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Abstract
The invasive grass–fire cycle is a widely documented feedback phenomenon in which 
invasive grasses increase vegetation flammability and fire frequency, resulting in fur-
ther invasion and compounded effects on fire regimes. Few studies have examined the 
role of short-term adaptation in driving the invasive grass–fire cycle, despite invasive 
species often thriving after introduction to new environments. We used a replicated 
(nine locations), paired sampling design (burn vs unburnt sites) to test the hypothesis 
that roadside burning increases genetic diversity and thus adaptive potential in the 
invasive, high-biomass grass Cenchrus ciliaris. Between four and five samples per site 
(n = 93) were genotyped using the DArTseq platform, and we filtered the data to pro-
duce panels of 15,965 neutral and 5030 non-neutral single nucleotide polymorphism 
(SNP) markers. Using fastSTRUCTURE, we detected three distinct genetic clusters 
with extremely high FST values among them (0.94–0.97) suggesting three different 
cultivars. We found high rates of asexual reproduction, possibly related to clonality or 
apomixis common in this species. At three locations, burnt and unburnt sites were ge-
netically different, but genetic structure was not consistently related to fire manage-
ment across the study region. Burning was associated with high genetic diversity and 
sexual reproduction in one genetic cluster, but with low genetic diversity and clonality 
in another. Individual SNPs were associated with longitude and genetic clustering, but 
not with recent fire management. Overall, we found limited evidence that roadside 
burning consistently increased genetic diversity and adaptive potential in C. ciliaris; 
evolutionary and breeding history more strongly shaped genetic structure. Roadside 
burning could therefore continue to be used for managing biomass in this species, 
with continued monitoring. Our study provides a framework for detecting fire-related 
changes on a genetic level–a process that could be used as an early warning system to 
detect the invasive grass–fire cycle in future.
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1  |  INTRODUC TION

In fire-prone ecosystems globally, recurrent fire has shaped plant 
regeneration and demographic strategies, leading to fire-dependent 
plant communities (Baker & Catterall, 2016; Keeley et al., 2011). 
Fire regimes—characterized by intensity, frequency, fire season and 
spatial characteristics of fire (Archibald et al., 2013; Gill, 1975)—
can be altered by introduced non-native plants when they change 
fuel properties (e.g. increased biomass) and when fire promotes 
their establishment and growth (Fusco et al., 2019; Gaertner et al., 
2014). This can result in a positive ecological feedback, whereby 
the invasion of a non-native plant increases fire frequency and/or 
intensity (Brooks et al., 2004; Rossiter et al., 2003), sometimes be-
yond the level where native vegetation can recover (Bowman et al., 
2014). This phenomenon has been particularly documented in high-
biomass grasses and is often termed the invasive ‘grass–fire cycle’ 
(D’Antonio & Vitousek, 1992).

Most research on the invasive grass–fire cycle has focussed on 
site-level changes in vegetation properties including, biomass, fuel 
connectivity, fuel moisture, plant architecture and trophic interac-
tions (Gorgone-Barbosa et al., 2015; Grigulis et al., 2005; McDonald 
& McPherson, 2013; Rossiter et al., 2003; Setterfield et al., 2013; 
St. Clair & Bishop, 2019). Invasive grasses have also been shown to 
pose a selection pressure on traits of the resident native commu-
nity (Leger & Goergen, 2017). Few studies, however, have examined 
signatures of short-term adaptation in invasive species themselves 
and whether this has a role in driving the invasive grass–fire cycle. 
This is partly because fire-adaptive traits are usually examined in the 
context of long evolutionary timescales (Keeley et al., 2011; Pausas 
et al., 2012). Any process that increases genetic diversity however—
including fire—could increase the likelihood of local adaptation, 
leading to population establishment and expansion.

Two phenomena give reason to consider the role of contempo-
rary adaptation in contributing to the invasive grass–fire cycle. First, 
it is becoming apparent that evolution of fire-adaptive traits within 
species can occur on ecological timescales (tens of generations or 
fewer, Carroll et al., 2007). For example, changes in anthropogenic 
fire regimes have been linked to increases in heat and smoke stim-
ulated germination in Calluna vulgaris (Ericaceae) (Vandvik et al., 
2014). Recent (500 years) introduction of fire by human activity has 
driven adaptation of seed shape and seed coat thickness in Helenium 
aromaticum (Asteraceae), allowing greater seed survival during fire 
(Gómez-González et al., 2011). Phenotypic (Pausas et al., 2012) and 
genetic (Moreira et al., 2014) evidence shows that Ulex parviflorus 
(Fabaceae) is more flammable under a regime of frequent fire on a 
decadal timescale, giving support to the contested hypothesis (Bond 
& Midgley, 1995; Bowman et al., 2014) that flammability is adaptive. 
Thus, there is a need to re-examine the timescales at which fire-
related traits could undergo adaptation.

The second reason why adaptative potential should be consid-
ered in understanding the invasive grass–fire cycle is the widely 
reported phenomenon of rapid adaptation in invasive species (Lee, 
2002; Prentis et al., 2008; Whitney & Gabler, 2008). Invasive species 

can overcome climatic constraints on morphological traits by rap-
idly adapting to new environments (van Boheemen et al., 2019). 
Repeated introductions and long-distance dispersal by humans can 
release invasive plant species from demographic constraints, such as 
those imposed by the colonization–competition trade-off (Catford 
et al., 2018). Thus, plants in their non-native range can overcome 
biotic and abiotic barriers because they are not always constrained 
by the same biological and climatic forces that operate in their native 
range (Smith et al., 2020). These demographic changes are often re-
flected in the species’ genetic structure (Lee, 2002; Rius & Darling, 
2014), meaning that genetic data can shed light on the potential for 
rapid adaptation in invasive plants.

Traits related to reproduction are likely to be under stronger se-
lection pressure than vegetative traits because of their direct con-
tribution to survival and fecundity, particularly in short-lived species 
(Lloret & Vilá, 2003; Villellas et al., 2021). Reproductive mode is a 
key trait related to fire regimes, and there are obligate and faculta-
tive forms of seeding and resprouting among postfire regeneration 
strategies (Pausas et al., 2004). Changes in fire regimes can alter the 
composition of reproductive modes in a landscape, which can, in 
turn, alter fire patterns (Batllori et al., 2019; Saura-Mas et al., 2010; 
Simpson et al., 2021). Within species that have both seeding and 
resprouting populations, predominantly sexual populations often 
have greater genetic diversity than resprouting populations, reflect-
ing shorter generation times and higher population turnover (Ojeda 
et al., 2016; Pausas & Keeley, 2014; Segarra-Moragues & Ojeda, 
2010; Simpson et al., 2021). In invasive plants, fire could therefore 
increase the proportion of sexually reproducing individuals, leading 
to increased population-level genetic diversity and consequently 
greater adaptive potential. Thus, adaptation of fire-related traits in 
invasive plants could augment the grass–fire cycle by increasing fire-
tolerant or fire-promoting lineages.

Adaptation to changing fire regimes is a process that could take 
several generations and multiple fires to establish. As this occurs, a 
shift in reproductive strategy, from largely clonal to largely sexual, 
might be accompanied by increased genetic diversity and increased 
adaptive potential. Detecting such a change could serve as an early 
warning system that the grass–fire cycle was developing. To deter-
mine whether we could detect, at the molecular level, fire-related 
changes in reproductive mode and genetic diversity, we studied an 
invasive, high-biomass grass, which is commonly managed with road-
side burning and has multiple reproductive modes. Cenchrus ciliaris 
is a perennial grass which became highly invasive in Australia after 
its establishment as a pasture grass in the late nineteenth century 
(Marshall et al., 2012). The species can resprout after fire (Fensham 
et al., 2013), or regenerate from seed either apomictically or sexually 
(Kumar et al., 2019). There are strong genetic differences underlying 
these reproductive modes (Yadav et al., 2019). Thus, if fire changes 
the population from predominantly clonal to predominantly sexual, 
this should be reflected in population genetic structure.

We used a replicated, paired sampling design to test the hy-
pothesis that roadside burning increases genetic diversity and thus 
adaptive potential in C. ciliaris. Specifically, we asked: (1) does fire 
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affect spatial genetic structure? (2) Does fire increase genetic diver-
sity? And (3) Does fire influence the mode of reproduction (sexual or 
apomictic)? Our overarching aim was to provide knowledge to land 
management agencies about the likelihood that fire could enhance 
the ability for C. ciliaris to tolerate or benefit from fire. Prescribed 
burning is commonly used to manage C. ciliaris biomass (Northern 
Territory Government, 2014) so understanding whether fire acts an 
adaptive pressure seems critical to ensure this management practice 
continues to reduce biomass and does not promote genetic changes 
that enhance the fire cycle.

2  |  MATERIAL AND METHODS

2.1  |  Study region and target species

This study was conducted in hummock grasslands of central 
Australia, between Hermannsburg and Alice Springs, North Territory 
(Figure 1). Dominant native grasses are Triodia species. The region 
is arid with an annual average rainfall of approximately 238  mm, 

average maximum temperatures of 36 °C in December and aver-
age minimum temperatures of 4°C in July (Bureau of Meteorology, 
2021). Traditional (pre-European) fires in grasslands of the region 
were small (100–300 ha) and spatially patchy, driven by Indigenous 
burning for land management (Bliege Bird et al., 2012). Over the past 
century, this form of management has declined, and fires are now 
larger (1000–6000  ha) and more homogenous (Bliege Bird et al., 
2012). Large fires in arid grasslands typically follow two or more 
years of above average rainfall, and the interfire interval can range 
from two years to over 20  years (Edwards et al., 2008; Wright & 
Clarke, 2007). A common contemporary practice along government-
controlled roads in the region is preventative burning, whereby pre-
scribed fire is used to reduce biomass of invasive plants and prevent 
large wildfires (Northern Territory Government, 2014).

Cenchrus ciliaris L. (Poaceae) (buffel grass) is a perennial C4 grass, 
native to Africa, India and the Middle East, which has become inva-
sive in the Americas and Australia (Marshall et al., 2012). In Australia, 
eleven official cultivars have been introduced and it has been widely 
used as a commercial pasture grass, for erosion control and for land 
rehabilitation (Marshall et al., 2012; Miller et al., 2010). The earliest 

F I G U R E  1  Cenchrus ciliaris DNA from 93 individuals was collected at nine sampling locations in central Australia. Each roadside location 
(i.e. all except location 11) consisted of a burnt site and a nearby unburnt site (lower right inset). At location 11, three sites were sampled 
where grasslands were managed by Indigenous rangers. The lower panel shows the probability of assignment of each individual plant to 
three genetic clusters identified by fastSTRUCTURE (K = 3), arranged by longitude
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account of arrival of C.  ciliaris in Australia was ‘accidental’, reput-
edly in Afghan camel saddlery, between 1870 and 1880, including 
at Wallal on the north-west coast of Western Australia (Marriott, 
1955). The species is highly invasive in central Australia and has 
negative impacts on biodiversity (Read et al., 2020; Wright et al., 
2021), including reducing the cover and diversity of native plant spe-
cies (Franks, 2002; Jackson, 2005; Marshall et al., 2012) and altering 
faunal community composition and diversity (Bonney et al., 2017; 
Smyth et al., 2009). Cenchrus ciliaris can have a persistent soil seed 
bank (2–4 years; depending on soil type), which can tolerate fire and 
germinate rapidly after erratic rain events in arid climates (Tinoco-
Ojanguren et al., 2016).

Invasion of C. ciliaris is often accompanied by increased biomass 
which has been associated with hotter and more severe fires (Butler 
& Fairfax, 2003; McDonald & McPherson, 2013; Miller et al., 2010). 
In arid central Australia, fire accelerated the negative impacts of 
C. ciliaris on native species (Schlesinger et al., 2013). Another arid-
zone study found that C. ciliaris increased the severity of fire effects 
on native species, but there was limited power to detect whether 
fire promote growth and spread of the grass itself (i.e. the feedback 
aspect was not supported) (Miller et al., 2010). A study in savannah 
woodlands found that C.  ciliaris invasion was driven by propagule 
pressure and grazing, but not fire (Fensham et al., 2013), confirm-
ing fire as an appropriate control method (Grechi et al., 2014). Thus, 
while the negative environmental impacts of C. ciliaris are clear, the 
extent to which fire enhances invasion is unresolved and probably 
depends on the environment.

2.2  |  Study design and DNA sampling

In 2018, we established eight sampling locations along Larapinta 
Drive (Figure 1) that had been recently burnt under the govern-
ment’s preventative roadside burning programme. Evidence of re-
cent fire at each location was obvious, with charcoal and scorched 
plants clearly visible on the surface. Sampling locations were sepa-
rated by a mean of 13 km (range 9–20 km). Each location consisted 
of a burnt site immediately adjacent to the road (b) and a nearby 
unburnt site (u), at least five metres from the burnt site, which was 
obviously unimpacted by the fire. No data were available on fire his-
tory, so we do not know if the burnt sites had been repeatedly burnt 
in the past, although it is possible given the frequency of roadside 
burning in the region. Our sampling regime aimed to examine the ef-
fects of in situ roadside burning which is common in central Australia 
and elsewhere (Milberg & Lamont, 1995). This approach has the 
benefit of revealing empirical effects of current management, but 
cannot separate effects of confounded roadside conditions such as 
enhanced seed dispersal from vehicles and turbulent airflow, and in-
creased water run-off and nutrient availability (Milberg & Lamont, 
1995; Milton et al., 2015).

At each site, DNA from 5 individual plants was collected, except 
at sites 1b and 6u where only four individuals were collected. In the 
following year, 2019, we sampled a ninth location, 6 km from site 1 

(location 11, Figure 1), consisting of three sites in grasslands invaded 
by C. ciliaris. This area was managed by local Indigenous rangers and 
was burnt in June 2018, a year with low rainfall and slow vegetation 
regrowth. Prior to this, rangers had not observed fire in the time 
they had been managing the land. DNA from five individual C. ciliaris 
plants was collected at each of these three sites. We included loca-
tion 11 in our descriptive analyses, but not in our formal statistical 
models given its low level of replication and different management 
regime. The total number of samples analysed for the study was 93.

2.3  |  Genotyping

Samples were genotyped at Diversity Arrays Technology P/L 
(Canberra, Australia) using double-restriction enzyme (PstI and 
HpaII) complexity reduction and high-throughput sequencing 
(DArTseq). This method was developed for crop plants and has been 
widely used on polyploid genomes to detect DNA polymorphism 
with high reproducibility (Akbari et al., 2006). It uses high-fidelity 
restriction enzymes to target low-copy fragments (~98% markers 
mapped to single location in the genome), which minimizes sequenc-
ing problems related to homology such as paralogous loci (Akbari 
et al., 2006) (we nonetheless tested for this, as described below). 
Total genomic DNA was extracted with a NucleoSpin 96 Plant II 
Core Kit (MACHEREY-NAGEL) and purified using a Zymo kit (Zymo 
Research). DNA samples were processed in digestion/ligation reac-
tions following Kilian et al. (2012) but substituting the single PstI 
adaptor for two adaptors corresponding to restriction enzyme-
specific overhangs. The PstI adaptor was modified to include 
Illumina sequencing primers and variable length barcodes following 
Elshire et al. (2011). Mixed fragments (PstI–HpaII) were amplified in 
30 rounds of PCR using the following reaction conditions: 94°C for 
1 min and then 30 cycles of 94°C for 20 s, 58°C for 30 s and 72°C 
for 45 s followed by 72°C for 7 min. After PCR, equimolar amounts 
of amplification products from each sample were bulked and applied 
to c-Bot (Illumina) bridge PCR followed by single-read sequencing on 
an Illumina Hiseq2500 for 77 cycles. Raw sequences were processed 
using DArTseq analytical pipelines (DArTdb) to split samples by bar-
code and remove poor-quality sequences. Sequences of 69 bp were 
aligned to reference genomes of three Poaceae species (Rice_RGAP_
v7, Sorghum_v8 and Switchgrass_v5) and bacteria (Bacterias_NCBI) 
with a BLAST E-value of 5 ×10−7 and a minimum sequence identity of 
90% using DArTseq proprietary software (DArTsoft). Replicate sam-
ples were processed to assess call rate (mean = 75%), reproducibility 
(mean = 99%) and polymorphic information content (mean = 29%).

2.4  |  SNP filtering and quality control

Starting with 69,799 SNPs that passed initial DArTseq quality con-
trol, we filtered the data using custom scripts developed by Smith 
et al. (2020) and modified for the current study (Figure S1). Filter 1 
removed SNPs on the same sequence, monomorphic loci and SNPs 
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with a low call rate (<50%). SNPs on the same 69-bp sequence as 
another were removed to reduce the chance of disequilibrium from 
physical linkage, keeping the one with the highest call rate (Reynes 
et al., 2021). Filter 1 was applied before all further processing steps 
and analyses. Filter 2 removed SNPs with low minimum minor allele 
frequency (<5%), low reproducibility (<95%), linkage disequilibrium 
and putatively paralogous loci (Hobs > 80%, following Reynes et al. 
(2021) for partially clonal plants). We used the correlation between 
genotype frequencies (Chan, 2018) to test for linkage disequilibrium 
between each pair of loci and removed a locus if it was in a corre-
lated pair (r > 0.75). The data comprised 20,995 SNPs after applying 
these filters (Figure S1).

2.5  |  Detecting loci under putative selection

Neutrality was an assumption underlying the population struc-
ture models we used. Thus, we investigated whether SNPs were 
putatively under selection using two individual-level methods 
(PCAdapt and LFMM). LFMM is spatially and environmentally ex-
plicit and, in addition to testing model assumptions, we also used 
this test to investigate whether specific loci were related to the 
burn status of sampled individuals. If a variation at a locus was 
strongly related to whether individuals had experienced recent 
fire, it could elucidate the genetic basis underlying fire-related ge-
netic changes at a population level (Budde et al., 2017; Moreira 
et al., 2014). We conducted these tests after applying Filters 1 and 
2 (20,995 SNPs, Figure S1). PCAdapt and LFMM both define back-
ground population structure as K principal components derived 
from individual genotypes (Duforet-Frebourg et al., 2014; Frichot 
et al., 2013). In PCAdapt, each SNP is regressed against each prin-
cipal component. LFMM uses the principal components as latent 
factors in a Gaussian mixed model, where the genotype matrix is 
modelled as a function of an environmental matrix (Frichot et al., 
2013). Compared with tests designed for site-level sampling de-
signs, PCAdapt and LFMM are more reliable for species with com-
plex, hierarchical population structure (e.g. multiple divergence 
events) and are less sensitive to admixed individuals and outliers 
in the data (de Villemereuil et al., 2014; Luu et al., 2017). We con-
sidered outliers identified in either of the two methods to be pu-
tatively under selection.

For PCAdapt and LFMM, we examined scree plots to determine 
K and assessed outliers against the first three and five components, 
respectively, that captured the majority of population structure in 
the data (Figure S2). We defined the LFMM environmental matrix 
using three environmental variables: fire category (a binomial vari-
able indicating whether the site experienced recent fire), longi-
tude (to account for the east-west nature of our sampling design, 
Figure 1) and K (1–3, indicating three genetic clusters identified with 
fastSTRUCTURE, described below). To control for the false discov-
ery rate, we calculated q values from p values and classed SNPs as 
outliers where q < 0.05. When combined with quality control filters 
our non-neutral (putatively adaptive) data set comprised 5030 SNPs 

and, after filtering these loci, our neutral dataset comprised 15,965 
SNPs (Figure S1).

2.6  |  Does fire affect spatial genetic structure?

All population structure analyses used our panel of 15,965 neutral 
SNPs (Figure S1), to comply with model assumptions about neutral-
ity and linkage equilibrium. To assess genetic relationships among in-
dividuals, we first used fastSTRUCTURE (Raj et al., 2014). This model 
determines the number of genetic clusters in the data (K) that would 
maximize Hardy–Weinberg and linkage equilibrium. We investigated 
K = 1 to K = 11 and assigned each individual to a cluster based on the 
model complexity that maximized marginal likelihood and the model 
components used to explain structure in data (Raj et al., 2014). If 
fire affected spatial genetic structure, we expected to see genetic 
differences between burnt and unburnt sites within sampling loca-
tions, consistently across the study region. Thus, we visualized the 
results along a longitudinal gradient with samples grouped by burn 
category within location. Cenchrus ciliaris has strong genetic dif-
ferences among reproductive modes, ploidy levels and accessions 
(Kharrat-Souissi et al., 2011; Yadav et al., 2019), and we anticipated 
that fire effects might only be evident at certain levels of genetic hi-
erarchy. Thus, we conducted hierarchical clustering using hclust in R 
(R Core Team, 2020) based on Euclidean distance between each pair 
of individual genotypes. To visualize the results in context of the K 
genetic clusters, we re-projected the fastSTRUCTURE results along 
the hierarchical cluster dendrogram.

To further explore genetic differences among individuals, we 
conducted principal components analysis on neutral SNPs using the 
ade4 package (Dray & Dufour, 2007). We visualized K principal com-
ponents that captured the majority of variation in the data. Finally, 
we conducted a site-level analysis of FST in which burnt and unburnt 
sites within sampling locations were treated as separate ‘popula-
tions’. We calculated FST between all pairs of sites using diveRsity 
(Keenan et al., 2013) and conducted a mantel test in ecodist (Goslee 
& Urban, 2007) to assess whether FST was related to geographic dis-
tance. We conducted this test on the whole data set and then sepa-
rately for sites within two of the three genetic clusters identified by 
fastSTRUCTURE (those with multiple sites containing four or more 
individuals: K1 = 9, K3 = 6). We also calculated FST values between 
the three genetic clusters identified by fastSTRUCTURE.

2.7  |  Does fire affect genetic diversity?

To investigate fire effects on genetic diversity, we examined site-level 
and individual-level genetic diversity and considered both neutral and 
putatively adaptive genetic diversity. Prior to analysis, we visualized 
our genetic diversity data (and data on reproductive mode, described 
below) with boxplots to summarize overall trends. Changes in neutral 
background genetic variation can reflect demographic processes such 
as admixture arising from nonrandom mating (Banks et al., 2013). On 
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the other hand, if fire had cumulative effects on functional genes in-
volved in reproduction and postfire regeneration, differences in adap-
tive genetic diversity might be apparent among sites.

We calculated site-level allelic richness in hierfstat (Goudet & 
Jombart, 2015) separately for the panels of neutral and non-neutral 
SNPs. Allelic richness was strongly correlated with expected hetero-
zygosity (Pearson’s r  >  0.97 for both data sets) but is standardized 
for sample size. We analysed the influence of fire category on allelic 
richness using linear regression in base R. Fire category was treated 
as a two-level factor: roadside burnt and roadside unburnt (excluding 
location 11 with fewer replicates and a different management regime). 
To account for background genetic structure, we assigned each indi-
vidual to one of K genetic clusters identified by fastSTRUCTURE and 
assigned site-level K as the most common K among individuals at each 
site. We then fit an interactive model between fire category and K to 
test our hypothesis that fire would influence genetic diversity, while 
allowing this response to vary among genetic clusters. The model was 
fit separately to neutral and non-neutral allelic richness data.

We calculated individual heterozygosity as the proportion of typed 
SNPs in each individual that was heterozygous, for neutral and non-
neutral markers separately. We analysed the influence of fire category 
(the two-level factor, as above) on heterozygosity using a linear mixed-
effects model in lme4 (Bates et al., 2015), with site fitted as a random 
effect to account for spatial clustering of samples within sites. To ac-
count for background genetic structure, we assigned each individual 
to one of K genetic clusters identified by fastSTRUCTURE, using the 
K with the highest probability of assignment. The fixed effects part 
of the model was formulated in the same way as for site-level allelic 
richness, with an interaction between fire category and K.

2.8  |  Does fire influence the mode of 
reproduction?

We calculated the kinship coefficient (the probability that two ran-
domly sampled alleles from two individuals are identical by descent) 
with SNPrelate (Zheng et al., 2012), using the maximum-likelihood 
estimator (Milligan, 2003). Kinship values of 0.5 and 0.25 indicate 
clones and full sibs, respectively. To investigate whether the prob-
ability of sampling asexually reproducing individuals varied across 
spatial scales, we assumed that kinship coefficients > 0.45 indicated 
clonal or apomictic individuals. We then calculated the proportion 
of pairwise kinship values in the data greater than this threshold in 
the whole data set, within locations (burnt/unburnt sites combined) 
and within sites. If fire increased rates of sexual reproduction, we 
expected to see a greater probability of sampling asexual individuals 
in the unburnt sites. Thus, we calculated the proportion of kinship 
coefficients > 0.45 at each site, as a rate of asexuality which we used 
to analyse the mode of reproduction.

To determine whether fire influenced the site-level rate of asex-
uality, we used a beta regression generalized additive model with 
a logit link function in mgcv (Wood, 2011), suitable for continuous 
proportion data. To account for background genetic structure, we 

included site-level K in the same way as for allelic richness and fit 
an interaction between fire category and K. This analysis was done 
using only neutral marker data as it relates to a demographic, rather 
than a selective, process.

In plants, FIS in partially clonal lines has lower mean values, higher 
standard deviation and negatively skewed distributions compared 
with sexually reproducing lines (Reynes et al., 2021). Thus, to fur-
ther investigate variation in clonality among the K genetic clusters 
identified by fastSTRUCTURE, we visualized the frequency distri-
bution of FIS (from hierfstat) and calculated the mean and interlocus 
standard deviation of FIS for each cluster separately (Reynes et al., 
2021). We did this using the partially filtered data (Filter 1:40,711 
SNPs) to include loci with extreme FIS that would be removed with 
following filters.

3  |  RESULTS

3.1  |  Loci under putative selection

The two analyses used to detect loci under selection identified a 
total of 5030 outlier SNPs, 5005 with PCAdapt and 34 with LFMM. 
There was little overlap between methods (nine loci common to 
both methods, Figure S2), a phenomenon commonly reported in 
other studies (e.g. DeSilva & Dodd, 2020; de Villemereuil et al., 
2014). In examining environmental associations with outlier loci, 
LFMM detected 12 SNPs related to longitude and 22 SNPs related 
to genetic structure defined by the three clusters identified by 
fastSTRUCTURE (Figure 2). There were no putatively adaptive loci 
related to fire category (i.e. whether individuals were from burnt 
or unburnt sites).

3.2  |  Does fire affect spatial genetic structure?

The number of genetic clusters among neutral C. ciliaris genotypes 
identified by fastSTRUCTURE (K) was between K = 3 (model com-
plexity maximizing marginal likelihood) and K = 4 (model components 
used to explain structure in the data). We based our interpretation 
and downstream analyses on K = 3 (Figure 1) since K = 4 revealed 
only three individuals with genetic material from a fourth cluster 
(Figure S3). At the majority of roadside locations (1, 2, 3, 5 and 10), 
samples from burnt and unburnt sites were assigned to the same 
genetic cluster (Figure 1), indicating no detectable effect of fire on 
genetic structure at these locations. At three roadside locations 
(6, 7 and 8), individuals from the burnt and unburnt sites were as-
signed to two different genetic clusters, indicating differences in 
genetic structure between fire categories. At locations 7 and 8, the 
burnt sites consisted of a genetic cluster largely distinct from all re-
maining samples. Additional genetic structure at these sites was re-
vealed in the K = 4 model (Figure S3). Outside of these burnt sites, 
only a single individual from site 1u was assigned to this cluster (clus-
ter 1, indicated in orange).
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Hierarchical clustering revealed higher-level relationships corre-
sponding largely to the three clusters identified by fastSTRUCTURE 
(Figure 3). The majority of individuals in the purple (K1) and orange 
(K2) clusters were genetically distinct, but more strongly related to 
each other than individuals from the green cluster (K3). Three in-
dividuals from sites 7b and 8b formed a distinct branch that was 
related at a higher level to the orange cluster (K2). All individuals 
except one in the orange cluster and this distinct branch were from 
burnt sites.

Both principal components analysis and FST revealed strong 
genetic structure in the data. Three principal components (PC) 
explained almost all of the variation in the data (89%) and showed 
strong differences among samples (Figure S4). Samples from 
some burnt sites separated along PC2, but these were the same 
individuals identified by fastSTRUCTURE (sites 7b and 8b) and 
there was no detectable relationship to fire history that was 
consistent among samples (Figure S4). Mean pairwise FST was 

0.498 in the overall data set (range  =  −0.278 to 0.980), 0.022 
in cluster K1 (range = −0.037 to 0.087) and 0.046 in cluster K3 
(range  =  −0.004 to 0.212). There was no relationship between 
FST and geographic distance (isolation by distance) in either 
the overall sample (Mantel r  =  −0.03, p  =  0.40, Figure S5a) or 
within clusters (K1 Mantel r = 0.04, p = 0.65; K3 Mantel r = 0.23, 
p  =  0.75) (Figure S5b,c). FST between genetic clusters was very 
high: 0.97, 0.95 and 0.94 for clusters 1:2, 1:3 and 2:3, respectively, 
suggesting three different cultivars might have spread along the 
roadsides.

3.3  |  Does fire affect genetic diversity?

Summaries of the raw data showed that, compared with the road-
side locations, location 11 had a higher site-level allelic richness and 
lower rates of clonality, but similar levels of individual heterozygosity 

F I G U R E  2  Results from LFMM outlier tests to determine loci putatively under selection. Three environmental variables were used in 
the analysis: fire category (a binomial variable indicating whether the site experienced recent fire), longitude and K (1–3, the three genetic 
clusters identified by fastSTRUCTURE). All 20,995 SNP loci used in the analysis are shown, with nonoutlying loci indicated in black. Outliers 
were related to longitude (12 loci, green points) and K (22 loci, blue points), but not to fire category

F I G U R E  3  (a) Hierarchical clustering dendrogram showing genetic distance of among 93 Cenchrus ciliaris individuals; (b) Probability 
of assignment of each individual to three genetic clusters identified by fastSTRUCTURE (K = 3). This is the same data as in Figure 1 but 
arranged along the dendrogram to visualize the relationship between the two methods
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(Figure 4). There was substantial variation in genetic diversity 
among the K genetic clusters identified by fastSTRUCTURE and 
K2 had lower levels of intercluster variation in all response variables 
(Figure 4).

There was a significant interaction between fire category and 
K for both neutral (p = 0.023) and non-neutral (p = 0.024) allelic 
richness (Table 1). Compared with unburnt sites, neutral allelic 
richness at burnt sites was lower in K1 but higher in K3 (Figure 5a). 
Only burnt sites could be modelled for K2, which had intermediate 
levels of allelic richness (Figure 5a). The results for non-neutral 
allelic richness were in the same direction and of a similar magni-
tude as for neutral allelic richness (Table 1). For both neutral and 
non-neutral individual heterozygosity, the interaction between 
fire category and K was not significant, but there was a significant 
(p  <  0.001) main effect of K (Table 1). Individual heterozygosity 
was lowest K1, highest in K3 with K2 showing similar levels to K3 
(Figure 5b).

3.4  |  Does fire influence the mode of reproduction?

The proportion of pairwise kinship values in the data >0.45 (i.e. the 
rate of asexuality) was 0.20 in the whole data set, 0.32 within loca-
tions (burnt/unburnt sites combined) and 0.46 within sites (Figure 
S6). Thus, while the rate of asexuality was high at fine spatial scales 
(within locations and sites), asexual individuals were also sampled 
across sites that were separated by several kilometres. In analysing 
the rate of asexuality within sites, there was a significant interac-
tion between fire category and K (p < 0.001) (Table 1). Compared 
with unburnt sites, the proportion of clones at burnt sites was 
higher in K1 and lower in K3, with intermediate levels shown for 
K2 (Figure 5c). All clusters had negatively skewed FIS values and 
mean (and standard deviation) values less than zero: K1 = −0.631 
(–0.746); K2 = –0.022 (–0.864); K3 = –0.123 (–0.824) (Figure S7). 
This indicates partial clonality in all clusters, a trend which was 
more pronounced in K1.

F I G U R E  4  Summary statistics as 
boxplots (median, first and third quartiles 
and outliers) for response variables used 
to quantify genetic diversity and mode 
of reproduction in Cenchrus ciliaris, using 
neutral SNPs. (a–c) Site-level allelic 
richness, (d–f) individual heterozygosity, 
(g–i) proportion of clones per site (kinship 
coefficient > 0.45) and (j–l) pairwise 
kinship coefficients. Each variable is shown 
for fire category: (roadside burnt, roadside 
unburnt and location 11) and K genetic 
clusters indicated by fastSTRUCTURE. 
Data are available online: https://zenodo.
org/recor​d/6342392
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4  |  DISCUSSION

Our replicated study of the high-biomass invasive grass Cenchrus 
ciliaris showed inconsistent effects of roadside burning on genetic 
structure, genetic diversity and the mode of reproduction. Some 
burnt sites were genetically distinct from paired unburnt sites, but 
this was not consistent across the whole study region. Burning 
was associated with high genetic diversity and sexual reproduc-
tion in one cluster, but with low genetic diversity and clonality in 
another. We found individual SNPs associated with longitude and 
genetic clustering, but not with recent fire management history. 
Thus, genetic structure appeared to be more to strongly related to 
evolutionary or breeding history than fire management. We were 
unable to quantify fire history at our study sites beyond very recent 
burning, and it is possible that too few fires had occurred to detect 
consistent fire-related changes or that the long-term fire history 
between burnt and unburnt sites were not strongly different. It 
might take repeated burning over several years for genetic changes 
to be detected.

Extremely high FST values (0.94–0. 97) among genetic clusters 
identified by fastSTRUCTURE and hierarchical clustering suggested 
three different cultivars of C. ciliaris in the data. High levels of FST 
can be driven by extremely low heterozygosity (Charlesworth, 
1998) and this was a feature of our data (mean and range expected TA
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heterozygosity across sites = 0.127, 0.008–0.370). However, at least 
10 different cultivars have been introduced into Australia on differ-
ent properties or at different times (Marshall et al., 2012) and it is 
highly likely our data represent three different cultivars. We also 
found generally high rates of asexual reproduction, possibly related 
to clonal or apomictic reproduction, which is common in this species 
(Kumar et al., 2019; Yadav et al., 2019).

We found some influences of fire management on site-level ge-
netic diversity and reproductive mode in clusters K1 and K3, but the 
direction of these effects differed among clusters. Compared with 
unburnt sites, K1 had low allelic richness and high rates of clonality 
at burnt sites, while the opposite effect was shown for K3. In both 
these cases, increased allelic richness was associated with lower 
rates of clonality, a finding consistent with other studies of C. cilia-
ris in which sexually reproducing lines had higher genetic diversity 
(Kumar et al., 2019). Theory predicts that heterozygosity will in-
crease with increasing rates of clonality (Balloux et al., 2003; Reynes 
et al., 2021) but, in our study, individual heterozygosity did not re-
flect patterns of clonality. Individual heterozygosity was generally 
highest in K3, which had variable levels of clonality (Figures 4 and 5).

There is a possibility that fire could have enhanced sexual re-
production in K3, leading to the observed higher genetic diversity 
at burnt sites. If variation in seed traits existed in the area, fire could 
reduce competition and favour individuals with traits that promote 
postfire reproduction, such as fire-tolerant seed (Liyanage & Ooi, 
2018; Moreira & Pausas, 2012). Seeds of C. ciliaris have been found 
to withstand temperatures of up to 100°C (Tinoco-Ojanguren et al., 
2016). Importantly, the variability observed in germination response 
to heat shock (Tinoco-Ojanguren et al., 2016) means fire could act as 
a selection pressure on seeds better able to withstand fire, leading 
to the dominance of a more fire-tolerant line. On the other hand, if 
there was variation in the capacity for postfire resprouting in K1, 
fire could enhance this process, leading to an overall greater level of 
clonality. This can occur when a species (or, by extension, a cultivar) 
has an evolutionary history that favoured drought tolerance with 
limited exposure to frequent or high-intensity fire that would select 
for fire-tolerant seed (Moore et al., 2019; Pausas & Keeley, 2014; 
Simpson et al., 2021). The contrasting results between the two ge-
netic clusters make it difficult to draw any firm conclusions. Future 
work on this species will benefit from quantifying trait variation in 
relation to genetic diversity and fire regimes, across a wider range of 
cultivars and geographic areas (Bragg et al., 2015).

Our analysis of fire management using fastSTRUCTURE revealed 
that some recently burnt sites were genetically distinct from paired 
unburnt sites, but this pattern was not consistent among locations 
(Figure 1). At three locations, burnt and unburnt sites were genet-
ically different and, at two of these locations (7 and 8), the burnt 
sites represented a genetic cluster distinct from the overall sample. 
This distinct genetic cluster (K2, indicated in orange) had interme-
diate levels of genetic diversity and clonality (Figures 4 and 5), so 
this genetic distinctiveness was not associated with genetic changes 
that would signal greater adaptive potential. In our study, fire was 
confounded with roadside location as burnt sites were, by design 

of the management programme, beside the road. This probably ex-
posed them to more frequent propagule movement by seed sticking 
to vehicles or being moved through turbulent airflow at roadsides 
(Lemke et al., 2019; Rauschert et al., 2017), a hypothesis which was 
supported by the lack of isolation by distance in the FST data at a 
large spatial scale (100 km), even within genetic clusters. In a differ-
ent bioregion of Australia, Fensham et al. (2013) found that propa-
gule pressure, rather than fire, had a stronger effect on invasion in 
C. ciliaris, and we cannot separate this possibility from a potential fire 
effect at this stage.

The grassland that was managed by Traditional Owners and had 
experienced a recent fire (location 11) had higher site-level genetic 
diversity than the roadside locations. Individuals from this area 
comprised two different genetic clusters, which probably led to the 
overall higher allelic richness. However, this site also appeared to 
have higher rates of outcrossing, with a lower rate of asexual re-
production and fewer clonal individuals. The different management 
regime at this site has not had profound effects on genetic structure 
as genetic clustering was not strongly distinct from the roadside 
locations.

While we did not find consistent effects of fire in our study, 
the finding of strong genetic structure within the overall sample 
highlights the importance of understanding cryptic genetic varia-
tion within invasive species (Ward et al., 2008; Wilson et al., 2009). 
Management decisions based on data from one cultivar might not 
be effective for another. If our study had been based only on data 
from K3, we might have concluded that fire would enhance sexual 
reproduction and adaptive potential. Our study shows, however, 
that we cannot draw such general conclusions. Our data also gives 
insights into the type of management appropriate for different pop-
ulations. For example, managing a population with generally high 
rates of clonality (e.g. K1) using mechanical methods such as slashing 
or burning might not be as effective as for more sexually reproduc-
ing populations. Our study was limited to only one year of sampling 
per site and, even though our sampling spanned 100 km of central 
Australia, we sampled only three of at least 10 cultivars that have 
been introduced into the country. The species has an enormous dis-
tribution in Australia, covering all mainland states (Marshall et al., 
2012). Thus, it would be beneficial to examine longer-term effects 
of fire management on genetic diversity, in more cultivars across a 
broader geographic distribution.

We found limited evidence that roadside burning consistently 
contributes to increased genetic diversity and thus adaptive po-
tential in C.  ciliaris, with evolutionary and breeding history hav-
ing a more dominant role in shaping population genetic structure. 
Roadside burning could continue to be used as a method for man-
aging biomass in Central Australia and elsewhere but monitor-
ing should continue as more generations and a longer exposure 
to burning might be required to see a change. Fire regimes are 
changing rapidly in Australia and globally (Abram et al., 2021), 
with severe negative consequences for biodiversity and ecosys-
tem function (Kelly et al., 2020). The potential for invasive spe-
cies to rapidly adapt to environmental conditions outside of their 
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native range (Smith et al., 2020) means that repeated fire could 
assist invasion in future. Our study can serve as a framework for 
detecting such changes on a genetic level—a process that could 
be used as an early warning system to detect the grass–fire cycle 
in future.
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