to the large amount of zeros in parasite counts (51 and
53% for the count in recent and older wildfires, respectively),
we fitted hurdle generalized linear mixed models (GLMMs)
using the R package ‘glmmTMB’ v. 0.2.3 [55]. Hurdle models



Table 1. Results of the hurdle mixed models for (a) the number of mites for recent wildfires and (b) the number of raised ventral scales for older wildfires, of
lizards inhabiting burned and adjacent unburned areas. Note that in zero-inflation models, positive coefficients indicate lower parasitism and negative
coefficients higher parasitism. For qualitative variables (treatment, location), the squared brackets show the factor level related to the coefficient shown. Models
are displayed in figures 1a and 1b. *p < 0.05; **p < 0.01; ***p < 0.001.

parameter estimate s.e. Z p-value

(a) number of mites (<1 year postfire, n = 117)

zero-inflation model

intercept 1.579 0.731 2.160 0.031*

fire treatment [burned] 3.157 0.590 5.350 <0.001***

SVL −0.732 0.198 −3.696 <0.001***

BCI 0.256 1.164 0.220 0.826

conditional model

intercept 0.243 0.646 0.376 0.707

fire treatment [burned] −0.212 0.474 −0.448 0.654

SVL 0.171 0.122 1.394 0.163

BCI −1.064 1.209 −0.88 0.379

(b) number of raised ventral scales (2–4 year postfire, n = 241)

zero-inflation model

intercept −1.884 0.651 −2.895 0.004**

fire treatment [burned] 2.290 0.611 3.751 <0.001***

BCI 0.167 1.754 0.095 0.924

conditional model

intercept −1.379 0.487 −2.829 0.005**

fire treatment [burned] −0.374 0.183 −2.045 0.041*

SVL 0.418 0.079 5.324 <0.001***

BCI 1.031 0.598 1.725 0.084

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20211230

3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

25
 A

ug
us

t 2
02

1 
are partitioned in a binary process that allows us to analyse the
prevalence of parasites (containing zero values), and a counting
process by which we can assess the intensity of the infection
when it occurred (containing the positive counts).

To analyse the number of mites on lizards (recent fires),
we fitted a hurdle GLMM with a truncated negative binomial
(truncated_nbinom2) error distribution, where burned versus
unburned condition, sex, BCI and SVL were considered as
fixed factors and location (3 levels) was included as a random
factor. The use of a zero-truncated negative binomial regression
allowed accounting for data overdispersion.

For the analysis of the number of raised ventral scales (older
fires), we fitted a hurdle GLMM with a negative binomial
(nbinom2) error distribution, where burned versus unburned con-
dition, sex, BCI and SVL were considered as fixed factors and
location (5 levels) was included as a random factor. In both
regressions, interactions among fixed factors were also tested.

Models were constructed using maximum-likelihood esti-
mation via Template Model Builder (TMB); as implemented in
the R package ‘glmmTMB’ version 0.2.3 [55]. Model selection
was based on the lowest Akaike’s information criterion (AIC);
uniformity of residuals was checked using the DHARMa pack-
age v. 0.2.4 [56]. All statistics were implemented in R v. 3.6.1 [57].
3. Results
(a) Recent wildfires (less than 1-year postfire)
We sampled 117 lizards (32 adults, 85 juveniles) from three
recently burned areas (3, 8 and 9 months postfire; electronic
supplementary material, table S1) and their corresponding
paired unburned areas.

The number of mites in adult lizards was independent of
their sex ( p = 0.086; electronic supplementary material, table
S2), and therefore for subsequent analyses, we merged the
data from juveniles (undetermined sex) and adults.

The probability of an individual being parasitized
declined in burned compared to unburned areas (18% and
74% respectively; zero-inflated model: p < 0.001, table 1a),
such that living in unburned environments was associated
with a 4 times higher chance of carrying parasites. The prob-
ability of infection increased with lizards’ size (SVL; but the
interaction with fire condition was not significant; table 1a),
and it was independent of their body condition (BCI; zero-
inflated model: n.s., table 1a). For the parasitized lizards,
the average number of mites was similar between burned
(3.6 ± 3.6) and unburned (4.3 ± 4.5) areas (conditional
model: n.s., table 1a), although the maximum number of
mites found in burned areas was 2.3 times lower than in
unburned areas (10 in burned versus 23 in unburned areas;
figure 1a). The number of parasites was not related to
lizard SVL and BCI (conditional model: n.s., table 1a).
(b) Older wildfires (2–4 years postfire)
We sampled a total of 241 lizards (142 adults, 99 juveniles)
from 5 different locations (5 paired burned/unburned areas;
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Figure 1. (a) Lizards’ mite load in relation to lizards’ size (SVL) for recently
burned areas (less than 1 year from fire; red, lower line) and the corresponding
paired unburned (blue, upper line). Lines are predicted values (and confidence
intervals) of conditioned on the zero-inflation component (probability of mite
infection) of the hurdle mixed model. For the statistical significance, table 1a.
Raw binomial data (n = 117) are represented as short vertical lines on the hori-
zontal axes at y = 0 and 1. The data split by populations is represented in
electronic supplementary material, figure S6. (b) Number of raised scales in
relation to lizards’ size (SVL) for burned areas (older wildfires, 2–4 years; in
red, lower line) and the corresponding paired unburned (in blue, upper line).
Lines are predicted values (with confidence intervals) of the zero-inflation com-
ponent of the hurdle mixed model. Symbols are the raw data (n = 241). For the
statistical significance, table 1b. The data split by populations is represented in
electronic supplementary material, figure S7. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20211230

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

25
 A

ug
us

t 2
02

1 
electronic supplementary material, table S1) that experienced
fire 2 and 4 years ago.

The number of raised scales on adult lizards was indepen-
dent of their sex (zero-inflated model: p = 0.428; conditional
model: p = 0.985; electronic supplementary material, table
S2), thus for the subsequent analyses, we merged the data
of juveniles (undetermined sex) and adults.

Lizards living in burned environments were less likely to
show raised ventral scales (approx. 29% prevalence, zero-
inflated model: p < 0.001; table 1b), in comparison with
those lizards inhabiting unburned areas (approx. 68% preva-
lence). For the parasitized lizards, those from burned areas
showed lower number of raised ventral scales (2.7 ± 1.7)
than lizards from the adjacent unburned areas (3.4 ± 2.8;
figure 1b; conditional model: p < 0.046; table 1b). Moreover,
the maximum number of raised ventral scales found in
burned areas was 2.5 times lower than in unburned areas
(6 in burned versus 15 in unburned areas). The number of
raised scales increased with lizard’s size (SVL), but the inter-
action with fire treatment was not significant (table 1b).
4. Discussion
We studied the disruption of a negative biotic interaction,
parasitism, by the natural perturbation of wildfires. Our
results showed that fire reduces the ectoparasite load of
P. algirus (the cleaning effect), suggesting that postfire
environments provide a temporal window of opportunity
for lizards to avoid the negative effects of ectoparasites.
This finding is consistent with the decreased parasite load
in livestock after prescribed fires [58]. The reduced ectopara-
sitism is not only observed just after the fire, but expands
through the entire life of the lizards inhabiting the postfire
environment (i.e. less evidence of past parasitism). Given
that ectoparasites may induce costs to reptiles [8,59,60],
including to P. algirus [61,62], confronting a postfire scenario
with reduced parasite load is likely to be advantageous for
lizards.

Parasitism increased with lizards’ size (probability of car-
rying mites, table 1a; and raised ventral scales, table 1b). This
is because size correlates with age so older individuals had
more chances of getting infected [63]. We did not detect an
improvement of lizard’s body condition as a result of the
fire-driven parasite reduction (table 1). This is because body
condition is a poor indicator of fitness in relation to parasit-
ism [64,65], and is strongly influenced by environmental
resources (which are likely to change postfire). Parasitism
likely affects other life attributes different from body
conditions (i.e. colour ornaments [62,66]). That is, indepen-
dently of their body condition, lizards in postfire
environments should benefit from lower parasitism-related
stress.

Evidence suggest that the disruption by fire of antagon-
istic interactions can be beneficial to plants (lowering seed
predation and diseases [67,68]). Similarly, here, we provide
evidence of the disruption of a parasite–host interaction
that is likely to result in a benefit for lizards. To our knowl-
edge, this is the first evidence of a disruption of an
ectoparasite–host interaction by fire in wild populations.

The parasite reduction in the environment could be
mediated by direct mortality through the burning of veg-
etation and soil litter. This is the most plausible mechanism
considering that Ophionyssus spends part of its cycle on the
ground [17], and therefore fire-driven mortality is likely to
occur (e.g. for fire-driven mortality of a soil acari, see [69]).
By contrast, postfire changes in environmental conditions
are unlikely to explain the observed pattern; while the drier
postfire conditions may limit parasite development [70], the
increased postfire temperatures can also favour it [71].

The observed reduction of lizard ectoparasitism in burned
areas could also be mediated by changes in the spatial habitat
structure. For instance, the lower prevalence of chytrid infec-
tion in boreal toads in recently burned areas is likely due to
limitations in pathogen exposure and persistence in the new
postfire habitat [72]. The reduced postfire litter and plant
cover may limit lizards’ exposure to mites as P. algirus
actively searches for food in the litter beneath shrubs or
trees [73,74]. On the other hand, lizards probably spread
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their parasites when sharing favourable microsites, such as
shelters or suitable places for sun basking [75]. Fire, by open-
ing the vegetation, increases the number of these favourable
places [76,77], and thus reduces the lizard density in those
microsites and the transmission risk among individuals
[78]. Caution must be taken when extrapolating these struc-
tural effects on animals with very different ecology. For
example, in animals typical of understorey (closed) environ-
ments, fire diminished the availability of microsites for the
host and this led to an increase in the encounter rate, and
thus in the prevalence of infection (e.g. hantavirus in rodents
from boreal forests [79]).

The reported fire-driven changes in vector populations
presumably occur in many other fire-prone ecosystems but
remain largely unexplored. Disturbances reducing the abun-
dance of vectors would eventually limit the parasite
abundance and its persistence in the ecosystem [80]. Our
findings support the possible role of wildfires in providing
ecosystem services (sensu [18]) by controlling vector-borne
diseases (i.e. Lyme disease) and pathogens (i.e. hemogregar-
ines) in natural systems, thus reducing risk and exposure for
humans and livestock.

This study highlights an ecological role of wildfires that
has been overlooked. Understanding the role of fire in the
complex networks of interactions that characterize
biodiversity is essential to comprehend ecological and evol-
utionary processes as well as for conservation purposes in a
changing world.
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