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    Abstract      Fire regime has been affected by climate changes in the past, and is 
expected to do so in relation to the projected climate warming in the near future. For 
the Mediterranean Basin, higher  fi re risk, longer  fi re season, and more frequent 
large, severe  fi res are expected. The projected increased drought for the Mediterranean 
Basin would make ecosystems more vulnerable to  fi re, and more dif fi cult to restore 
after  fi re. Ecosystem vulnerability is assessed considering soil susceptibility to post-
 fi re erosion, and vegetation capacity to recover after  fi re. 

 In the perspective of a more severe  fi re regime and harsher climate, two main 
strategies are proposed: (1) mitigation strategies to reduce  fi re impacts; and 
(2) adaptation strategies to improve ecosystems capacity to cope with the new 
climate and  fi re regime. The focus of adaptation will be on strategies for vegetation 
management to reduce  fi re hazard, and increase ecosystem resilience, especially in 
highly vulnerable areas. 

 Restoration techniques are proposed to increase ecosystem resilience to  fi re by 
using resprouting woody species, and by increasing the diversity of species in post-
 fi re afforestation/reforestation projects. To face increased drought, several tech-
niques to improve water availability and water use ef fi ciency for introduced seedling 
are discussed. 
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 Finally, the landscape dimension of  fi re prevention and restoration is addressed 
through a spatial decision support system, including a  fi re propagation model com-
bined with an ecosystem vulnerability model in GIS format. The system allows 
assessing  fi re risk, identifying values at risk, and prioritizing  fi re prevention and 
post- fi re restoration actions.  

  Keywords   Fire regime  •  Vulnerability  •  Fire resilience  •  Plantations  •  Fire modeling      

    6.1   Climate and Fire Regime During the Last Decades 
in the Mediterranean Area 

 Fuel availability (i.e., plant biomass) and weather conditions (i.e., wind, temperature, 
air humidity and precipitation) are the drivers of wild fi res, and both are directly or 
indirectly controlled by climate (Pausas  2004 ; Krawchuk et al.  2009  ) . For instance, 
the  fi re regime of Mediterranean ecosystems is attributed to their seasonal climate, 
that is, mild temperatures and abundant rainfall in spring (which promote fuel pro-
duction) followed by high temperatures and low precipitation in summer (resulting 
in severe water de fi cit, Viegas and Viegas  1994 ; Pausas  2004  ) . At a longer temporal 
scale, changes in regional  fi re regimes have been associated to changes in climate 
through both long-term paleoecological evidence (Clark  1990  )  and correlation data 
from the twentieth century (Beer et al.  1988 ; Piñol et al.  1998 ; Westerling et al. 
 2006  ) . However, neither the direct link nor the interactions between  fi re regime and 
climate are well understood because of the complexity of the underlying mecha-
nisms. For instance, while dry conditions increase  fl ammability and  fi re hazard 
(Piñol et al.  1998  ) , they may also reduce plant production as well as fuel loads and 
continuity (Pausas and Bradstock  2007  ) . In fact, there is currently a strong contro-
versy with respect to the relative role of fuel and climate in the  fi re regime of 
Mediterranean ecosystems. The “ fi re mosaic model” proposes that catastrophic 
 fi res are due to unnatural fuel accumulations produced as a consequence of  fi re-
suppression policies (Minnich  1983,   2001  ) . On the other hand, the “ fi re weather 
model” states that large  fi res are due to extreme climatic conditions (e.g., severe 
drought, dry winds) and that  fi re is independent of the fuel type/age (Keeley et al. 
 1999 ; Keeley and Zedler  2009  ) . Whereas in the  fi rst model,  fi res are fuel-limited, in 
the second one,  fi res are climate-driven. These two models have strong implications 
on land management; while the “ fi re mosaic model” suggests that  fi re risk may be 
signi fi cantly lowered by reducing fuel loads, the “ fi re weather model” suggests that 
fuel management has a limited role in reducing catastrophic  fi res. The large  fi res 
that occurred in the Mediterranean Basin in the last decade were related not only to 
extremely warm and dry weather (supporting the “ fi re weather model”, Founda and 
Giannakopoulos  2009  ) , but also to positive anomalies in the previous wet season 
which promoted plant growth and fuel build-up (Trigo et al.  2006  ) . 

 It has recently been suggested that  fi re-climate relationships are climate-dependent 
in such a way that the relative role of weather and fuel load varies along climatic 
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gradients (Pausas and Bradstock  2007 ; Westerling and Bryant  2008 ; Littell et al.  2009 ; 
Fig.  6.1a ). Speci fi cally, in moist and productive ecosystems, dry conditions are 
needed to burn the existing fuel (vegetation), and thus the  fi re regime is climate-
driven. On the other hand, in dry and unproductive ecosystems,  fi re spread is limited 
by both low fuel availability and low fuel continuity, even when climatic conditions 
are adequate for ignitions. These patterns, described for California (Westerling and 
Bryant  2008  ) , seem to be applicable to the Mediterranean Basin (Pausas  2004  ) . 
However, fuel load (amount and continuity) is dependent not only on climatic 
conditions, but also on land-use and management (Pausas and Lloret  2007  ) . 
Therefore, the  fi re-climate relationship would be more complex in Mediterranean 
Basin ecosystems, where a longer and stronger human pressure has generated both 
fragmented landscapes and high  fi re ignitions (e.g., Pausas  2004  ) .  

 The increase in  fi re activity detected in the Mediterranean Basin during the last 
decades has been explained by the abandonment of rural activities and the conse-
quent fuel accumulation and increased fuel connectivity (Moreira et al.  2001 ; Pausas 
 2004 ; Bajocco et al.  2010  ) . In addition, there is evidence that  fi re activity is linked 
to the climatic conditions controlling fuel availability (Viegas and Viegas  1994 ; 
Pausas  2004  ) . All these results suggest that the  fi re regime in Mediterranean Basin 
ecosystems is globally fuel-limited (Fig.  6.1a ). However, when a long time-series is 
considered for areas productive enough to sustain continuous fuels, a switch in the 
 fi re activity has been detected: before the 1970s,  fi res were small and weakly related 
to climate, while after this date  fi res were larger and strongly related to climate 
(Pausas and Fernández-Muñoz  2012  ) . Before the switching point, landscapes were 
shaped by agriculture, livestock and other land uses, which maintained low and 
fragmented fuels. But the progressive land abandonment due to rural exodus to 
the cities resulted in burnable landscapes (i.e.,  fi re non-limited by fuel); in such 
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  Fig. 6.1    Hypothetical  fi re – productivity relationship at spatial ( a ) and temporal ( b ) scale (Adapted 
from Pausas and Bradstock  2007  )        
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conditions, the area burnt was strongly driven by climatic conditions. Therefore, 
progressive changes in human land use abruptly changed from a fuel-limited  fi re 
regime to a climate-driven  fi re regime (Pausas and Fernández-Muñoz  2012  ) . 

 The role of fuel in determining  fi re regimes does not depend on the amount 
alone, but also on its quality, type, and structure, which in turn may also be linked 
to climate and previous  fi re regimes. Therefore,  fi re modi fi es fuel amount and 
structure, plant composition and vegetation functioning, which in turn affect  fi re 
activity. These feedback processes can be depicted during early post- fi re conditions, 
where lower average rooting depth may diminish plant moisture and thus increase 
 fi re susceptibility (Mouillot et al.  2002  ) . This is especially relevant in plant com-
munities dominated by seeders, that is, non-resprouter species whose post- fi re 
regeneration relies exclusively on seedling recruitment (Pausas et al.  2004  ) . At a 
longer time scale,  fl ammable dry and poor communities become dominated by 
seeders, which in turn increase the  fl ammability of the community (Saura-Mas et al. 
 2010  ) . However, the distribution pattern of post- fi re response groups along the  fi re 
gradients is still unclear because of the complexity of  fi re-climate spatial interactions 
(Clarke et al.  2005 ; Pausas and Bradstock  2007 ; Fig.  6.1a ), and, thus, feedback 
processes are still dif fi cult to predict. 

 Similarly, at the temporal scale,  fi re-climate interactions are not straightforward 
either; rather, they show a threshold effect, that is, the existence of a critical climatic 
value above which the probability of  fi re increases dramatically (Flannigan and 
Harrington  1988 ; Good et al.  2008 ; Westerling and Bryant  2008 ; Fig.  6.1b ). 
Therefore, whereas small changes in climate conditions may seem to have little 
effect on ecosystem functioning, they may end up having a great impact through 
their effect on the  fi re regime, because  fi re may act as an ampli fi er of climate changes 
impacts. Determining the (spatial and temporal) variability of this climatic threshold 
is our current challenge.  

    6.2   Changes in Fire Regime According to Projected Climate 
Change in the Mediterranean 

    6.2.1   What Would Be New in the Forest Fire Regime? 

 Climate change affects variables such as air temperature, precipitation, relative 
humidity and wind speed, all of which in fl uence fuel moisture and, thus,  fi re behavior 
(Moriondo et al.  2006  ) . The fact that all the attributes describing  fi re regime 
(i.e., frequency, size, intensity, seasonality, type and severity) are highly dependent 
on weather and climate (Swetnam  1993 ; Flannigan et al.  2000  )  explains the rapid 
response that  fi re regimes have to changes in climate. It has even been suggested 
that the impacts of climate change on  fi re regimes might be more important than 
the direct impacts of climate change on species because  fi re can rapidly change a 
vegetation landscape that will fall more readily into a new equilibrium with climate 
(Weber and Flannigan  1997  ) . 
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 The inference often found in assessments of the future impact of climate change on 
 fi res is that increased drought (due to global warming) will also cause an increase in  fi re 
occurrence (Williams et al.  2001 ; Moreno  2005  ) . Increases in extreme climate events, 
in particular, are expected to have a great impact on  fi re risk (Flannigan et al.  2005a  ) . 
Global change has the potential to affect not only the meteorological  fi re hazard, but 
also many other interrelated components of the total  fi re hazard, especially its societal 
components (i.e., land use changes and policy,  fi re management strategies). 

 Climate-induced changes in the production of available fuel and in the overall 
 fl ammability of the plant material may alter  fi re frequency, intensity and severity, 
which in turn will in fl uence the structure and composition of ecosystems (Flannigan 
et al.  2000 ; Mouillot et al.  2002  ) . With a climate-mediated disturbance such as  fi re, 
very complex responses to climate change may be expected (Swetnam  1993  ) . It is 
likely that changes in climate will have different  fi re effects in different climatic 
conditions depending on critical thresholds of combustibility (Fig.  6.1 ). It has been 
observed, for instance, that the effect of anomalously wet years on fuel accumula-
tion is relatively more important in dry, sparsely vegetated areas (Kipfmueller and 
Swetnam  2000  ) , whereas anomalously dry conditions have a greater effect on  fi re 
danger in forested areas, where heavy fuels tend to accumulate over long periods 
(Agee  1993 ; Swetnam and Betancourt  1998 ; Donnegan et al.  2001  ) . 

 Furthermore, changes in  fi re regime may have different consequences for differ-
ent species (Zedler et al.  1983  ) , and changes in species composition may have con-
sequences on landscape combustibility and  fl ammability, which may feed back to 
the  fi re regime. Moreover, at ecosystem level, other impacts and responses deter-
mined by plant communities as well as soil characteristics (e.g. erodibility) and 
post- fi re events (e.g. heavy post- fi re rains) may also take place. 

 Wild fi res are already a major natural hazard in Mediterranean and other climates 
of the world (Westerling et al.  2006 ; Pausas and Keeley  2009  ) . Wild fi res include a 
wide range of  fi re regimes and affect a great diversity of ecosystem types over a 
large range of climates. Therefore, in principle, climate change would not introduce 
completely new phenomena, but it could change the trends in  fi re regimes and 
affected areas. 

 Studies investigating the likely effects of projected climatic changes on  fi re regimes 
began appearing around 1990 (Brown et al.  2004 ; Flannigan et al.  2005a  ) , but few 
attempts have been made to quantify the potential impact of climate change on  fi re risk 
in ecosystems of the Mediterranean Basin (Mouillot et al.  2002 ; Moriondo et al.  2006  ) . 
All these studies are based on a simulation approach and most of them use the outputs 
(climate data) obtained from General Circulation Models (GCM) run under different 
scenarios of  fi re danger indices (Brown et al.  2004 ; Moriondo et al.  2006  ) . 

 Results generally show an increase in  fi re risk, burned area,  fi re intensity and/or 
frequency of  fi res as a result of projected climate changes (Fried et al.  2004 ; Moriondo 
et al.  2006 ; Flannigan et al.  2009  ) . However, global or regional decreasing trends 
have also been reported (Beer and Williams  1995 ; Flannigan et al.  1998 ; Scholze 
et al.  2006  ) . A decrease in  fi re frequency has been suggested by some studies, for 
instance in boreal forests (Bergeron and Flannigan  1995  ) , indicating that the large 
regional variability around the world precludes any generalization about an overall 
increase in  fi re occurrence with global warming (Williams et al.  2001  ) . 
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 Some studies project a signi fi cant increase in  fi re frequency (of 40%, or even 
higher) under drier scenarios in relation to the reference scenario, and they suggest 
that these climate-change-induced modi fi cations to  fi re frequency will probably be 
relevant for plant communities (Cary and Banks  1999  ) . Other studies project that 
higher temperatures will extend the typical  fi re seasons, with more  fi res occurring 
earlier and later in any given year (Wotton and Flannigan  1993  ) . The annual area 
burned is expected to strongly increase in some regions (Price and Rind  1994 ; 
Flannigan et al.  2005b  ) , as are the  fi re danger levels (Flannigan and Van Wagner 
 1991 ; Stocks et al.  1998  ) , the number of potential catastrophic  fi res (i.e. high-severity 
 fi res), and related economic losses (Fried et al.  2004  ) . The impact of climate 
change differs according to vegetation fuel types, due partly to the effect of fuel 
type on  fi re intensity but mainly to the greater importance of wind speed on  fi re 
spread rate for grass fuels, as compared to brush and forest (Torn and Fried  1992  ) . 
Increased  fi re frequency and severity could also increase the risk of losing some rare 
species and ecosystem types. 

 As for Mediterranean-type ecosystems (MTEs),  fi re occurrence strongly depends 
on the drought that drastically increases  fl ammability during summer, on the 
temperature reached during this period, and on the amount of fuel load (Mouillot et al. 
 2002  ) . Aiming to improve the projections of GCM-based assessments, which are 
somewhat hampered by coarse spatial and temporal resolutions (Stocks et al.  1998  ) , 
Moriondo et al.  (  2006  )  investigated the effects of climate change on the  fi re risk in EU 
Mediterranean countries by using the output of a regional circulation model (HadRM3P) 
as an input to the Canadian Forest Fire Weather Index (FWI) for the current and two 
future IPCC scenarios (A2 and B2). Regional models are more suitable for local impact 
studies such as those on forest  fi res, especially in areas like the Mediterranean with a 
complex topography (Giorgi  1990  ) . Results suggested a general increase in  fi re risk 
throughout all Mediterranean countries, with an especially strong impact likely in areas 
where forest land cover is high (Alps region in Italy, Pyrenees in Spain, and mountains 
in the Balkan region). In this study, as in others reporting similar results (Flannigan 
et al.  2000  for North America; Williams et al.  2001  for Australia), the higher  fi re risk 
was a direct consequence of increases in maximum temperatures and decreases in 
both rainfall and relative humidity during the summer period (Moriondo et al.  2006  ) . 
In Spain, all GCM-based projections, under all scenarios, show a signi fi cant increase in 
the average monthly  fi re danger index, which will probably result in a lengthened  fi re 
season (Moreno  2005  ) . Higher  fi re danger index values will also likely result in longer 
and more frequent extreme situations, even assuming that the frequency distribution 
of such situations remains the same, thus increasing the probability of large and 
severe  fi res. The same author suggests that impacts are expected to be higher in 
temperate-climate areas bordering Mediterranean ones. 

 Model-based climate-change assessments generally disregard various feedbacks 
and report a best-case forecast. Although  fi re-induced changes in vegetation 
composition, structure or distribution could create conditions that favor subse-
quent wild fi res (Fried et al.  2004 ; Fulé  2008  ) , model-based predictions do not 
generally consider the indirect effects of climate change on plant-growth and 
vegetation-distribution rates (Westman and Malanson  1992  ) , or on community 
structure and composition (Ryan  1991 ; Mouillot et al.  2002  ) , nor do they deal 
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with the direct effects of increased lightning on ignitions (Price and Rind  1994  ) . 
Nevertheless, despite the uncertainties in climate projections, the limitations of 
the modeling approaches (Pitman et al.  2007  )  and the complicated interacting 
factors, there still appears to be no reason to doubt that  fi re will globally increase 
in the coming decades (Fulé  2008 ; Lloret  2008  ) . 

 Based on the projected climate changes described in previous chapters, we 
summarize below the main  fi re-regime changes and their impacts in Mediterranean 
and circum-Mediterranean countries:

   Most model-based studies tend to indicate that the projected impacts of climate • 
change on  fi re regimes in Mediterranean countries (i.e., likely increases in  fi re 
frequency, intensity and severity) would have direct and signi fi cant effects on 
MTEs and the services they provide (Fried et al.  2004 ; Moriondo et al.  2006  ) .  
  Wild fi res are expected to increasingly affect northern latitudes beyond the • 
Mediterranean regions and higher elevations in mountain ranges in the 
Mediterranean countries. Therefore, wild fi res would increasingly affect  fi re-
sensitive ecosystems. Vulnerable forest ecosystems, such as the varied endemic 
Mediterranean mountain conifer forest types, could be severely endangered 
(Regato  2008  ) .  
  Increased land abandonment would contribute to increasing fuel load and • 
continuity in the landscape. This would combine with more frequent extreme 
events to generate an increased probability of large and intense wild fi res. 
Increased drought occurrence would also lead to higher  fi re frequency, 
especially in highly populated regions (high  fi re ignition probability) and 
the rural-urban interface.  
  Both plant water stress and plant mortality will very likely increase (Rambal and • 
Hoff  1998  ) . Increasing amounts of decaying vegetation in drier environments are 
expected to enhance fuel and landscape hazardousness (Fulé  2008  )  by temporarily 
increasing dead fuels in the mid-term. This process would increase the probability 
of high intensity  fi res.  
  Increasing  fi re recurrences will likely decrease the resilience of many MTEs • 
(Díaz-Delgado et al.  2002 ; Delitti et al.  2005  ) . In the case of forests, post- fi re 
vegetation will less likely return to its pre- fi re state because severe  fi res often 
favor alternative stable states, such as grasslands or shrublands (Fulé  2008  ) .  
  Increased drought would increase the dif fi culty of afforestation and reforestation in • 
post- fi re degraded lands because of the higher water stress for introduced plants.      

    6.3   Approaches and Methods to Identify Fire-Vulnerable 
Ecosystems 

 In the context of integrated  fi re management strategies aimed towards minimizing 
 fi re risk and promoting resilience to  fi re and biodiversity in the landscape, it seems 
crucial to predict how ecosystems may evolve in the short to long term after a  fi re. 

 Vulnerability has many different de fi nitions. Based on the de fi nition proposed 
by IPCC  (  2007  ) , it is understood here as the degree to which a system is susceptible 
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to, and unable to cope with, adverse effects of any driver of change ( fi re, in this 
case). Vulnerability to a given driver is a function of the character, magnitude, and 
rate of the driver-caused changes to which a system is exposed, its sensitivity, and 
its adaptive capacity. Although vulnerability aspects are frequently considered in 
assessment systems for most natural hazards, they have generally not been included 
in operational  fi re danger indices, which are mostly based on factors determining 
the  fi re risk conditions (Chuvieco et al.  2010  ) . 

 It is known that different temporal scales may be required for analyzing different 
ecological processes. The post- fi re soil degradation caused by water erosion, for 
instance, is mostly expected to occur from  fi re extinction up to a few months after 
it, when the recovery of the vegetation cover is still low (Pausas and Vallejo  1999  ) , 
whereas the reestablishment of pre- fi re plant communities through successional 
dynamics may span over several years, even decades, depending on the pre-existing 
vegetation types,  fi re severity and the environmental conditions (Keeley  2009  ) . 
Therefore, the assessment of an ecosystem’s vulnerability to  fi re should take into 
account the response of its various components (soil and vegetation) at different 
time scales. 

 An abundant body of literature documents the effects of  fi re on soils and the 
vegetation dynamics after  fi re in Mediterranean-type ecosystems, sometimes con-
sidering the interactions of  fi re with various other factors (Moreno and Oechel  1994 ; 
Trabaud  1994 ; Giovannini and Lucchesi  1997 ; De Luís et al.  2003 ; Duguy    et al. 
 2007b ; Baeza and Vallejo  2008 ; Duguy and Vallejo  2008  ) . Nevertheless, integrated 
approaches considering the short-to-long-term response of the whole ecosystem to 
 fi re are still rare. This can be explained by the great dif fi culty of setting up long-
term  fi eld-based experiments that would be appropriate for monitoring and docu-
menting such responses. Given the lack of suitable  fi eld data, theoretical and 
modeling activities appear to be the only methods available for exploring the eco-
logical vulnerability to forest  fi res in the short-to-long term for a wide range of 
ecosystems. 

 In this context, an innovative methodology aimed at assessing the ecological 
vulnerability to  fi re and based on the use of geographic information technologies 
(a geographic information system and remote sensing) has been developed for 
Mediterranean ecosystems in Spain (Duguy et al.  2012 ; Chuvieco et al.  2010  ) . 

 This theoretical and modeling approach is structured in three stages: (1) short-term, 
less than 1 year after the  fi re, focused on soil degradation risk (Fig.  6.2 ); (2) medium-
term, 25 years after the  fi re, focused on permanent changes in plant community 
structure and composition; and (3) integration of the short- and medium-term 
vulnerabilities to evaluate the overall ecological vulnerability to  fi re. At each stage, 
the variables that are considered are expressed in cartographical format and their 
qualitative values are successively combined by applying a matrix method. The 
model has been implemented in several sites: the regions of Madrid (centre Spain) 
Aragon (inland north-eastern Spain) and Valencia (eastern Spain). In each case, a 
regional-scale cartography of the ecological vulnerability to  fi re was obtained 
(Fig.  6.3 ). The short-term vulnerability maps facilitate the identi fi cation of the most 
erodible areas, which would be in greater need of short-term post- fi re mitigation 
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actions, whereas the medium-term vulnerability maps identify areas where perma-
nent changes in the vegetation structure and composition can be expected in the 
medium term after a  fi re. Finally, the overall vulnerability maps indicate the most 
problematic situations in relation to the risk of degradation of the whole ecosystem 
in the medium term as a consequence of  fi re (Fig.  6.3 ).   
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  Fig. 6.2    Scheme for the short-term vulnerability analysis. Early post- fi re ecosystem response 
depends on both physical and biotic factors, which determine post- fi re soil erosion risk. The meth-
odology considered the physical factors related to the soil susceptibility to erosion after a  fi re and 
the factors in fl uencing the plant community response in the short term after  fi re. We evaluated the 
vegetation capacity for rapidly protecting bare soil in terms of the speed of the post- fi re vegetation 
reestablishment       

  Fig. 6.3    Maps of short-term, medium-term and overall ecological vulnerability to  fi re (from  left to 
right ) for the Valencia Region (indicated in  orange  within Spain in the  upper left  localization map)       
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  Fig. 6.4    Fire vulnerability in Europe.  Above : Current situation.  Below : Projection according to 
IPCC  (  2007  )  projections for wild fi res and drought occurrence. See the text for more details       
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 The model has been partially validated in the Ayora (Valencia) test site by 
comparing the overall-vulnerability values predicted by the model with  fi eld 
observations of medium-term post- fi re ecosystem recovery. Our validation protocol 
used the 1979 Ayora vegetation map, corresponding to the pre-1979  fi re situation 
(Röder et al.  2008  ) , to run the vulnerability model. A set of previously-corrected 
Landsat images (Röder et al.  2008  )  allowed us to monitor the post- fi re evolution of 
green biomass (NDVI) up to the year 2000, that is 21 years after the  fi re, in areas 
that had been covered by  Pinus halepensis  forests before 1979. In this way, we were 
able to compare the predictions of the model with real NDVI data obtained from the 
images. The areas of higher predicted vulnerability to  fi re were always associated 
with larger observed decreases in the green biomass (NDVI). Moreover, the model 
predictions were consistent for any given plant community (for each type of pine 
forest, in this case). 

 A simpli fi ed version of this approach to assessing  fi re vulnerability was applied 
to Southern and Central Europe using the CORINE2000 map for vegetation types 
(modi fi ed with the European Forest Genetic Resources Programme – EUFORGEN-
maps) and the PESERA model (  http://eusoils.jrc.ec.europa.eu/ESDB_Archive/
pesera/pesera_data.html    ) for soil erosion risk assessment (current situation, 
Fig.  6.4 ). The regional IPCC  (  2007  )  projections on drought and forest  fi res risk 
were used to estimate changes in  fi re vulnerability for the end of the twenty- fi rst 
century (Fig.  6.4 ).   

    6.4   Confronting Fire Impacts in Light of Climate Change 

    6.4.1   Post- fi re Restoration Techniques to Reduce Fire Risk 

 In general, long-term forest  fi re impacts requiring restoration actions are caused by: 
(a) Wild fi res affecting  fi re-sensitive ecosystems in regions where natural  fi res are 
uncommon; (b) Unprecedented  fi re frequency or severity – altered  fi re regime – 
over  fi re-dependent ecosystems; (c) Unprecedented combination of  fi re regime and 
other disturbances over  fi re-dependent ecosystems. 

 Fire impacts on ecosystems should be analyzed in terms of the interactions 
between direct  fi re-induced processes and previous human-induced degradation 
processes. And post- fi re rehabilitation should include a long-term perspective on 
recuperating ecosystem integrity according to ecological restoration concepts (van 
Andel and Grootjans  2006  ) . In addition, as  fi re hazard is inherent in Mediterranean 
and other ecosystems of the world,  fi re prevention principles should be incorporated 
into post- fi re rehabilitation strategies in order to anticipate new  fi re events that will 
probably occur sooner or later. 

 In a general sense, restoration may be applied to stop ecosystem degradation 
after  fi re and to promote its regeneration. The scope of the strategies presented further 
on concentrates on the conservation and recovery of natural ecosystems, thus 
excluding from the discussion the use of exotic species or the change of land use. 

http://eusoils.jrc.ec.europa.eu/ESDB_Archive/pesera/pesera_data.html
http://eusoils.jrc.ec.europa.eu/ESDB_Archive/pesera/pesera_data.html
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In Mediterranean ecosystems affected by wild fi res the main objectives of restoration 
programs could be (Vallejo and Alloza  1998  ) :

    1.    To conserve the soil, because in terrestrial ecosystems, soil is a non-renewable 
primary resource which may be exposed to the risk of degradation and erosion 
after  fi re. This objective includes hydrological cycle regulation.  

    2.    To improve ecosystem resistance and resilience in relation to  fi re  
    3.    To promote mature forests, especially hardwood forests, which are scarce in 

Mediterranean Basin landscapes.     

 In the context of climate change, these objectives can be grouped into two main 
strategies:

    (a)     Mitigation strategies, which include all actions taken to reduce and reverse the 
impacts caused by  fi res (soil and water conservation), and  

    (b)     Adaptation strategies, which encompass all approaches taken to adjust, prepare, 
and accommodate to the new conditions created by climate change and a new 
 fi re regime (to promote biodiverse, mature, and more resilient forests).     

 Mitigation techniques aim at reducing  fi re impacts, and adaptation strategies and 
methods aim at reducing  fi re hazard and promoting ecosystem conservation in the 
perspective of new  fi re regimes. The focus of adaptation will be on strategies for 
fuel and vegetation management to reduce  fi re occurrence and severity, and increase 
ecosystem resilience, especially in highly vulnerable areas. 

 Strategies to cope with a more severe  fi re regime and harsher weather conditions 
should address both the social and the technical components of  fi re management. 
On the social side, emphasis should be placed on improving awareness and pre-
paredness with the aim to reduce human-caused ignitions, especially at the rural-
urban interface. On the technical side, several approaches should be considered on 
the basis of the various threats projected with respect to  fi re regimes and droughts 
(Table  6.1 ).  

    6.4.1.1   Mitigation Strategies 

 Post- fi re rehabilitation measures are short-term actions designed to mitigate soil 
degradation until natural vegetation regeneration covers the burned area. The treatments 
mainly aim at controlling soil erosion and runoff and preventing off-site impacts of 
sediments and  fl oods. The most common post- fi re rehabilitation measures are grass 
seeding, mulching, and contour-felled logs, as hillslope measures, and check dams 
(straw bales, log, and rock dams) as channel measures (Napper  2006 ; Cerdà and 
Robichaud  2009  ) . 

      Emergency Seeding 

 Emergency seeding consists of herbaceous seeding with or without application of a 
mulch layer designed to promote a rapid plant cover for soil protection until the 
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natural regeneration stabilizes the burned area. Seed mixes often include grass and 
legume species selected for their rapid growth rate. These mixes combine annual 
species to provide quick cover, and perennial species to establish longer-term 
protection. 

 The effectiveness of emergency seeding on erosion control and vegetation recovery 
has been widely discussed (e.g., MacDonald  1989 ; Beyers et al.  1998 ; Keeler-Wolf 
 1995  ) . Robichaud et al.  (  2000  )  reviewed a number of post- fi re emergency rehabili-
tation projects conducted in USA from 1973 to 1998, and based on the same data, 
Beyers  (  2004  )  discussed the effectiveness of post- fi re seeding and its impacts on 
plant communities. According to the available data, the effect of the seeding treat-
ment on plant cover strongly depends on both the climatic conditions and the pre- fi re 
vegetation community.  

      Mulching 

 Together with post- fi re seeding, mulching is the most widely used post- fi re 
rehabilitation treatment, and it is mainly aimed at providing a rapid soil protection. 
Mulches protect the soil from rainsplash, reduce overland  fl ow, create mini-sediment 
dams, reduce compaction and crusting, and increase water in fi ltration (Abad et al. 
 2000 ; Robichaud et al.  2000  ) . They may also bene fi t plant germination and growth 
by changing the microclimatic conditions at the soil surface, increasing soil moisture 
retention (Bautista et al.  1996  ) . Mulches mimic the role of litter. In conifer forests, 

   Table 6.1    Main strategies to face a more severe  fi re regime and increased drought   

 New threats linked to changing 
 fi re and climate  Prevention  Post- fi re restoration 

 Uncertain response of species 
to climate change and  fi re 
regime 

 Speci fi c  fi re prevention 
measures targeted to 
 fi re-sensitive ecosystems 

 Increasing plant species 
diversity in restoration 
projects – application of 
adaptive management 
principles 

 Increased land abandonment 
driving increasing old  fi eld 
colonization by pioneer 
seeder plant species 

 Fuel control combined with 
the introduction of 
resprouting woody plant 
species 

 Introduction of resprouting 
woody species (see 
Sect.  6.4.1.2  below   ) 

 Newly affected forests  Speci fi c  fi re prevention 
measures targeting 
 fi re-sensitive ecosystems 

 Reintroduction of 
 fi re-sensitive species 

 Increased high-intensity  fi re 
occurrence 

 Fuel control in the landscape 
to try to prevent 
mega fi res 

 Promote landscapes with 
low combustibility 

 Increased drought  Improve early warning at 
high spatial resolution 
for  fi re danger 

 Application of techniques 
to improve water inputs 
and water use ef fi ciency 
in restoration projects 
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low and moderate severity burned sites often have trees that are only partially con-
sumed by  fi re, leaving dead needles in the canopy that fall to the ground shortly after 
the  fi re and provide a natural mulch ground cover. Pannkuk and Robichaud  (  2003  )  
showed that a 50% ground cover of dead needles reduced the interrill soil erosion 
by 60–80%. Thus, post- fi re rehabilitation treatments should exclude areas where 
needles provide suf fi cient ground cover. 

 The main advantages of using mulches as a post- fi re emergency treatment are: 
they are effective immediately after installation; they reduce erosion during the 
critical  fi rst post- fi re year; mulch materials are readily available in most areas; and 
thick mulch can suppress the invasive weeds that commonly appear after  fi res. 

 A study in eastern Spain (Bautista et al.  2009  )  tested the effectiveness of new 
rehabilitation treatments (seeding, mulch, and seeding plus mulch) to mitigate soil 
degradation and enhance vegetation recovery in the short and medium term under 
Mediterranean climate in burned, highly degraded woodlands. The seeded mix 
included several native species from different functional groups aimed not only at 
protecting the soil from erosion and degradation but also at enhancing ecosystem 
function and resilience. The species selection consisted of native herbaceous, sub-
shrub and shrub species. The applied mulch was chopped wood from forest pruning 
activities, which mimics the effect of in-situ chopped charred wood. 

 The combined Seeding plus Mulching treatment enhanced total plant cover 
throughout the two post- fi re years studied, with plant cover values being around 
50% higher than for the control (untreated) plots. However, neither the Seeding nor 
the Mulch alone in fl uenced the vegetation recovery. 

 The plant cover increase in the Seeding plus Mulch treatment was due to the 
germination and growth of the seeded herbaceous species. Mulch cover highly 
increases seed germination probably by improving soil moisture retention. The 
mulch layer could also play an important role in reducing seed loss downslope. Sub-
shrub and shrub species also germinated and survived as part of the Seeding plus 
Mulching treatment, but their contribution to plant cover were low due to their rela-
tively low percent germination and growth rate; nevertheless, as these plant species 
rapidly sprout after  fi re, surviving individuals may greatly contribute to ecosystem 
resilience in case of further disturbances. 

 In contrast to other works reporting a decrease in native species richness due to 
seeding (e.g., Keeley  2004  )  or mulching (e.g., Kruse et al.  2004  ) , in this case there 
was no adverse effect of seeding or mulch treatment on the number of native spe-
cies. But the Seeding plus Mulch treatment tended to decrease the total plant cover 
of some of the most common obligate-seeder shrub species that constitute  fi re-prone 
communities and are target species for fuel control programs (Baeza et al.  2003  ) . 

 With respect to soil protection, the treatments with mulch (seeding + mulch and 
mulch alone) greatly reduced soil surface compaction and enhanced water in fi ltration. 
Nearly 2 years after  fi re and treatment application, these effects were still signi fi cant. 
The mulch layer also greatly reduced post- fi re soil loss: the non-mulched sites 
showed about 20 Mg ha year-1 of soil erosion during the  fi rst post- fi re year while 
the mulched sites had negligible losses (Bautista el al.  2009  ) .   
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    6.4.1.2   Fire Adaptation Measures 

 Adaptation strategies include all restoration actions taken to assist natural resources 
(species, habitats, forest, watersheds) in accommodating the new conditions imposed 
by climate change. 

 Degraded ecosystems have lost some components of the original ecosystem; 
some of these are evident (certain structural species: main tree and shrub species 
and directly associated macrofauna) but most of them are unknown or uncertain 
(infrequent plant species, microorganisms, etc.). In addition, degraded ecosystems 
have modi fi ed some functions or their rates. The main restoration strategies sug-
gested to face the new  fi re regime and climate change projections are (Vallejo and 
Alloza  1998 ; Vallejo et al.  2009  ) :

    • Planting of resprouting shrubs and trees to improve adaptation  (resilience and/or 
resistance) in  fi re-prone shrublands (often old  fi elds) dominated by seeders, 
which are usually fuel accumulators. These areas have a high degradation risk 
after repeated  fi res. Resprouting shrubs and trees are not only very resilient to 
 fi re; they also confer resilience to the ecosystem (Ferran et al.  1991  ) . A number 
of native tall shrub species considered resilient to  fi re were introduced with suc-
cess (Vallejo  1996  )  in subhumid and semi-arid conditions, where they were not 
present, to reduce  fi re hazard and to improve the resilience and structure of the 
ecosystem.  
   • Combined planting of pines and hardwoods (holm oak) for mature forest restora-
tion  (Pausas et al.  2004  ) . This is intended to combine the fast growing features of 
pines in degraded lands with the high resilience provided by oaks. In the forestry 
tradition, this operation is envisaged sequentially (Montero and Alcanda  1993  ) : 
to introduce  fi rst the pines and later on the hardwoods. We have investigated the 
simultaneous planting of both types of species to reduce the restoration costs and 
to facilitate the feasibility of these operations.  
   • Selective clearing of highly  fl ammable shrublands combined with the planting of 
resprouter species to reduce  fi re hazard and to improve ecosystem resilience 
(Valdecantos et al.   2009  ).     

 According to the proposed strategy, restoration techniques should enhance the 
adaptation of burned areas to both new  fi re regimes and climate change. The main 
environmental limitation for a successful introduction of plants on degraded 
Mediterranean sites is water stress (Vallejo et al.  2000  ) , and this is, of course, also 
applicable to other arid regions of the world. In Mediterranean regions, the most 
critical situations are located in the transition between semi-arid and dry subhumid 
climates, where high water stress is combined with a high disturbance rate, espe-
cially  fi re. 

 Plantations in drylands frequently show poor results, especially when species 
other than pines are used. Planted seedlings often show high mortality rates, particu-
larly when signi fi cant rainfall events are absent for more than 3 months (Alloza and 
Vallejo  1999  ) . During the last decades of the twentieth century, climatic conditions 
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in the Mediterranean basin have been exceptionally adverse, with record high global 
temperatures (Castro et al.  2005  ) . Hence, drought spells may have been major driv-
ers in the large-scale plant mortality observed. As adverse climatic conditions are 
likely to persist in the near future (Millan et al.  2005  ) , current restoration techniques 
must be updated to make them more ef fi cient against future climate scenarios. 
In addition, there is a large body of evidence indicating that a key obstacle to planta-
tion success is transplant shock, which is the intense short-term stress experimented 
by seedlings as they are transferred from favorable nursery conditions to the adverse 
 fi eld environment (Burdett  1990  ) . 

 In the long-term, newly planted forests in strategic locations might produce a 
positive feedback on rainfall. At regional scale, precipitation may be affected by 
vegetation cover. Decreasing forest cover reduces evapotranspiration and this may 
cause precipitation to decrease in climate conditions with high regional water circu-
lation, for example in Moist Tropical regions – e.g., Amazonia (Correia  2006  ) , and 
in coastal areas around the Mediterranean under a dominant breeze circulation 
regime (Millan et al.  2005  ) . For these situations, increasing forests might increase 
precipitation at regional scale.   

      Facing Increased Drought in Plantations 

 The options considered to reduce water stress in plantations are (Chirino et al. 
 2009  ) :

   Increase water inputs in the ecosystem (Fig.  • 6.5 )  
 Irrigation. At present, irrigation is usually conducted for plantations in arid 
regions at the establishment stage, but this is unusual in the Northern Mediterranean 
countries. Reduced and highly cost-effective irrigation systems, especially 
passive irrigation techniques, have been developed and applied in warm deserts 
all over the world (see Bainbridge  2007  ) . 

 Fog collection. Foggy areas in drylands offer the possibility of a highly valuable 
and inexpensive water resource which could be used for several purposes, among 
them for creating water points in remote areas for combating  fi res and for irrigat-
ing plantations (Estrela et al.  2009  ) . 

 Runoff harvesting. Runoff harvesting is an ancient passive irrigation 
system employed on desert hillslopes. Soil preparation involves constructing 
microcatchments which collect and concentrate runoff in the plantation hole 
(De Simón et al.  2004 ; Fuentes et al.  2004 ; Chirino et al.  2009  ) , thus increasing 
seedling survival and growth.  
  Increase soil water availability – soil water holding capacity • 

 Soil water in fi ltration could be improved in degraded  fi ne-textured soils by 
means of mechanical soil preparation techniques (transient improvement) and by 
the application of mulch (Valdecantos et al.  2009  ) . 

 Both the available soil water and the soil water holding capacity can be 
increased by means of mechanical soil preparation and additions of organic matter 
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(e.g., biosolids, composted or uncomposted refuses: Querejeta et al.  2000  ) , and 
hydrogels (Choudhary et al.  1995 ; Hüttermann et al.  1999  ) . Hydrogels are 
probably more effective in coarse-textured soils (Seva et al.  2004  ) . Biosolid 
application could have negative effects on seedling survival in relation to 
increased salinity and, if using semi-liquid sludges (slurry), physical problems in 
the soil as the sludge dries out (Valdecantos et al.  2004  ) .  
  Improvement of seedling atmospheric microhabitat: Tree-shelters • 

 High radiation levels and high evaporative demand characterize dry environ-
ments. Under these conditions, seedling survival is usually higher under the 
protection of a canopy than in open areas (Espelta  1996 ; Vilagrosa et al.  1997 ; 
Vallejo et al.  2006  ) , but exceptions are not uncommon (Vilagrosa et al.  2001 ; 
Pérez-Devesa et al.  2004  ) . The use of tree shelters may ameliorate harsh conditions 
and improve species survival and growth. These positive effects have been attributed 
to the fact that tree shelters modify the plant environment: they create a green-
house microclimate with increases in temperature, relative humidity, and carbon 
dioxide levels (Burger et al.  1992  ) . 

 Most of the species tested under Mediterranean conditions showed a positive 
response to tree shelters (Costello et al.  1996  ) , with the effect of tree shelters 
being more relevant, in terms of survival, in the driest regions.  
  Improvement in seedling water use ef fi ciency• 

   Plant species selection   –
  Plant quality manipulation         –

  Fig. 6.5    Alternative/complementary techniques to improve water availability for seedlings in for-
est plantations       

 



118 B. Duguy et al.

      Plant Species Selection 

 Restoration usually consists of introducing one or several keystone species. 
These species, typically trees or tall shrubs, are supposed to play a critical role in 
determining ecosystem structure and functioning, acting as ‘ecosystem engi-
neers’ (Jones et al.  1994  )  which are able to modify the habitat. It is assumed that 
these species would improve soil properties, create a forest  fl oor habitat, improve 
the microclimate, indirectly facilitate the importation of seeds by birds and so 
on. Finally, the introduction of a woody species would not be enough for its com-
plete establishment if symbionts, pollinators or dispersers were lacking (Hobbs 
and Norton  1996  ) . Mycorrhiza and/or rhizobacteria inoculation in the nursery is 
a way to ensure ef fi cient symbiosis for seedlings to be introduced (Barea and 
Honrubia  2004  ) . 

 Within the set of native species found to be suitable for restoring a given 
habitat, we have to select the ones that best  fi t the management objectives 
 proposed. In the case of post- fi re restoration we would select woody resprouters 
according to the above-stated objectives of increasing  fi re ecosystem resilience 
and reducing  fi re risk. Moreover, given the projection of increased drought 
we would prioritize the use of drought-resistant native woody resprouter 
 species, ecotypes, and genotypes, especially for very degraded sites and dry 
microclimates.  

      Plant Quality: Nursery Cultivation 

 Suitable restoration techniques may help the seedlings to get through the transplant 
shock and the  fi rst summer drought, and thus establish successfully. These include 
several nursery techniques that take into account the morpho-functional character-
istics of seedlings to promote their resistance to drought and increase their acclima-
tion to the reforestation site. 

 The main technical elements in the nursery culture are:

   Substrates or growing media.  • 
  Containers.  • 
  Drought preconditioning.     • 

      Substrates or Growing Media 

 The characteristics of the growing media are important for good root development, 
which is considered a key step in the success of a plantation (Peñuelas and Ocaña  1996  ) . 
Nowadays, the growing media recommended for use include standard components like 
peat moss or other alternative organic materials such as coconut  fi ber, composted 
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sawdust, bark, or composted sewage sludge in combination with a mixture of aeration 
materials like perlite, sand, vermiculite, tuff or polystyrene (Landis et al.  1990  ) . 

 A mixture with low proportions of other substances like hydrogels or some clays 
(sepiolite) can increase the water holding capacity of the plug, thus providing the 
seedlings with higher water availability for a longer period of time in the  fi eld. This 
fact can be especially important in climates with high rainfall variability, like the 
semi-arid climate. Field results rati fi ed the bene fi cial effects that mixing hydrogels 
into the substrate had on seedling performance (Fig.  6.6 ).   

      Containers and Root Systems 

 Several studies have related the planting stock quality of the seedlings to the type of 
container used (Landis et al.  1990 ; Peñuelas  1995 ; Vilagrosa et al.  1997 ; Dominguez 
et al.  1999  ) . An appropriate container should have a shape and dimension that allow 
the seedling to develop correctly, especially its root system. In general, high-volume 
containers (300 cm 3  or more) are recommended for reforestations in dry and semi-
arid climates and for species with high root-to-shoot ratio, because they enable the 
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  Fig. 6.6    Survival of  Quercus suber  seedlings after 13 months in outplanting (Control substrate: 
 black circle  and  solid line ; hydrogel stockosorb – 0.7%:  white circle  and  dotted line ; hydrogel 
stockosorb – 1.5%:  black triangle  and  long dashed line ) (Chirino et al.  2009  )        
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good root system development that is critical during the  fi rst stages after plantation. 
According to our experience, long containers are preferred for species that develop 
a tap root, like  Quercus  sp., whilst wider containers are recommended for species 
that show important secondary-root development.  

      Drought Preconditioning 

 Drought preconditioning is one of the main techniques used to precondition 
seedlings against drought stress by means of induction of mechanisms for drought 
resistance. However, because Mediterranean plant species have ontogenetically 
high resistance to stress conditions, the common techniques of drought precondi-
tioning (i.e., short-term preconditioning) applied to species characteristic of 
humid or subhumid climates are not very effective when applied in Mediterranean 
dry or semiarid species (Fonseca  1999 ; Vilagrosa et al.  2003  ) . Experiments car-
ried out by CEAM showed that long-term drought preconditioning in the nursery 
promotes higher bene fi ts to plant morpho-functional characteristics than short-
term preconditioning (Rubio et al.  2001 ; Chirino et al.  2003  ) . On the other hand, 
the response of species to drought preconditioning seems to depend on the plant 
species. For example, species like  Pistacia lentiscus  are very responsive to pre-
conditioning whilst species like  Quercus coccifera  are not. Probably, this type of 
response is related to the drought strategies developed for each species (Vilagrosa 
et al.  2003  ) . 

 The main responses obtained in drought preconditioning experiments are higher 
root-shoot ratio in the nursery (Chirino et al.  2003  ) , changes in allocation patterns 
(i.e., higher  fi ne-root colonization in the plantation hole and lower above-ground 
development) (Rubio et al.  2001 ; Chirino et al.  2003  ) , higher tolerance to drought 
conditions through higher elasticity of cell membranes (Rubio et al.  2001  )  or better 
photochemical ef fi ciency (Vilagrosa et al.  2003  ) , drought-avoidance mechanisms 
like higher root hydraulic conductivity to supply water to leaves, higher leaf capaci-
tance to water and lower transpiration rates (Villar-Salvador et al.  1999 ; Vilagrosa 
et al.  2003  ) . Although drought preconditioning does not improve survival, seedlings 
are generally better adapted to  fi eld conditions (Rubio et al.  2001  ) . For example, 
preconditioned seedlings of  Q. suber  and  P .  lentiscus  showed lower biomass reduc-
tion due to summer drought than well irrigated seedlings.  

    6.4.2   Landscape Dimension in Fire Prevention and Restoration 

 Ef fi cient and sustainable  fi re management policies (and particularly those related to 
 fi re prevention and post- fi re restoration) need to be planned at regional and landscape 
levels (Fernandes  2006 ; Finney  2007 ; Schmidt et al.  2008  ) , and their effects should 
also be evaluated at wider spatial and temporal scales than those resulting from 
single  fi re events (Lloret  2008  ) . Such upscaling-based approaches may also allow 
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better analyses of the interactions between wild fi res and the environmental changes 
that take place at a global scale. 

 One of the main questions that current  fi re-related research needs to address is 
how to manage  fi re-prone landscapes under climate change in order to reduce both 
the future  fi re risk and the vulnerability of landscapes to  fi re (i.e., to increase their 
resilience to  fi re). The hypothesis underlying this research is that appropriate land-
scape-level fuel management (resulting in the long-term modi fi cation of the struc-
ture, composition and spatial con fi guration of plant communities) could alter both 
the ecosystem-level successional trajectories and the landscape structure, facilitat-
ing a dynamics towards more resistant (less  fl ammable) and resilient ecosystems 
and landscapes. 

 It is broadly accepted that not only the nature of fuels and their moisture con-
tent, but also their spatial distribution in the landscape, among other factors, have 
a strong in fl uence on  fi re spread and behavior (Turner and Romme  1994 ; Mouillot 
 2001 ; Duguy et al.  2007a,   b  ) , and, thus, on potential  fi re impacts. Higher degrees 
of landscape fragmentation (i.e., a more  fi ne-grained landscape) have often been 
observed to limit  fi re propagation and moderate  fi re behavior (Minnich  1983 ; 
Knight  1987 ; Duguy et al.  2007a,   b  ) . Traditionally, it is believed that disturbances 
are more likely to spread across a homogeneous area (Wiens et al.  1985  ) , but the 
opposite also occurs (Turner  1987  ) . It has likewise been proposed that, in highly 
fragmented landscapes, disturbances require a higher boundary-crossing frequency 
and a more convoluted route and, therefore, spread less easily (Turner and Romme 
 1994 ; Forman  1995  ) . In the case of  fi res, it is generally accepted that greater land-
scape heterogeneity retards  fi re propagation (Minnich  1983 ; Wiens et al.  1985 ; 
Knight  1987  ) , although landscape pattern may have little in fl uence on crown  fi re 
behavior when burning conditions are extreme (Turner et al.  1994 : Keeley et al. 
 1999  ) , which might become more frequent in the future. Indeed, no universal cor-
relation has been found between  fi re propagation rate and landscape heterogeneity 
(Morvan et al.  1995  ) . 

 In the last decades, the intense land abandonment that took place in most north-
ern Mediterranean landscapes generally caused the disappearance of the former 
mosaic-like landscape structure, conformed by small patches of natural vegeta-
tion in the matrix of agricultural-dominated land (Lloret et al.  2002 ; Duguy  2003  ) . 
The increase in the continuity of natural vegetation patches led to a loss of land-
scape heterogeneity and fragmentation (Lloret et al.  2002  ) , which, in turn, favored 
the spread of large and intense  fi res which have often resulted in a further homog-
enization of these landscapes (Debussche et al.  1987 ; Vos  1993 ; Vázquez and 
Moreno  1998 ; Lloret et al.  2002  ) . These trends will likely be maintained, or even 
enhanced, under future conditions (Moreno  2009  ) , and interconnected highly-
 fl ammable patches of increasing size might result in a strong increase in the risk 
of large  fi res. 

 An effective fuel management policy in relation to  fi re control requires the devel-
opment of models and procedures that optimize its effectiveness, both spatially and 
temporally, and that minimize the arbitrariness in its planning process (Hiers et al. 
 2003 ; Fernandes  2006  ) . The temporal ef fi ciency should aim to extend the interval 
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between treatments (Baeza and Duguy  2009  ) , whereas the spatial ef fi ciency should 
aim to minimize the ratio of area treated in the landscape to the expected bene fi ts 
(i.e., decrease the risk of large  fi res) (Loehle  2004  ) . 

 Fire management has to be assessed through costs, bene fi ts and damages in the 
long term (Pausas and Vallejo  2008  ) . Given the potentially high costs of landscape-
level fuel treatments for  fi re control or for enhancing  fi re resilience, it is essential to 
plan these actions through spatial optimization procedures (Hiers et al.  2003 ; Finney 
 2004  ) . In the context of climate change, it will be particularly crucial to apply cost/
bene fi t analyses to optimize the resources needed for  fi re mitigation and restoration 
actions (Martell  2001 ; Moreno  2005  ) . 

 Forman and Collinge  (  1996  )  described the “aggregate-with-outliers” model as 
an effective landscape structure in relation to  fi re spread control and biodiversity 
enhancement. To reduce both  fi re occurrence and  fi re spread, while promoting the 
expansion of forest in the landscape, these authors proposed three main approaches 
focused on landscape pattern:

    1.    Minimize the sites that are especially susceptible to  fi re ignition  
    2.    Increase landscape spatial heterogeneity  
    3.    Increase barriers or  fi lters that inhibit  fi re spread.     

 Given the dif fi culty and obvious limitations in implementing large-scale and long-
term experiments on fuel treatment, and in assessing their performance in relation 
to real  fi res, our indications as to the effectiveness of this “ aggregate - with - outliers ” 
model, or of any other proposed landscape structure in relation to  fi re control, mostly 
come from recent theoretical and modeling studies (Hirsch et al.  2001 ; Hiers et al. 
 2003 ; Finney  2004 ; Finney et al.  2007  ) . Many questions related to fuel treatments, 
such as their optimized placement in the landscape or their potential effectiveness 
under alternative climate change scenarios, can only be addressed through modeling 
approaches (Finney  2001b  ) . 

 Most modeling-based studies con fi rm that fuel treatments need to be designed 
and implemented at a landscape level in order to signi fi cantly modify the spatial 
pattern of  fi re spread and behavior (Finney  2001a,   b ; Stratton  2004 ; LaCroix et al. 
 2006 ; Duguy et al.  2007a,   b  ) . A strategic placement of theoretical treatments in the 
landscape results in a more effective reduction of  fi re propagation and a more mod-
erate  fi re behavior than a random or arbitrary arrangement of treatments (Finney 
 2001a,   2003,   2007 ; Loehle  2004 ; Duguy et al.  2007a,   b ; Schmidt et al.  2008  ) . The 
overall ef fi ciency of the action is also improved, i.e. we obtain a larger ratio of area 
saved (non-burned) to total area treated in the landscape (Loehle  2004  ) . 

 Real landscapes are characterized, however, by their complexity and  fi ne-scale 
variability in terms of fuels, topography, and weather, which produce complex 
patterns of  fi re behavior and effects (Finney  2004  ) . Analytical solutions to the 
optimization of fuel treatment placement on real landscapes are still under 
investigation. 

 The combination of spatial technologies (GIS) and  fi re modeling, and their inte-
gration with ecological principles, multi-criteria decision methods and other models 
(vegetation, landscape, watershed, treatments) have led to the development of spatial 
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decision support systems (SDSS) to aid in the complex multi-objective process of 
forest management in  fi re-prone ecosystems (Hiers et al.  2003 ; Sisk et al.  2006  ) . 
SDSSs can help land managers in designing dynamic and sustainable landscape-
speci fi c prevention and restoration plans under different scenarios of global change. 
We present here an innovative GIS-based procedure for fuel treatment optimization 
in the landscape, which we developed in the framework of the SDSS ForestERA 
(  http://www.forestera.nau.edu/    ). We implemented the spatial procedure in a test 
area (Ayora, Valencia) for which we had previously parameterized the FARSITE 
model (Duguy et al.  2007a,   b  )  in relation to a set of management objectives (i.e., 
minimization of  fi re risk, promotion of landscape resilience to  fi re, promotion of 
biodiversity, conservation of soil and water). We then carried out a preliminary 
exploration of the effectiveness of various fuel scenarios for controlling  fi re propa-
gation and moderating  fi re behavior (Duguy et al.  2009  ) . 

 We  fi rst carried out an assessment of the risks that the studied landscape might 
face from the threat of catastrophic wild fi re and its consequences. We identi fi ed 
Fire Hazard (assessed through the variable Heat per unit of area, in kJ m –2 ), Crown 
Fire Behaviour and Ecological Vulnerability to Fire (which included post- fi re ero-
sion potential) as the three key risk factors. The latter variable was assessed through 
a model of ecological vulnerability to forest  fi res in Mediterranean ecosystems 
(Duguy et al.  2012  ) , as explained in Sect.   6.3    . These three layers were combined in 
ArcGIS to create a composite risk layer (the layer  Risks , Fig.  6.7 ). We then identi fi ed 
and prioritized features or areas of particularly high importance in the landscape, 
i.e., areas in critical need of protection from catastrophic wild fi res (Fig.  6.8a ). 
We combined this information with the previous assessment of the risks through 
overlay and buffering processes to create the  fi nal layer  Values  (Fig.  6.8b ). A  fi nal 
overlay was generated through the combination of the  Values  and  Risks  layers. The 
various resulting combinations were evaluated through an expert knowledge-based 
decision table, leading to the  fi nal prioritization map (Fig.  6.9 ). We  fi nally created 
various fuel scenarios aiming to minimize  fi re hazard through the reduction of fuel 
loads in some of the areas that the previous analysis had identi fi ed as most in need 
of management attention. We simulated both extensive hazardous fuel removals 
( fi re prevention treatment) and the introduction of wooded patches in different suc-
cessional stages ( fi re restoration action). We modeled  fi re behavior with FlamMap 
(Finney  2006  )  and FARSITE (Finney  1998  )  in all scenarios and compared them 
using four outputs from those programs: the rate of  fi re spread (m.min −1 ), the 
 fi reline intensity (kW m −1 ), the heat per unit of area (kJ m −2 ), and the crown  fi re 
activity.    

 Preliminary results con fi rm that fuel spatial distribution is a key parameter 
in fl uencing  fi re propagation and behavior across the landscape. Minor or moderate 
changes in the spatial pattern of fuels may cause substantial changes in  fi re behavior. 

 In the studied landscape, concentrating fuel reduction treatments on heavy sur-
face fuel types, such as fuel model 4-type shrublands, which favor the spread of 
intense  fi res (Anderson  1982  ) , allowed us to substantially moderate  fi re behavior 
and, thus, to reduce potential  fi re-caused damages to the aboveground vegetation 
and to the whole ecosystem. 

http://www.forestera.nau.edu/
http://dx.doi.org/10.1007/978-94-007-5772-1_6
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 Simulations con fi rmed that the creation of a more  fi ne-grained landscape through 
the fragmentation of large  fi re-prone areas (fuel model 4) with woodlands in differ-
ent successional stages could be very effective for reducing  fi re size and, in most 
cases, burning conditions. However, habitat fragmentation may have negative effects 
on biodiversity; therefore both  fi re prevention and biodiversity conservation should 

  Fig. 6.7    Composite Risk layer ( d ) developed by overlaying Fire Hazard, or predicted Heat per 
Unit Area in kJ m −2  ( a ), Crown Fire Behaviour ( b ) and Ecological Vulnerability ( c ) layers. In ( a ): 
Low (<3,000); Medium (3,000–10,000); High (10,000–20,000); Very high (20,000–32,000); 
Extreme ( ³ 32,000) kJ m −2        
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be integrated in the planning process. In the absence of  fi re, the landscape structure 
that would result from these actions would probably enhance the extension of wood-
lands in the medium-to-long term, thus promoting biodiversity.   

    6.5   Concluding Remarks 

 Climate change is expected to trigger a more severe  fi re regime and more 
dif fi cult conditions for ecosystem restoration after  fi re. At present, strategies 
and techniques are available to address the long-term ecological restoration of 
degraded ecosystems/landscapes after wild fi res. Nevertheless, the restoration 
process is subject to many uncertainties as the restorationist cannot foresee all 
the possible environmental circumstances that might affect the success of a res-
toration, nor is all the knowledge available on the ecosystem to be restored or on 
the potential multiple interactions between introduced plants, soil properties, 
extant organisms and so on. Climate Change introduces new uncertainties both 

  Fig. 6.8    Critical features in need of protection from wild fi re ( a ) and Areas of importance 
generated through overlay/buffering processes ( b ). In ( b ), we include critical features (from ( a )) 
and their buffers, adding all areas at very high risk and the largest continuous areas (>1,000 ha) at 
high risk, after the composite risk map (categories 9 and 10, respectively). The  fi rst 8 legend num-
bers in ( a ) correspond to those in ( b ). Buffered areas in ( b ): 100: Riparian; 200: Urban; 300: Road; 
400: Water body; 500: Stream; 600: Mature forest; 700:  Quercus ilex  forest; 800:  Fraxinus  forest; 
900: Specially designated areas       
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in its magnitude and in its consequences on wild fi res and organisms. Therefore, 
restoration projects should follow adaptive management principles (Whisenant 
 1999  ) , including monitoring and the possibility of rectifying or amending 
the restoration actions as we learn from the dynamics of the restored land. 
The shortcoming of this approach is that it requires further and longer-term 
funding.      

  Acknowledgments   This chapter has been developed from research conducted under the CIRCE 
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  Fig. 6.9    Priority areas for management attention. Non fuel areas (urban, roads, streams and water 
bodies) were excluded as well as specially designated areas       
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