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Abstract Better understanding how fires respond to climate variability is an issue of current interest in light
of ongoing climate change. However, evaluating the global-scale temporal variability of fires in response to
climate presents a challenge due to the intricate processes at play and the limitation of fire data. Here, we
investigate the links between year-to-year variability of burned area (BA) and climate using BA data, the Fire
Weather Index (FWI), and the Standardized Precipitation Evapotranspiration Index (SPEI) from 2001 to 2021 at
ecoregion scales. Our results reveal complex spatial patterns in the dependence of BA variability on antecedent
and concurrent weather conditions, highlighting where BA is mostly influenced by either FWI or SPEI and
where the combined effect of both indicators must be considered. Our findings indicate that same-season
weather conditions have a more pronounced relationship with BA across various ecoregions, particularly in
climatologically wetter areas. Additionally, we note that BA is also significantly associated with periods of
antecedent wetness and coolness, with this association being especially evident in more arid ecoregions. About
60% of the interannual variations in BA can be explained by climatic variability in a large fraction (~77%) of the
world's burnable regions.

Plain Language Summary In the context of changing climatic conditions, it is increasingly
important to better understand the relationship between climate and fires. This study proposes a method that
evaluates climatic conditions, either antecedent to or coincident with the fire season or the composite effect of
both. It shows that the interannual variability of the global burned area for the period 2001 to 2021 is explained
by climatic factors by around 60%. Our results also indicate that climatic drivers concurrent to the fire season
prevail moderately over the antecedents. This suggests that the expected increase in burned area due to warmer
and/or drier conditions can be mitigated where these climate conditions limit fuel availability.

1. Introduction

Fire plays a crucial role in the Earth's System, with widespread impacts on the carbon cycle, ecosystems, and both
humans and wildlife. It is estimated that, on average, more than 4 million km? burn every year at a global scale
(Bowman et al., 2020), but this is an underestimation, as the smallest fires are not considered (Chuvieco
et al., 2019; Ramo et al., 2021). In areas with a dense urban-wildland interface, wildfires often have devastating
consequences (Coughlan et al., 2019). Overall, there is a rising concern over potential changes in wildfire patterns
related to climate change, and there is strong evidence that the weather conditions triggering and sustaining
wildfires will become more frequent at higher levels of global warming (IPCC, 2021).

Understanding how fires respond to climate variability is crucial in light of ongoing climate change. However,
despite the availability of newly accessible data sets and increasing research efforts that have advanced our
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understanding of this topic, many aspects of this relationship remain unclear (Jones et al., 2022). Specifically,
determining the temporal links between climate and fire is a major challenge due to the limited availability of
comprehensive fire data sets on a global scale (Bowman, 2018; Bowman et al., 2020) and the complex interplay of
multiple drivers (Pausas & Keeley, 2021).

Numerous studies have explored the spatial links of global scale effects of climatology on fire statistics averaged
over a specific period of time (see e.g., Chuvieco et al., 2021; Krawchuk & Moritz, 2011). However, under-
standing how temporal variations in climate drive fire fluctuations at a global scale has received less attention,
primarily because there is a dearth of comprehensive long-term global fire data necessary to determine reliable
statistical links (Abatzoglou & Williams, 2016; Le Page et al., 2008). A better understanding of the dynamic links
concerning climate and fire may support the development of predictive models (Chen et al., 2016; Shen
et al., 2019; Turco, Jerez, et al., 2018).

On the other hand, at a regional scale, the temporal link between fires and climate was generally analyzed in data-
rich areas. Such analyses demonstrated that climate is a significant driver of the interannual variability in BA, in
many cases being the primary factor in explaining BA variability (Urbieta et al., 2015; Vadrevu et al., 2019;
Zubkova et al., 2019; see also Jones et al., 2022, and references therein). For instance, in western US forests, 76%
of the year-to-year variability in BA is explained by climate indices (Abatzoglou & Williams, 2016). Similarly,
between 60% and 80% of the interannual BA variability can be explained by climate variables in Canadian
ecoregions (Balshi et al., 2009; Girardin & Wotton, 2009). Strong links between BA and climate variations were
also detected in southern Europe (Bedia et al., 2014; Turco et al., 2017; Turco, Jerez, et al., 2019) where fire
danger and/or drought indices alone explained over 60% of the variability in BA. Likewise, forest BA in Australia
is strongly linked to some climate indices, which explain more than two-thirds of the BA variance (Canadell
et al., 2021). However, although relevant at a regional scale, these results provide limited insight into global
patterns. In contrast to such regional studies, the pioneering work of Abatzoglou et al. (2018) indicates that
climate variability explains only about one-third of the global interannual variability of BA. This comparatively
smaller explained variance might be attributed to challenges stemming from the relatively short span of global fire
observations available from satellites and potential inconsistencies in certain data sets as acknowledged by
Abatzoglou et al. (2018). Additionally, Abatzoglou et al. (2018) opted for a relatively straightforward modeling
approach, emphasizing simplicity and clarity. They limited their focus to a select set of well-established pre-
dictors, even though they recognized the potential benefits of a more elaborate model with expanded predictors.

Previous global studies (see e.g., Abatzoglou et al., 2018; Bedia et al., 2015; Grillakis et al., 2022) have indicated
that the FWI is a good proxy for the climatic variables that influence fuel moisture and fire spread once ignited,
and thus the burned area itself, at least in some regions. Precipitation is often used as an antecedent climate
predictor (e.g., Xystrakis et al., 2014). On a global scale, Abatzoglou et al. (2018) used precipitation as the only
climate variable to account for antecedent effects. On the other hand, the Standardised Precipitation Evapo-
transpiration Index (SPEI) is also a viable candidate both as a concurrent and an antecedent climate driver for BA
variability (see e.g., Turco, Rosa-Cénovas, et al., 2018; Urbieta et al., 2015). Here we consider SPEI as an
antecedent variable, as several analyses have shown that SPEI has higher predictive power than precipitation
anomalies for hydrological, agricultural, and ecological impacts (e.g., Vicente-Serrano et al., 2012), including
fires (Marcos et al., 2015; Turco, Rosa-Canovas, et al., 2018). Thus, we evaluate SPEI as a potential predictor
candidate for antecedent weather effects and SPEI and FWI as candidates for concurrent drivers. To sum up, here
we model interannual BA variability by means of five models selected for each ecoregion, using the following
predictor sets: (a) concurrent standardized FWI (SFWIc), (b) concurrent SPEI (SPEIc), (c) antecedent SPEI
(SPEIa), (d) SFWIc and SPEla, and (e) SPEIc and SPEla. Our study thus extends previous studies (see e.g.,
Abatzoglou et al., 2018; Bedia et al., 2015; Turco, Jerez, et al., 2018) by incorporating a different combination of
climate predictor variables explore the spatial patterns of the relationship between interannual fluctuations of BA
and climate variability, at ecoregion scale over the entire globe.

2. Data and Methods
2.1. Data

Monthly BA data for the period 2001-2021 are obtained from the MODIS C6 data set (Giglio et al., 2018) that
offers global BA coverage from November 2000 to September 2022 at a spatial resolution of 0.25°. This
MCD64CMQ collection is derived from the MODIS C6 Terra and Aqua 500 m daily surface reflectance data sets

GINCHEVA ET AL.

2of 15

85UBD17 SUOLULLIOD BA RO 3|qeotjdde 3y Aq paueA0b e Sapie YO ‘88N JO S3INJ 10} ARIq 1T BUIUO /8|1 UO (SUORIPUOD-PUR-SLUIBI WD AB |1 ARRIq 1 BUI|UO//SAIU) SUORIPUOD PUe Swid L 3U) 885 *[7202/£0/60] U0 Ariqi aulluo Ao|im ‘(-ul eAnde1) aqnopesy AQ vEEr0043E202/620T 0T/10p/Wod A8 | im Azeiq1pul|uosgndnBey/sdny wo.y papeoiumod ‘L ‘¥20Z ‘LLZv8ZeT



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Earth's Future 10.1029/2023EF004334

(namely MODO09GHK and MYDO0O9GHK), combined with the 1 km daily level 3 MODIS active fire data sets
(MOD14A1 and MYD14A1). A relatively recent comparative study between remote sensing data and official fire
records in the Mediterranean region of Europe revealed that the MODIS C6 data set broadly matches other BA
data (Turco, Herrera, et al., 2019). The analysis by Turco, Herrera, et al. (2019) evidences a strong temporal
correlation (~0.5/0.6) between BA data obtained from satellite data sets, including MODIS C6, and official
national BA data. Additionally, we contrasted our results also considering the Fire_cci v5.1 data set (FireCCI51,
Lizundia-Loiola et al., 2020), available for the period 2001-2020. For this data set, we consider two series of data,
the original total BA, and the data filtering out the values from the land categories “cropland, rainfed,” “cropland,
irrigated or post-flooding” and “mosaic cropland (>50%)” to evaluate if agricultural fires can alter the climate-fire
links.

We analyzed two climate indices: the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-
Serrano et al., 2010) and the Fire Weather Index (FWI; Vitolo et al., 2020). The SPEI index is calculated by
converting the difference between cumulative precipitation (PREC) and potential evapotranspiration (PET) over a
specified period (in this case, 3, 6, and 12 months) into a Gaussian distribution. Positive values denote wet
conditions, whereas negative values imply dry conditions compared to long-term climatology. We opted for the
Multi-Source Weighted-Ensemble Precipitation (MSWEP version 2.8; Beck, Wood, et al., 2019) data set as our
primary source for PREC data. We estimated the PET utilizing the FAO-56 Penman-Monteith equation based on
daily data provided by the ERAS global reanalysis (Hersbach et al., 2020). More details on the PET estimations
are provided in Vicente-Serrano et al. (2022). We obtained the FWI version 4 data from the Copernicus Emer-
gency Management Service (Vitolo et al., 2020), which is derived using meteorological data from the ERAS
reanalysis. We calculated the Standardized Fire Weather Index (SFWI) by standardizing the average monthly
FWI values over 3, 6, or 12 months. This involves calculating an anomaly by subtracting the long-term mean from
the original time series and dividing the anomaly by the standard deviation.

We use ecoregions as our fundamental working units, as defined by Dinerstein et al. (2017). Within each
ecoregion, we aggregate BA through summation and climate data via arithmetic mean.

2.2. Deriving the Empirical Models of Fire Response to Climate Variations

Figure 1 depicts the primary stages of constructing our empirical climate-fire models. First, for each ecoregion,
the fire season is determined (with details provided later). For illustrative purposes, we highlight the “Sierra
Nevada Forests” ecoregion (USA). Here, the fire season encompasses the months of July—September. By sum-
ming up the BA over these months, we generate a 21-year time series of BA values. These series are subsequently
log-transformed, detrended, and standardized. In the bottom plot, this is showcased as the Burned Area Index
(BAI; depicted in black). We then explore models that might connect Coincident Climate variables and/or
Antecedent Climate factors to BA. Further specifics about this search are discussed later. The model showcased
here considers the coincident 6-month aggregated SPEI for July and demonstrates a reasonable fit, with a variance
explained of 54%, aligning with findings from more localized and detailed data, as shown in Turco et al. (2023).

The developed fire climate-fire model (Gincheva & Turco, 2023) is based on aggregated BA data during the “fire
season,” which is expressed as “[...] the minimum number of consecutive months containing more than 80% of
the burned area,” according to the definition proposed by Abatzoglou et al. (2018). Using this definition, we
extract the fire season for each ecoregion of the globe as follows. First, we aggregated the monthly BA data at the
annual scale. To avoid including artifacts from isolated fires, only ecoregions with annual BA >0 in at least
2 years were considered for inclusion in the subsequent analysis. Then, we computed the climatological means of
monthly BA values and arranged them in descending order. Consequently, we defined the fire season as the
smallest number of uninterrupted months required to accumulate 80% of the total annual mean BA. Finally, the
BA data are aggregated over this fire season. In addition, to avoid spurious model results due to infrequent fire
events, we filter out those ecoregions that contributed to less than 0.001% of the global BA (as in Abatzoglou
et al., 2018) and where BA was present in at least half or more of the available period. That is, we selected only
those ecoregions where BA >0 in at least 10 years, following the criteria of Chen et al. (2016) and Turco, Jerez,
et al. (2018). The spatial distribution of the months corresponding to the fire season for each ecoregion can be seen
in Figure S1 in Supporting Information S1.

The data aggregated over the fire season, are subjected to a logarithmic transformation to address their skewness.
To ensure the transformation is suitable for all values, including zeros, we add a unit equivalent to 1 ha before
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Figure 1. Schematic representation of the primary steps in deriving empirical climate-fire models. The red area in the upper
left panel indicates the “Sierra Nevada Forests” ecoregion located in California, USA. The upper right panel shows the mean
observed burned area for each month in that ecoregion, indicating with red bars the fire season. The terms “AC” and “CC”
refer to Antecedent Climate and Coincident Climate, respectively. The lower right panel shows the time series of the Burned
Area Index observed (in black) and simulated in red.

applying the transformation (as in Parks & Abatzoglou., 2020). This adjustment makes the method applicable to
the entire BA data set. To evaluate the sensitivity of our results to this transformation, we also considered the data
transformed using a square root method. Unlike the logarithmic transformation, the square root transformation
can be applied to BAI values that are zero, making it potentially more suitable for data sets that include these
values. To assess the amount to which climate variability accounted for fluctuations in log-transformed BA, we
first applied linear detrending to the all-time series, including both log-transformed BA and climate variables.
This process is mathematically represented as:

Detrended series = Original series — (f, + X Year) €))

Where f, and f represent the intercept and slope, respectively, of the linear trend of the original series determined
by the least squares method. This approach minimizes the influence of factors that change gradually over time,
which is typically the case for changes in land use and fire management improvements. It thus isolates the effects
of year-to-year variability in climate and BA. Additionally, to further explore the potential influence of nonlinear
trends on the BA series, we repeat all the analyses considering a quadratic detrending method (Detrended se-
ries = Original series — (B, + f#; X Year + 5, X Year?). Moreover, all variables are standardized enabling the
coefficients of climate predictors in the regression model to be comparable with each other.

Then, assuming that climate is the main driver of year-to-year variations in the log-transformed BA through two
processes—control of fuel moisture and/or fine fuel biomass availability (indirectly through antecedent primary
productivity)—we consider that concurrent climate variables (CC; i.e., within the same fire season) are effective
proxies for controlling fuel moisture, while antecedent climate variables (AC) are suitable proxies for influencing
fine fuel availability and structure. Thus, the possible dependence of BA on the climatic variables CC and AC is
derived using the following equation:
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BAI = a*ACyn, + b CCyyp + £ 2)

Where:

¢ BAI is the log-transformed, detrended and standardized time series of BA for the fire seasons for the period
2001-2021.

o Coefficients a and b represent the BAI sensitivity to detrended and standardized AC and CC, respectively.

o ta and tb are the accumulation periods (3, 6, or 12 months, as in Turco, Jerez, et al., 2018) used to calculate AC
and CC, respectively.

¢ The months used to calculate AC and CC are denoted by ma and mb, respectively. Following Abatzoglou
et al. (2018), we limit the search for mb to the 1-month buffer preceding the fire season and the final month of
the fire season. In the example of Figure 1 with a fire season that includes the months July-August-September,
the search would be conducted from June to September, and the best model for that ecoregion considers the
SPEI for tb = 6 and mb = 7, that is, include the months from February through July.

e Again, following Abatzoglou et al. (2018), we restricted the search for ma to range from 14 to 2 months before
the start of the fire season.

« Finally, € is a term representing stochastic noise. In line with established protocols (refer to, e.g., Tong, 1990),
we verified that the model's stochastic component adheres to a Gaussian distribution employing the
Kolmogorov—Smirnov test (Massey, 1951), ensured that it is independent by using the Durbin—Watson sta-
tistic (Durbin & Watson, 1950), and assessed for non-heteroscedasticity with the Breusch-Pagan test (Breusch
& Pagan, 1979).

2.3. Best Model Choice for Each Ecoregion

To choose the most suitable model for every ecoregion, we explore all potential temporal aggregations of the
predictors through an out-of-sample calibration, while varying ma, ta, mb, and tb. Specifically:

a) We evaluated all potential predictors by fitting all possible versions of Equation 1, together (i.e., the variables
AC and CC) or individually (i.e., AC or CC), through a leave-one-year-out cross-calibration. Through iterative
processing, we used each individual year in the original series set as test data while utilizing the remaining
samples as data for training the model.

b) Our main goal was to create an empirical model that considers the potential effect of climate on fires through
the climate impacts on the quantity of dry biomass accessible for burning during a fire. For this, we assumed
two simple restrictions. Namely, we only retained models whose coefficients of AC and CC conform to the
hypothesis that CC regulates fuel flammability (e.g., we retain models with positive SFWI or negative SPEI
coefficients) and AC represents antecedent climate that regulates anomalously high fine fuel production (e.g.,
we retain models with positive coefficients when SPEI is used as AC). This approach is similar to linear
regression models with sign restriction, where signs are imposed on the coefficients of the regression model
based on prior knowledge of the relationships between the explanatory variables and the response (see e.g.,
Kato et al., 2019; Silvapulle & Sen, 2005).

¢) We conduct a one-tailed hypothesis test to evaluate the significance of the individual (Pearson) correlations
present within these models.

d) We corrected the p-values of the individual correlation tests by means of the False Discovery Rate (FDR)
technique (Ventura et al., 2004).

e) Finally, we selected the model with the highest correlation value with an adjusted p-value < 0.05.

Model selection using an out-of-sample procedure is equivalent to the use of the Akaike Information Criterion
(Stone, 1977). Note that such a leave-one-out cross-calibration procedure allowed for the evaluation of out-of-
sample BA records, as in an operational forecasting context (see e.g., Bedia et al., 2015). To avoid artificial
skill in the cross-validation process, the observed climate series were detrended and standardized at each step.
This ensured that observations from the predicted year were not used. Once the optimal climate windows were
selected, we developed the final models using all available data (in-sample calibration). We selected, as final
models, those whose coefficients were statistically significant (p-value < 0.05). For example, if after the out-of-
sample selection, a model with the variables AC and CC was selected, but the in-sample model indicates that only
the CC coefficient is statistically significant, the final model will only include the CC variable. We also
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incorporated the Variance Inflation Factor (VIF) for the selection of our final models where both AC and CC were
selected. Following the recommendation by Zuur et al. (2010), models with a VIF > 2 were flagged for potential
multicollinearity issues. In such instances, we further evaluated the model with only CC to ensure robustness and
reduce potential collinearity issues.

Finally, the link between time-invariant characteristics of the climate-fire models and the spatial climatology of
PREC and PET (averaged over the period of the study 2001-2021) has been examined using generalized additive
models (GAM), as implemented in the "mgcv" R package. GAMs facilitate the discovery of intricate relationships
through smooth, non-parametric functions, offering a flexible approach to investigating non-linear dynamics.
Such GAMs are commonly employed in bivariate analyses in similar studies to identify nonlinear associations
(see e.g., Abatzoglou et al., 2018; Pausas, 2022).

3. Results
3.1. Variability of Burned Area Explained by Climate

Statistically significant links between climate and fire variability have been observed in roughly 77% of the study
domain (or in 71% of the ecoregions analyzed), as shown in Figure 2a and in Table 1. On average, climate
variability explains around 60% of the variance in BA over the past two decades, as presented in Table 1.

The best model varies across ecoregions (Figures 2b and 2¢), with a similar fraction of multivariate models (i.e.,
those including both antecedent and concurrent climate drivers; 34%) and of monovariate models (37%). Con-
current variables (SPEIc or SFWIc) significantly contribute to explaining BA variability over 64% of the global
burnable area, while antecedent SPEIa significantly contributes over 41% of the area (Table 1). Among the
concurrent variables, the monovariate models with SFWIc contribute over 18% of the ecoregions, while the ones
with SPEIc present over 12% of the ecoregions (Figure 2c).

The overarching conclusions of our study remain consistent across different methodological approaches (as
summarized in Table S1 in Supporting Information S1). However, upon closer examination of Figures S2—-S5 in
Supporting Information S1, it is important to note that localized discrepancies are evident. These include vari-
ations in the best model outcomes for certain ecoregions (e.g., over parts of Eurasia, West Africa, and China)
when comparing square root (Figure S2 in Supporting Information S1) and logarithmic transformations of BA,
applying quadratic (Figure S3 in Supporting Information S1) versus linear detrending, or analyzing data from
alternative satellite products (Figure S4 in Supporting Information S1) and with or without the inclusion of
agricultural fires (Figure S5 in Supporting Information S1). Such differences, though not undermining our main
findings, highlight the complexity of the climate-BA relationship and underscore the importance of considering
multiple analytical perspectives.

3.2. Burned Area and Concurrent Weather

We assessed the sensitivity of BA to the concurrent predictor variables, SFWIc and SPEIc, using the coefficients
of statistical regression models correlating climate with BA (see Figure 3a). Since these predictor variables are
standardised with a mean of zero and a unit standard deviation, the sensitivity of the BA model gives us an
indication of how BAI adjusts with a unit change in these concurrent factors. The analysis reveals that the
sensitivity of BAI to SFWIc is 0.72, denoting a significant influence, particularly over boreal forests, in central
Africa and South America. These regions, highlighted in red in Figure 3a, represent 36% of the burnable ecor-
egion domain. On the other hand, SPEIc shows a similar, although slightly lower (as absolute values), sensitivity
of —0.71 (SPEI is negative for hot and dry conditions) over a smaller proportion of the domain, 28% of the
ecoregions. SPEIc, shown in shades of blue in Figure 3a, comprises parts of South America and Africa, as well as
specific areas of Southeast Asia, some ecoregions in Australia, North America, and Siberia. The best periods and
time scales for determining CC are shown in Figures 3b and 3c. The time when the concurrent climatic conditions
exert the greatest influence on the overall burned area tends to coincide with the end of the fire season under
consideration, as Figure 3b suggests. Indeed, the optimal month for calculating CC coincides with the end of the
fire season or with the immediately preceding month (over 50% of the ecoregions), the remainder ranging be-
tween month —2 and —7 (14%). Figure 3c shows a predominant selection of short-term drought/fire weather
conditions (3 months, over 31% of the ecoregions) over medium-term (6 months with 18%) and long-term
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Figure 2. Burned area variability explained by climate. (a) Total BA variability explained by climate variability over the period 2001-2021. Ecoregions with non-

significant models (p-value > 0.05) are represented as “No effect.” Over land, light gray denotes ecoregions where the burned area was zero in more than half of the
series. (b) Selected models explaining BA variability classified into five categories of climatic drivers. The SPEIc and SFWIc models consider only concurrent (same
fire season) variables. The SPEIa model considers antecedent SPEI, that is, values prior to the fire season. (c) Frequency histogram of the five models selected over the
ecoregions to explain BA variability. Ecoregions with non-significant models (p-value > 0.05) are represented in dark gray.

conditions (12 months with 16%). The spatial distribution of the data exhibits no discernible pattern, often
presenting adjacent ecoregions with the shortest and longest aggregation periods side by side.

3.3. Burned Area and Antecedent Weather

The sensitivity of BA to the SPEIa index (Figure 4a) shows the variation of BAI to a unit change of this
(standardised) antecedent variable. According to the data, approximately 41% of the ecoregions show a signif-
icant link between BA and SPEIa. The analysis reveals that the sensitivity of BA to SPEIla is 0.52 (Table 1)
denoting a significant influence in South America, North America, Sub-Saharan Africa, and Australia, and locally
in Europe and Asia. Based on the observed antecedent climate effect, it appears that high rainfall and cool
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g:mbirialry Statistics of the Influence of Climate on the Burned Area Variability

Statistic Values

Variance explained (global median) 0.60

Percentage of the domain with statistically significant influence of climate variability on 71% (of the ecoregions)
burned area variability 77% (of the total surface)

Burned area sensitivity to concurrent SFWIc index (global median) 0.72

Percentage of the domain with statistically significant influence of concurrent SFWIc 36% (of the ecoregions)

36% (of the total surface)
Burned area sensitivity to concurrent SPEIc index (global median) —0.71
Percentage of the domain with statistically significant influence of concurrent SPEIc 28% (of the ecoregions)

27% (of the total surface)

Burned area sensitivity to antecedent SPEIa index (global median) 0.52
Percentage of the domain with statistically significant influence of antecedent climate 41% (of the ecoregions)
variability (SPEIa) on burned area variability 47% (of the total surface)

conditions, which can be indicative of a large amount of water in the soil, before the fire season can potentially
result in higher biomass production. As a result, fuel continuity is sustained, leading to an increase in subsequent
fire activity.

The periods and best time scales for determining the antecedent SPEIa are shown in Figures 4b and 4c. The
optimal month for calculating the AC does not show a defined pattern (Figure 4b). Specifically, for 20% of the
ecoregions, the optimal month to compute the antecedent SPEI ranges from 7 to 2 months before the fire season
onset. For another 21% of the ecoregions, this optimal period extends further, from 14 to 8 months before the start
of the fire season. Also, the spatial distribution of the optimal aggregation periods (3, 6, or 12 months; Figure 4c)
for the antecedent climate indicators does not show a defined pattern. The best time scale, as evidenced by 3-
month climatic windows, covers 15% of the burneable ecoregions selected in South America, Africa, South
and Southeast Asia. The remaining 26% is evenly distributed between 6 and 12-month scales selected in Africa,
North Australia, North America, and locally in Europe and Asia.

3.4. Characteristics of the Climate-Fire Links

To investigate the potential climatic drivers behind spatial variations in climate-fire associations, we examined
the climatology of both the annual potential evapotranspiration and the annual precipitation averaged over the
study period. Table 2 presents an assessment of the relationships between these averages and the variance
explained by the climate-fire models, as well as with the CC and AC coefficients, using GAMs. The spatial
variability in the strength of the climate-fire associations, as quantified by the variance explained values of the
models, does not exhibit any clear patterns (as also shown in Figure 2a). This observ