New Phytologist


Key words: Bird’s nest orchid (Neottia nidus-avis), Sebacina spp., myco-heterotrophy, mycorrhizal mutualism, fitness, evolution.

Letters

Does hairiness matter in Harare? Resolving controversy in global comparisons of plant trait responses to ecosystem disturbance

Land use changes and their interactions with atmospheric and climatic changes represent a major challenge to humanity. However, despite the wealth of literature about plant traits in general, such as leaf size and texture or canopy height, we still know amazingly little about the links between these traits and responses to disturbance of the ecosystem. Most of the empirical work on functional traits has focused on plant responses to resources and climate (Chapin et al., 1996; Grime et al., 1997; Cunningham et al., 1999; Fonseca et al., 2000), rather than to disturbances, such as changing resources, substrate availability or the physical environment (Picket & White, 1985). In addition, plant classifications used in large-scale models have deliberately restricted the numbers of functional types and traits used, in order to reflect broad responses to climate. What is to be done?

An important response has been through international scientific programmes, including the Global Change and Terrestrial Ecosystems (GCTE) programme of the International Geosphere-Biosphere Programme (IGBP), which have promoted work leading to the prediction of ecosystem response to these factors. Just because disturbance usually operates at spatial scales smaller than climate (Woodward & Diament, 1991) does not necessarily mean that global-scale questions about disturbance and land use cannot be addressed. Some scientists have taken up the search for plant biological traits that are associated with major disturbance and land-use factors, such as grazing, fire and agricultural land abandonment, focusing on a comparative approach at the global scale.

Three key issues are crucial in this global comparison of trait response to disturbance:

• First, the relationship between traits linked to plant responses to disturbance and those linked to plant functional effects on ecosystem properties, and the fact that some key plant traits are related both to plant responses to several disturbance types, climate, and in situ resource availability. This topic has been recently addressed in the literature (Chapin et al., 2000; Lavorel & Garnier, 2001), but its implications are still far from being fully covered.

• Second, and especially important having been a source of confusion and controversy, and poorly addressed in the recent literature, the importance of ecosystem and regional context in determining what traits to focus on.

decisive factors are the scale and types of the disturbance of are important in deciding which traits to target. Other in extent, requiring broader or finer scales of investigation. Thus the specific purpose of the study and the level of detail are important in deciding which traits to target. Other decisive factors are the scale and types of the disturbance of interest and evolutionary history and the disturbance regime in the region of study (Díaz et al., 1999; McIntyre et al., 1999). For example, trends linking plant responses to disturbance previously accepted as ‘universal’ in fact seem to depend on the regional context both in fire (Pausas, 2001) and in grazing (S. Díaz et al., unpublished) global-scale syntheses.

One reason for the disturbingly few generalities about plant traits and disturbance is that they mostly remain untested beyond the local context. In addition, many traits have been measured in local situations, but very rarely has a consistent set of traits been systematically screened in several different situations. This is necessary to allow a test of the generality of their responses to disturbance over a global range of environments. Every researcher has tended to develop their own list of traits, chosen on the basis of local data availability, ease of collection, or previous experience. The absence of an attribute, or the lack of variance of a trait, in a particular regional assemblage is important for a global comparison, but tends not to be reported in a locally focussed study. For example, a researcher may not use shrub height as a response trait in the face of a particular disturbance because it does not vary, but this fact will often not be mentioned in the published article. Similarly, a shift in the annual vs perennial proportion in the vegetation may not be explicitly reported because most species are annual. Other reasons to exclude the measurement of particular traits is that they may be inappropriate for the spatial or temporal scale of interest, or measurement may not be feasible owing to practical limitations. These issues need to be taken into consideration by researchers and editors, but they can only be accounted for if a common list of traits is widely accepted and used.

Some progress on deciding which traits to measure, and how they should be measured, has been made by McIntyre et al. (1999), Weihet al. (1999), Westoby (1998) and Hodgson et al. (1999). The need for standardisation and coordination needs to be reconciled with the fact that no universal functional type classification is likely to be useful for all purposes and all scales. Is a perfect list of traits been systematically screened in large screening programmes, as compared to leaf water content, is an excellent surrogate for resource-use strategy in northern Europe. However, Vendramini et al. (see pp. 147–157 in this issue) have argued that this trait can be misleading in floras with succulent species, and advocate for the use of specific leaf area in transregional comparisons. This is in accordance with Garnier et al. (2001a), who have proposed specific leaf area as the best indicator of resource-use strategy in large screening programmes, as compared to leaf water and nitrogen content.

The use of plant traits as indicators of land use or disturbance impacts, rather than species, is suggested as a way forward, particularly for species-rich systems such as grasslands. Well-chosen traits will enable managers to capture response to management and effects on ecosystem functions simultane- ously. However, the use of plant traits rather than species as indicators will only be useful to management if the traits are easily recognizable or measurable in the field. There is a need for regional and local managers to understand when functional traits and responses documented in other regions can be directly applied to the local context. In the past, widely accepted land-use recommendations have often been based on a few specific cases, with their broader applicability rarely being tested (Perevolotsky & Seligman, 1998; Díaz et al., 2002). We can only expand our capacity for generalization in relation to functional traits if we test them over a complete range of environments. Some traits may be found to be of generic value and will contribute to management strategies over a whole range of regions. For other regions, we need to identify key contextual issues that determine variability in functional traits. Thus the research approach advocated will enable extrapolation to management
in specific areas, only if it involves the ‘filling in’ of a broad framework that is soundly constructed.

Acknowledgements

Many of the ideas in this article stem from the GCTE Workshop ‘Plant functional types in relation to disturbance and land use: synthesis and challenges’, held in Valencia, Spain, in May 2001. The workshop was organized by J. Pausas (CEAM, Spain), S. Lavorel (CEFE-CNRS, France), S. Díaz (Universidad Nacional de Córdoba, Argentina) and S. McIntyre (CSIRO, Australia), and supported by the Dutch Global Change Change, the Spanish Ministry of Science and Technology, Ecos-Sud France-Argentina and CNRS France. The collaboration of IGME-España is also acknowledged. This is a contribution to GCTE Task 2.2.1.

Sandra Díaz∗1, Sue McIntyre2, Sandra Lavorel3 and Juli G. Pausas4

1Instituto Multidisciplinario de Biología Vegetal (Universidad Nacional de Córdoba – CONICET), Casilla de Correo 495, Velez Sarsfield 299, 5000 Córdoba, Argentina; 2CSIRO Sustainable Ecosystems, 120 Meiers Road, Indooroopilly, 4068 Queensland, Australia; 3Centre d’Ecologie Fonctionnelle et Evolutive (C.N.R.S.-U.P.R. 9056) 1919, Route de Mende, 34293 Montpellier Cedex 5, France; 4Centro de Estudios Ambientales del Mediterraneo (CEAM), Parc Tecnológico, C/C.R. Darwin 14, 46980 Paterna (València), Spain

(*Author for correspondence tel +54 3514331097; fax +54 3514332104; email sdiaz@com.uncor.edu)

References


Key words: comparative ecology, disturbance, grazing, fire, functional types, plant traits, land use.