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Appendix s1. 

Estimation of genomic relatedness with synbreed (Wimmer et al. 2012):  

Previous to relatedness estimation, missing genotypic data were imputed using the 

codeGeno command in synbreed; 804 out of 82942 genotypes were imputed for P. halepensis, 

and 570 out of 48694 in P. pinaster. 

Genomic relatedness was estimated with the function kin, using the “realizedAB” method. 

The resulting G matrix is, by definition, semi-positive definite. For the animal models, G matrices 

were forced to be positive-definite with the command make.positive.definite in package corpcor 

(Schäfer et al. 2014). This command computes the nearest positive definite symmetric matrix, 

using the algorithm by Higham (1988). This transformation implies adding very small values to 

the original relatedness estimates, e.g. the addition of a values around 3*10-13, and has a 

negligible effect on the matrix structure.  

 

 

Appendix s2. 

Estimation of heritability (h2) in MCMCglmm (Hadfield 2010); see Villemereuil (2012) and 

Wilson et al. (2010) for tutorials.  

The unweighted, inverted positive-definite matrix was then used to provide the covariance 

structure for the random ‘animal’ predictor in animal models for serotiny (input as ginverse in 

MCMCglmm). By not weighting our G matrix, we are assuming that all sampled SNPs are equally 

linked to the genetic causal variants of the studied traits. We modelled serotiny as a binary trait 

(each cone per tree is coded as open or closed) using the “ordinal” family distribution. Modelling 

serotiny at the cone level prevents complications related to using a proportion as the response 

variable. For the prior distribution of variance components we used a parameter expanded prior 

with the χ2 distribution with 1 degree of freedom, with the residual variance component fixed to 

1, as shown here for two random effects:  

 
prior <- list(R = list(V = 1, fix = 1),  

G = list(G1 = list(V = 1, nu = 1000, alpha.mu = 0, alpha.V = 1), 

G2 = list(V = 1, nu = 1000, alpha.mu = 0, alpha.V = 1))) 

 

For the estimation of h2 in binary traits, the usual priors with long tails such as the inverse-

Gamma distribution often bias the results  towards h2 = 1, while χ2 expanded priors have the 

closest cumulative distribution to a uniform distribution on heritability (Villemereuil et al. 2013).  

MCMC chains for binary models often result in high levels of autocorrelation for variance 

components, so we let MCMCglmm run for 4 million iterations with a high thinning interval of 

2000 after a burn-in of 10 000. This resulted in an effective sample size of 2 000. Posterior 

modes and means of h2 estimations were very similar to each other, as expected, and modes are 

used throughout the paper.  
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Appendix s4. 

Comparison of relatedness estimates calculated with a large SNP dataset 

For the test explained below, we used the genotypes from 1745 SNPs in Jaramillo-Correa et 

al. (2015) for Pinus pinaster, chosen from a larger Illumina Infinium assay of SNPs by Chancerel 

et al. (2013). The dataset includes randomly-chosen SNPs detected from transcriptome 

sequence data (from various tissues without prior experimental treatment). The chosen SNPs 

are expected to be neutral variants. A total of 150 trees were included in this dataset, all from 

Eslida, one of the study stands in our study.  

To test for the robustness of relatedness estimates based on 250 SNP markers (as in our 

study), we calculated the correlation between the G matrix calculated from 250 SNPs randomly 

chosen from the total 1745 SNPs and the G matrix calculated with the remaining 1481 SNPs. This 

was iterated 100 times. G matrices were estimated with synbreed as explained above, after 

removing loci with minimum allele frequency < 1% and randomly imputing missing genotypes. 

The correlations between pairs of G matrices averaged r = 0.79 ± 0.006 SD.  

 

Appendix s3.  

Regional genetic structure- STRUCTURE analysis 

Before performing the heritability estimates, we tested for population genetic structure and 

differentiation among stands within each study species using microsatellite genotypes. Because 

serotiny varies across the study area, it is essential to ensure that the study of heritability is 

performed within a genetically homogenous group of stands that are interconnected, i.e., that 

associations between phenotypes and genotypes are not determined by population structure. 

The analysis was based on nine nuclear microsatellite markers for Pinus halepensis (data in 

Budde 2014a, b) and eleven for P. pinaster (Budde et al. 2014), using the Bayesian clustering 

approach implemented in the software STRUCTURE v. 2.3.4 (Pritchard et al. 2000). This method 

attempts to assign individuals to the optimal number of K genetic clusters based on allele 

frequencies at each locus. It is not designed to deal with populations with high isolation-by-

distance, but this is likely not the case for stands of wind-pollinated Pinus species, where gene 

flow is expected to reach long distances and maintain large natural populations (De-Lucas et al. 

2009; Steinitz et al. 2011). For P. halepensis, we ran simulations including stand identifiers and 

with the LOCPRIOR option, to make sure that even weak genetic structuring could be detected. 

Simulation runs calculated the likelihood of clustering in K = 1 to 9 subpopulations (one more 

than the actual sampled stands), and were run for 2 x 105 iterations after a 1 x 104 burn-in 

period. Ten such runs were carried out for each value of K. The results were visualized with 

STRUCTURE HARVESTER (Earl & vonHoldt 2012). As shown in Fig. S1 below, the analysis showed 

no evidence for K > 1, and individuals appeared as strongly admixed. Analogous STRUCTURE 

simulations with the same results for P. pinaster stands are detailed in Budde et al. (2014). 
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Figure (appendix s4).  Results of STRUCTURE analysis for Pinus halepensis stands, based on 

nine nuclear microsatellites. A. The probabilities (LnP) for K = 2 and 3 are slightly higher than 

for K=1, but example figures in B and C show no differentiation into two or three genetic 

groups. D shows an example of the data with K=8, the actual number of stands, showing strong 

admixture.  
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Fig. S1. Histograms with pairwise relatedness estimates (e.g. the values in G matrices) for the 

three data sets analyzed. 
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Table S1. Location and characteristics of the study stands of Pinus halepensis and P. pinaster.  Habitat, crown-fire recurrence, number of sampled 

trees, geographic coordinates, mean (± SD) elevation, mean annual temperature (T), total annual precipitation (P), mean (± SD) diameter at breast 

height (DBH),  mean (± SD) percentage of serotiny,  and mean pairwise genomic relatedness for each study stand.  

 

 

 

Stand Habitat Crown-fire n Latitude Longitude Elevation  T P DBH % Serotiny 
Pairwise genomic 
relatedness 

  
recurrence trees (º) (º) (m) (°C) (mm) (cm) (± SD) mean range 

P. halepensis 
         

 -0,003 -0.409 to 0.905 

Alzira     Coastal high 39 39.12  -0.39 155 ± 13.9 16.9 512 26.5 ± 4.47 54.8 ± 17.96 0.019 -0.296 to 0.344 

Cabanes Coastal high 31 40.10   0.04 449 ± 27.6 15.2 647 29.5 ± 9.44 42.6 ± 21.98 0.089 -0.183 to 0.520 

Serra Calderona Coastal high 62 39.74  -0.48  711 ± 33.3 13.9 574 28.2 ± 7.16 52.3 ± 16.07 0.013 -0.282 to 0.905 

Eslida Coastal high 67 39.87  -0.29 508 ± 57.5 14.9 589 27.6 ± 5.47 52.7 ± 16.92 0.057 -0.340 to 0.563 

Serra d'Irta Coastal high 39 40.35   0.32 361 ± 33.1 15.7 694 25.5 ± 3.98 61.4 ± 12.09 0.048 -0.218 to 0.349 

          
   

Montan Inland low 31 40.05  -0.59 838 ± 29.2 13.3 576 27.6 ± 4.49 30.4 ± 14.88 0.027 -0.214 to 0.626 

Sinarcas Inland low 65 39.8  -1.20 912 ± 10.2 13.0 470 32.4 ± 6.33 26.9 ± 14.76 0.019 -0.276 to 0.414 

Titaguas Inland low 33 39.89  -1.13 904 ± 20.4 13.0 485 26.9 ± 3.85 25.1 ± 11.63 0.012 -0.243 to 0.383 

          
   

P. pinaster 
         

 -0.005 -0.304 to 0.884 

Serra Calderona Costal high 64 39.75  -0.50 807 ± 15.9 13.5 582 21.6 ± 3.28 57.8 ± 19.61 0.023 -0.234 to 0.720 

Eslida Costal high 66 39.88  -0.30 437 ± 18.8 15.2 580 27.1 ± 3.58 29.0 ± 14.16 0.023 -0.226 to 0.570 

          
   

Sinarcas Inland low 64 39.79  -1.20 885 ± 8.3 13.1 467 33.6 ± 4.19 21.7 ± 18.39 0.019 -0.267 to 0.884 
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Table S2. Heritability estimates (h2) for cone serotiny in Pinus halepensis and P. pinaster, along with their credible intervals (CI) and deviance 

information criterion values (DIC) for complete final models, “naïve” models with no spatial or environmental predictors (as in Table 2 in main text), 

and models where the relatedness among individuals (“id”) was removed. In this later case, h2 values cannot be estimated but DIC values are 

reported.  

 

Dataset model   h2 CI DIC 

P. halepensis, all stands full serot ~ ta + diam + rec, random= id + stand 0.10 0.073- 0.142 14211.97 

 
naïve serot ~ 1, random= id 0.25 0.193 - 0.296 14396.24 

 

no relatedness serot ~ ta + diam + rec, random= stand - - 14689.42 

      P. halepensis, coastal stands  full serot ~ ta + diam, random= id + stand 0.14 0.087 - 0.201 10577.92 

 
naïve serot ~ 1, random= id 0.19 0.146 - 0.258 10597.39 

 

no relatedness serot ~ ta + diam, random= stand - - 11097.04 

      P. pinaster, all stands  full serot ~ ta + diam + rec, random= id + stand 0.12 0.054- 0.234 6564.94 

 
naïve serot ~ 1, random= id 0.33  0.272 - 0.415 6565.15 

  no relatedness serot ~ ta + diam + rec, random= stand - - 7063.56 

serot= serotiny, coded at the cone level as a binary variable; ta= mean annual temperature, diam= tree diameter at breast 

heigh, rec=fire recurrence, id= individual identifier  (=’animal’) with covariance structure provided by their pairwise relatedness 

matrix. 


