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1  |  INTRODUCTION

Fire is a natural and essential process that has shaped many ecosys-
tems over geological time scales (Pausas & Keeley, 2009). As a result, 
plants are adapted to the historical fire regime, which encompasses 

the characteristic fire activity (i.e. frequency, severity, extent and 
seasonality) that prevails in their area of distribution. However, 
fire regimes are shifting abruptly due to global change (Pausas 
& Keeley, 2021; Pellegrini et al., 2021; Turner et al., 2019). Land- 
use changes such as the abandonment of agriculture and livestock 
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Abstract
Aim:Global change factors, such as warming, heatwaves, droughts and land- use 
changes, are intensifying fire regimes (defined here as increasing frequency or sever-
ity of fires) in many ecosystems worldwide. A large body of local- scale research has 
shown that such intensified fire regimes can greatly impact on ecosystem structure 
and function through altering plant communities. Here, we aim to find general pat-
terns of plant responses to intensified fire regimes across climates, habitats and fire 
regimes at the global scale.
Location:Worldwide.
Timeperiod:Studies	published	1962–2023.
Majortaxastudied:Woody plants, herbs and bryophytes.
Methods: We carried out a global systematic review and meta- analysis of the re-
sponse of plant abundance, diversity and fitness to increased fire frequency or sever-
ity. To assess the context dependency of those responses, we tested the effect of the 
following variables: fire regime component (fire frequency or severity), time since the 
last fire, fire type (wildfire or prescribed fire), historical fire regime type (surface or 
crown fire), plant life form (woody plant, herb or bryophyte), habitat type and climate.
Results:Intensified fire regimes reduced overall plant abundance (Hedges' d = −0.24),	
diversity (d = −0.27),	and	fitness	(d = −0.69).	Generally,	adverse	effects	of	intensified	
fire regimes on plants were stronger due to increased severity than frequency, in wild-
fires compared to prescribed fires, and at shorter times since fire. Adverse effects 
were also stronger for woody plants than for herbs, and in conifer and mixed forests 
than in open ecosystems (e.g. grasslands and shrublands).
Mainconclusions:Intensified fire regimes can substantially alter plant communities 
in many ecosystems worldwide. Plant responses are influenced by the specific fire 
regime component that is changing and by the biotic and abiotic conditions.
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grazing, as well as fire suppression policies, have increased plant 
biomass loads and continuity in many regions (Bowman et al., 2011; 
Dara et al., 2020;	Moreira	et	al.,	2011).	Moreover,	climate	change,	
characterized by warmer temperatures, increased frequency 
and intensity of heatwaves, and prolonged droughts, is increas-
ing the weather and fuel conditions conducive to fire (Abatzoglou 
et al., 2019; Berg et al., 2017; Jones et al., 2022). Furthermore, the 
expansion	of	the	wildland–urban	interface	in	many	ecosystems,	in-
cluding roads in tropical and boreal forests, is raising the number of 
fire ignitions (Jones et al., 2022; Radeloff et al., 2018). As a result of 
all these factors, many ecosystems are undergoing a perturbation 
of their fire regime (sensu Keeley & Pausas, 2019). We refer to this 
perturbation as intensification of the fire regime because frequency, 
severity and size of fires are moving towards the high extreme of 
their historical range of variability (Canadell et al., 2021; Pausas & 
Keeley, 2021; Senande- Rivera et al., 2022; Whitman et al., 2022). 
Given that plant species and communities are adapted to histori-
cal fire regimes (Keeley et al., 2011), such intensification of the fire 
regime can substantially alter plant communities, and the struc-
ture and functioning of ecosystems (Karavani et al., 2018; Keeley 
& Pausas, 2019; Nolan et al., 2021; Whitman et al., 2019). Here, we 
aim to summarize plant responses to intensified fire regimes across 
climates, habitats and fire regimes at the global scale.

The frequency and severity of fires are crucial components of 
fire regimes that greatly influence plant populations and communi-
ties. Increased fire frequency (i.e. the shortening of fire- free inter-
vals) can select for the individuals that are most suited to the novel 
fire regime (Guiote & Pausas, 2023). However, strong or abrupt in-
creases in fire frequency may prevent plants from refilling their seed 
bank (limiting postfire recruitment) or their carbon and nutrient re-
serves (limiting postfire resprouting), thus decreasing the resilience 
of fire- adapted plants (Enright et al., 2015; Hoffmann et al., 2012; 
Zedler, 1995).	More	severe	fires	can	also	damage	key	plant	organs	
such as basal and epicormic buds, secondary meristems, seeds and 
the hydraulic system, hindering post- fire survival and regeneration 
(Pausas & Paula, 2020; Schimmel & Granström, 1996). As such, both 
increased fire frequency and severity have been observed to reduce 
the abundance of key species in several habitats including grasslands 
(Gomes et al., 2018; Wright & Fensham, 2016), broadleaf forests 
(Etchells et al., 2020; Fairman et al., 2016), conifer forests (Schimmel 
& Granström, 1996; Turner et al., 2019) and shrublands (Foster 
et al., 2018; Talluto & Suding, 2008). Negative impacts on plant di-
versity have also been reported with increased fire frequency and 
severity (Cavender- Bares & Reich, 2012; Collins & Calabrese, 2012; 
DeSiervo et al., 2015). Therefore, as climatic and environmental 
changes escalate, intensified fire regimes (i.e. increased frequency or 
severity of fires) are expected to have an increasing adverse impact 
on plant communities worldwide.

Plant responses to intensified fire regimes are complex and 
can be influenced by the different variables associated with the 
fire regime. The specific component of the intensified fire regime 
(i.e. fire frequency or severity) is a key driver of plant responses 
(Alba et al., 2015; Giorgis et al., 2021; Keeley et al., 2005) because 

different species or populations have different fire- adaptive traits 
to cope with each component of the fire regime (Johnstone 
et al., 2016; Keeley & Pausas, 2022). The broad type of historical 
fire regime may be associated with the fire regime component being 
intensified: in crown- fire regimes the intensification is mainly related 
to an increase in fire frequency (e.g. warmer and drier conditions in 
North American boreal forests), while in surface- fire regimes it is 
typically related to an increase in fire severity (e.g. greater fuel accu-
mulation in North American Ponderosa pine forests that facilitates 
crown	fires;	Covington	&	Moore,	1994; Enright et al., 2015). Effects 
of intensified fire regimes inferred from studies using prescribed 
fires (burns) may differ from those using wildfires, as wildfires are 
typically larger and more severe (Alba et al., 2015).	Moreover,	time	
since the last fire can influence the observed fire effects (Alba 
et al., 2015; Eales et al., 2018) and mediate the response of different 
plant types, because the rate at which different plants respond to 
disturbances varies widely (Keeley et al., 2005). For example, short- 
lived, resource- acquisitive plants such as graminoids and forbs gen-
erally recover faster from fire than long- lived, resource- conservative 
shrubs and trees that often take longer to restore their biomass (Díaz 
et al., 2016; Willms et al., 2017).

Plant community composition and the environmental context can 
also mediate plant responses to intensified fire regimes (Pellegrini 
et al., 2021). Crucially, the life form of a plant may influence its re-
sponses due to differences in traits (Keeley & Pausas, 2022; Pekin 
et al., 2012). For example, compared to herbaceous plants, woody 
plants take longer to develop fire- coping mechanisms (e.g. reach 
sexual maturity, accumulate a reliable seedbank, grow a thick bark), 
and thus may be more susceptible to shortening fire- free intervals 
(Enright et al., 2015; Pausas & Paula, 2020; Willms et al., 2017). 
Conversely, woody species may have higher potential to survive 
low-	intensity	 fires.	 Meanwhile,	 some	 bryophytes	 are	 capable	 of	
quickly colonizing bare ground after a high- severity fire due to their 
high	 dispersal	 capacity	 (Maltby	 et	 al.,	1990). Plant responses may 
also depend on the type of habitat, such as forest, shrubland or 
grassland, because the different biotic and abiotic conditions (e.g. 
soil thermal and moisture dynamics, soil fertility, light and nutrient 
availability and herbivory pressure) impact post- fire regeneration 
(Alba et al., 2015; Foster et al., 2018; Pausas & Bond, 2020; Pellegrini 
et al., 2021). Similarly, post- fire plant recovery can also be driven 
by differences in large- scale abiotic conditions associated with 
broad climate types (e.g. temperature, water and light availability) 
(DeSiervo et al., 2015; Giorgis et al., 2021; Nolan et al., 2021).

While research on plant responses to intensified fire regimes has 
grown substantially over the past two decades (Giorgis et al., 2021), 
it has mainly focused on local and regional scales. Thus, we lack a 
global view of the effects of the ongoing intensification of fire re-
gimes,	 and	 the	 context-	dependency	 of	 those	 effects.	 Moreover,	
most quantitative research syntheses examining fire effects on 
plants at continental or global scales have focused on the effects 
of fire per se (i.e. burnt vs. unburnt comparisons) rather than on the 
effects of changes in fire regime (Alba et al., 2015; Eales et al., 2018; 
Giorgis et al., 2021; Willms et al., 2017). Only the synthesis by 
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Tangney et al. (2022) has addressed plant responses to altered fire 
regimes at the global scale but focusing exclusively on fire seasonal-
ity. To date, no study has investigated plant responses to increased 
fire frequency and severity across the diversity of climates, habitats 
and fire regimes worldwide.

In this study, we carried out a global systematic review and 
meta- analysis to examine the impact of intensified fire regimes on 
plant abundance, diversity and fitness. Our hypothesis is that, at the 
global scale, the intensification of fire regimes, that is, the increase 
in frequency or severity of fires, should negatively affect plants and 
thus modify their abundance, diversity or fitness, although the two 
components (severity and frequency) may be relevant in different 
ecological conditions. Specifically, we tested the following predic-
tions: (1) Intensified fire regimes reduce overall plant abundance, 
diversity or fitness, because many plants may be unable to recover 
from fire regimes that are at the extreme or outside of their his-
torical range (Enright et al., 2015; Johnstone et al., 2016; Keeley & 
Pausas, 2019). (2a) Increased fire severity has greater effects than 
increased fire frequency in forests, as potential step- changes in fire 
regime type (e.g. from surface to crown fires) can overwhelm plant 
responses (Fernández- García et al., 2020; Keeley & Pausas, 2019); 
meanwhile, (2b) increased fire frequency has greater effects on 
woody than on herbaceous plants because the former have lower 
growth rates and are thus more sensitive to shorter fire- free inter-
vals (Díaz et al., 2016; Knapp et al., 2015). (3) Increased fire sever-
ity has greater effects at short time scales (early post- fire) as the 
effect may fade with time (Giorgis et al., 2021), and this should be 
especially evident for woody vegetation due to their slower growth 
(Keeley et al., 2005; Willms et al., 2017). (4) Intensified wildfire re-
gimes have greater effects on plants in wildfire studies compared to 
prescribed fire studies, because fire severity and extent are usually 
greater in wildfires (Alba et al., 2015; Allen et al., 2016). (5) Forests 
are more sensitive to intensified fire regimes than open- canopy 
ecosystems (e.g. grasslands, shrublands) as the latter are historically 
more fire prone (Dantas et al., 2016; Karavani et al., 2018; Pausas 
& Bond, 2020).	 (6)	 Effects	 of	 intensified	 fire	 regimes	 are	 stronger	
(more negative) in ecosystems from arid and cold climates than in 
temperate and tropical climates because plant recovery rates in the 
former are more resource- limited (Fernández- García et al., 2020; 
Giorgis et al., 2021; Pellegrini et al., 2021). By addressing these pre-
dictions, we aimed to improve our understanding of the resilience 
of plant communities to the intensification of fire regimes, and the 
context- dependency of the fire effects across global environmental 
gradients.

2  | METHODS

2.1  |  Literaturesearchandcompilationofdataset

We followed the Preferred Reporting Items for Systematic re-
views	and	Meta-	Analyses	(PRISMA)	to	complete	this	review	(O'Dea	
et al., 2021; Page et al., 2021). We searched peer- reviewed research 

articles and book chapters in the databases Scopus and Web of 
Science using word combinations in English and Spanish related to 
fire regimes and vegetation responses in titles, abstracts and key-
words. All searches were carried out on 15 February 2023, and 
yielded 1779 publications (for complete search strings see Table S1 
in Supporting Information). We screened titles and abstracts with 
the help of the revtools package (Westgate, 2019) in R software ver-
sion 4.1.1 (R Core Team, 2021), and selected 593 publications for 
full- text screening.

We then selected the publications that met the following criteria: 
(1) the study focused on vegetation responses to variation in fire se-
verity, or fire frequency (we did not consider fire extent, seasonality, 
or simply burnt vs. unburnt comparisons); (2) vegetation response 
could be interpreted as positive or negative (e.g. compositional 
change was excluded); (3) fire regime comparisons were not obvi-
ously confounded with other factors such as seasonality, ecosystem 
type or management interventions; (4) the study was directly rele-
vant to natural ecosystems and was based on wildfires or prescribed 
fires in any season (small- scale experimental fires were excluded 
because of their highly artificial settings); (5) the study was based 
on original data (reviews and simulation studies were excluded) and 
on	 (6)	 current	 fire	 regimes	 (paleo-		 and	 dendro-	ecological	 studies	
were excluded); and (7) they included information to calculate an 
effect size based on Hedges' d (i.e. mean, standard deviation and 
number of observations of paired treatment groups) or to estimate 
d (correlation coefficients or F- tests and number of observations) 
(Borenstein, 2009; Lajeunesse, 2013). A total of 273 publications 
met these criteria.

To further improve the literature search, on 19 February 2023, 
we performed backward and forward searches on the seven most 
highly- cited publications among our selected publications, plus in 
three recent relevant reviews (Foo et al., 2021).	This	resulted	in	1865	
new publications, from which we selected 121 that met the crite-
ria described above. Thus, the total number of publications consid-
ered	was	394.	The	PRISMA	flowchart	(Figure S1) and list of the data 
sources (Appendix 1) provide more details on the database.

2.2  |  Effectsizes

To standardize results across studies, we used Hedges' d (sometimes 
called Hedges' g), which is a bias- corrected effect size based on 
the standardized mean difference between control and treatment 
groups (Rosenberg et al., 2013). To do this, we first extracted from 
figures, tables and text the mean, standard deviation and number 
of observations of vegetation response metrics for lower (‘control’) 
and higher (‘treatment’) fire frequency or fire severity. If a study 
reported more than two fire regime levels (e.g. low, moderate and 
high), we only considered the lowest and highest levels. Studies 
included a range of metrics for fire severity (e.g. soil heating, litter 
consumption, char height, canopy scorch) and, in a few cases, they 
provided fire intensity data. We grouped all these metrics together 
and used the term ‘fire severity’. In our data set, the higher treatment 
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(most intense fire regime) was generally associated with greater fire 
frequency or severity than the historical norm or towards the high 
end of the historical variability. This was explicitly stated or implicit 
in most studies (e.g. Bret- Harte et al., 2013; Etchells et al., 2020; 
Fernández- García et al., 2020; Grau- Andrés et al., 2019; Ibáñez 
et al., 2022; Turner et al., 2019; Whitman et al., 2019). Although for 
some studies the intensified fire regime may have been well within 
the historical variability, by considering both frequency and severity 
we explored the intensification of fire regimes in many environments, 
in line with global change projections (Abatzoglou et al., 2019; Jones 
et al., 2022; Pausas & Keeley, 2021; Senande- Rivera et al., 2022).

We used metaDigitise (Pick et al., 2019) to extract data from box-
plots, WebPlotDigitizer (Rohatgi, 2022) for scatterplots and ImageJ 
(Rasband, 1997) for other plot types. Then, we calculated Hedges' 
d and its variance following Borenstein (2009). When primary data 
for calculating d was not reported, we estimated it from secondary 
data (e.g. frequency tables, F- ratios, t- tests) using conversion for-
mulas in Borenstein (2009) and Lajeunesse (2013), and the online 
effect size calculator (Wilson, 2001). While most selected studies 
reported results for discrete fire regime levels (e.g. high and low 
fire	 severity),	 some	 (76	 studies)	 reported	 results	 over	 continuous	
fire regime variables (e.g. a gradient of soil heating). In these cases, 
we first computed Pearson's r and then converted it to Hedges' d 
following Borenstein (2009). Effect sizes standardize responses of 
plants under more intense fire regimes relative to those under less 
intense fire regimes. Therefore, a positive effect size indicates a pos-
itive response to an intensified fire regime (e.g. an increase in plant 
abundance with fire severity), while a negative effect size indicates 
the opposite.

Standard deviations (or data to estimate them) were not avail-
able for 35 studies. To avoid lowering the sample size that would 
likely increase publication bias (Kambach et al., 2020), we imputed 
the missing standard deviations following Lajeunesse (2013). To do 
this, we first computed coefficients of variation (i.e. standard devi-
ation to mean ratios) of complete- case studies included in the data 
set. Because the coefficient of variation can vary widely across en-
vironmental and experimental settings, we modelled coefficients of 
variation by fitting linear mixed effects models (function ‘lme’ in the 
package nlme; Pinheiro et al., 2022) including fire type (prescribed 
fire or wildfire), number of observations, plant life form, climate zone 
and time since fire as explanatory variables (see next section for 
details of each variable). Study ID was included as a random effect 
to account for non- independence. We fitted separate models for 
each of our three response variables (i.e. abundance, diversity and 
fitness; see below). Reduced models including only statistically sig-
nificant (p < 0.05)	explanatory	variables	were	then	used	to	estimate	
coefficients of variation. Finally, modelled coefficients of variation 
were multiplied by the reported means to obtain imputed standard 
deviations for the studies for which it was not available. Results of 
meta- analyses excluding effect sizes computed using imputed data 
are also provided.

Pseudo- replication (non- independent data due to, e.g. high spa-
tial autocorrelation) was detected in 27 studies. Using an artificially 

high number of observations wrongly reduces effect size variance 
and can ultimately bias meta- analysis through inflated effect size 
precision. To address this, in studies with pseudo- replicated data, 
we computed the variance of Hedges' d using the lower number 
of observations at the reported true replicate level (e.g. at the plot 
rather than at the individual level), which results in a more conserva-
tive variance estimate (Eales et al., 2018). Five remote sensing stud-
ies on large wildfires reported very high sample sizes based on the 
total number of pixels retrieved. Given the high spatial correlation 
of these data, we reduced the sample size by simulating an increase 
of	the	pixel	size	to	4 km2, which we estimated to be large enough to 
be spatially independent in the context of large wildfires. Although 
our approach is somewhat arbitrary, it led to conservative sample 
sizes (median sample size was reduced from 441 to 18), coherent 
with similar remote sensing studies.

2.3  |  Responseandmoderatorvariables

We classified plant responses into three categories termed ‘abun-
dance’ (including plant frequency, density, cover, size, biomass and 
recovery), ‘diversity’ (including taxonomic and functional richness, 
Shannon- Wiener and inverse Simpson diversity indices, Pielou's 
evenness, beta- diversity), and ‘fitness’ (including fitness compo-
nents and other related variables, e.g. survival, growth rate, photo-
synthetic and other fluxes, reproductive output, nutrient content). 
The number of effect sizes and studies for each metric, within the 
three plant response categories, is provided in Table S2. For each 
effect size, we recorded information of variables that may affect 
vegetation responses to altered fire regimes (i.e. moderator vari-
ables). These variables were fire type (wildfire and prescribed fires), 
fire regime component (fire severity and fire frequency), the type of 
historical fire regime (surface fires, crown fires or non- fire prone), 
plant life form (bryophytes, herbs and woody vegetation), habitat 
type (broadleaf forest, conifer forest, mixed forest, grassland, shrub-
land and woodland), climate (arid, cold, temperate with a dry season, 
temperate without a dry season and tropical), and time since the last 
fire	(short,	i.e.	24 months	or	less,	and	long,	i.e.	longer	than	24 months;	
Giorgis et al., 2021). The type of historical fire regime was based 
on the prevailing fire regime for the ecosystem in question; mixed- 
severity fire regimes were included in the crown- fire type. Climate 
types were defined following the Köppen- Geiger classification sys-
tem (Peel et al., 2007) and assigned to each location with the help 
of the R package kgc (Bryant et al., 2017). We chose a 24- month 
cutpoint for short versus long time since fire because the vegetation 
is	most	dynamic	during	the	first	2 years	post-	fire	(Giorgis	et	al.,	2021; 
Grau- Andrés et al., 2017; Velle et al., 2014), although we acknowl-
edge there is large variation, for example, among habitats and plant 
life forms. Time since fire was only considered when studying fire 
severity (and not for fire frequency to avoid confounding effects).

Given that switching from surface fire to crown fire is one of 
the most abrupt fire regime changes currently occurring in many 
landscapes (Keeley & Pausas, 2019; Pausas & Keeley, 2014a), we 
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specifically identified effect sizes related to surface- to- crown fire 
regime changes. For this, we considered studies where such step- 
change was possible, that is, in forests where low-  and high- fire 
severity levels could be associated with surface and crown fires, re-
spectively. We selected studies in which fire regime type was clearly 
stated or could be confidently inferred from site description and fire 
effects (e.g. post- fire tree mortality). Thus, this is a special case of 
increasing fire severity.

2.4  | Meta-analysis

We carried out all data analyses and plotting using R software ver-
sion	4.1.1.	Meta-	analyses	were	performed	by	fitting	multivariate	
mixed- effects linear models, as implemented in the function ‘rma.
mv’ from the package metafor (Viechtbauer, 2010). We fitted sepa-
rate models for each of the three response variables (i.e. abun-
dance, diversity and fitness). We identified extremely influential 
observations using the function ‘cooks. dista nce. rma. mv’ in meta-
for. As a result, we removed three effect sizes in the abundance 
data set, two effect sizes in the diversity data set and two effect 
sizes in the fitness data set. Given that most studies contributed 
with more than one effect size (e.g. for different taxa, sites), to 
account for non- independence of effect sizes, all models incorpo-
rated as a random factor the effect size identity (a unique identi-
fier for each effect size) nested within study identity (Cornwall 
et al., 2022; Giorgis et al., 2021). We ran the models without the 
intercept to test effect size differences from zero, and to esti-
mate	the	mean	effect	size	for	each	moderator	level.	Mean	effect	
sizes were considered significantly different from zero if their 
95% confidence intervals did not include zero. For each response 
variable, we first fitted a global model including Hedges' d and its 
variance without moderator variables, to test the overall effect 
of intensified fire regimes on vegetation. We then fitted models 
that included one moderator (i.e. fire regime component, fire type, 
time since the last fire, historical fire regime type, plant life form, 
habitat or climate) to test how the different moderator variables 
affect plant responses. To gain further insights into the effect of 
key fire- related moderators (fire regime component, fire type, 
time since the last fire and historical fire regime type), we tested 
these moderators for data subsets of other moderators. Finally, to 
assess the effect of step- changes in fire behaviour, we analysed 
plant responses to increased fire severity associated with a change 
from surface to crown fire.

We used funnel plots and Egger's regressions to examine pub-
lication bias (Nakagawa et al., 2022). To do this, we used the meta- 
analytic residuals of the overall models (adequate for models with 
dependency structures such as ours, and for accounting for data 
heterogeneity; Leal et al., 2022; Nakagawa et al., 2022; Nakagawa 
& Santos, 2012). We plotted, for each response variable, the meta- 
analytic residuals against sample size, and ran linear regressions with 
the meta- analytic residuals as the response variable and sample size 
as the explanatory variable. To calculate sample size, rather than 

simply adding up sample sizes of treatment and control groups, we 
used the ‘effective sample size’, as it accounts for unbalanced sam-
pling designs (following Nakagawa et al., 2022).

3  |  RESULTS

3.1  | Datasetsofeffectsofintensifiedfireregime
onvegetation

We	 computed	 2363	 effect	 sizes	 of	 plant	 responses	 to	 intensified	
fire regimes from 394 studies. The country where most studies 
were performed was the United States (151 studies), followed by 
Australia	(68),	Spain	(30),	Canada	(22),	South	Africa	(16),	Brazil	(15)	
and Argentina (10) (Figure 1). The most studied response variable 
was	abundance	(1514	effect	sizes),	followed	by	diversity	(506),	and	
fitness (343) (Figure 2). Regarding fire regime components, there 
were more effect sizes on fire severity than on fire frequency (1377 
and	 986,	 respectively).	 More	 studies	 focused	 on	 wildfires	 (1499	
effect	sizes)	 than	on	prescribed	 fires	 (861).	Total	effect	sizes	 from	
long-		 and	 short-	time	 since	 fire	 studies	were	 similar	 (662	 and	649,	
respectively; note that time since fire was not considered for fire 
frequency). Historical fire regimes consisting of surface fires and of 
crown fires were similarly represented (1004 and 1079 effect sizes, 
respectively),	while	only	12	studies	(62	effect	sizes)	were	carried	out	
in non- fire- prone ecosystems.

3.2  | Overallplantresponsestointensifiedfire
regimes (Figure 2)

Intensified fire regimes significantly reduced plant abundance, di-
versity and fitness (Figure 2, Tables S3–S5; see Figure S2 for results 
excluding imputed data). Within each response variable, the differ-
ent metrics analysed showed broadly similar responses (Table S2). 
There was some variation in magnitude among metrics, most notably 
among the main abundance metrics, that is, frequency or density 
(Hedges' d = −0.314,	95%	CI = −0.456,	−0.171)	and	cover	(d = −0.062,	
CI = −0.220,	0.097).

Most	 moderator	 variables	 significantly	 affected	 plant	 re-
sponses. Fire severity and frequency reduced plant abundance, 
while only fire severity reduced plant diversity and fitness. In stud-
ies on wildfires, intensified fire regimes significantly decreased 
plant abundance, diversity and fitness, but not on prescribed fires. 
Moderator	analyses	 testing	 the	effect	of	 time	 since	 fire	 showed	
that increased fire severity reduced plant abundance in the short 
term	(i.e.	≤2-	year	post-	fire),	and	plant	diversity	and	fitness	in	both	
the long and short time. In surface- fire regimes, intensified fire 
regimes reduced plant abundance and diversity, while in crown- 
fire regimes, they reduced plant abundance and fitness. Regarding 
plant life form, intensified fire regimes significantly reduced abun-
dance and fitness of woody plants but had no effect on diver-
sity of bryophytes and herbs. Analyses including habitat type as 
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6of15  |    GRAU-ANDRÉS et al.

moderator showed that significant negative effects of intensified 
fire regimes on plant abundance, diversity and fitness were gen-
erally most evident in conifer and mixed forests. Intensified fire 
regimes impaired plants most strongly in cold climates, temperate 
climates with a dry season and tropical climates; but diversity was 
less affected than abundance and fitness (Figure 2).

3.3  |  Plantresponsesbyfiremoderators
(Figures 3–5)

The response of plant abundance to intensified fire regimes was me-
diated by the fire regime component (i.e. increased fire frequency 
or severity) across moderator variables (Figure 3a). This was most 
evident when considering the historical fire regime type, as plant 
abundance was significantly reduced by intensified fire severity (but 
not frequency) in surface- fire ecosystems, and by intensified fire 
frequency (but not severity) in crown- fire ecosystems. Surface- fire 
ecosystems were mostly grasslands and woodlands, while crown- fire 
ecosystems were shrublands and conifer forests (Figure S3). Further, 
woody plant abundance was reduced by increased fire frequency, but 
not by increased severity. Regarding plant diversity, it was reduced 
by increased fire severity in surface- fire regimes, wildfire studies, 
mixed forests, woodlands, cold climates and temperate climates with 
a dry season, while increased fire frequency had no effect (Figure 3b). 
Conversely, diversity of woody vegetation was reduced by higher fire 
frequency, not higher fire severity. For plant fitness, the greater effect 
of fire severity compared to fire frequency on decreasing fitness was 
consistent across most moderator categories (Figure 3c).

Fire type (i.e. prescribed or wildfire) mediated the effect of inten-
sified fire regimes on plant abundance, because negative effects in 
surface-  and crown- fire regimes, and in most habitats and climates, 

occurred for wildfires, but not for prescribed fires (Figure 4a). 
Similarly, plant diversity in surface- fire regimes, woody plants, and 
in some habitats and climates was significantly reduced by inten-
sified fire regimes in wildfire studies only (Figure 4b). Plant fitness 
was also significantly reduced by intensified fire regimes in wildfire 
studies (but not in prescribed fire studies) in surface-  and crown- fire 
regimes, woody plants, conifer and mixed forests, and temperate 
climates with a dry season (Figure 4c). However, in shrublands and in 
tropical climates, intensified fire regimes significantly impaired plant 
fitness in prescribed fire studies, but not in wildfires.

Shorter time since fire led to stronger negative effects of in-
creased fire severity on plant abundance and diversity across several 
moderators (Figure 5a,b). As such, we observed significant short- 
term effects (but not long- term effects) on plant abundance in stud-
ies focused on wildfires, surface- fire historical regimes, herbaceous, 
conifer forests, mixed forests and grasslands, and arid, cold and tem-
perate climates without a dry season (Figure 5a). Similarly, plant di-
versity was reduced in the short term (but not in the long term) in 
wildfires, surface- fire regimes, bryophytes, shrublands, and cold and 
temperate climates without a dry season (Figure 5b). Conversely, for 
plant fitness we found significant negative effects of increased fire 
severity in both the short and the long term (Figure 5c). For example, 
plant fitness in prescribed fire studies, in non- fire- prone ecosystems, 
and of woody plants was reduced in both the short and the long term. 
In crown- fire ecosystems and conifer forests, intensified fire regimes 
impaired plant fitness in the long term, but not in the short term.

3.4  |  Surface-to-crownfires(Figure 6)

Increased fire severity leading to step- changes in fire behav-
iour (i.e. surface- to- crown fires) had no overall effect on plant 

F IGURE 1 Locations	of	studies	included	in	the	meta-	analyses	(circles).	Climate	zones	follow	the	Köppen-	Geiger	classification	system	
(Peel et al., 2007). Areas with a high concentration of studies (in red rectangles) are detailed in Figure S5.
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    | 7of15GRAU-ANDRÉS et al.

abundance (d = −0.129,	 95%	 CI = −0.340	 to	 0.082)	 and	 diver-
sity (d = −0.162,	 95%	 CI = −0.551	 to	 0.226),	 but	 significantly	 re-
duced fitness (d = −1.473,	 95%	 CI = −2.407	 to	 −0.539;	 Figure 6). 
Nevertheless, plant abundance and diversity were significantly 
reduced by this step- change in mixed forests, while diversity of 
herbaceous plants decreased. Plant fitness was significantly re-
duced in crown- fire regimes, woody plants, conifer forests, and in 
temperate climates with a dry season.

3.5  |  Publicationbias

Funnel plots showed that data of plant abundance, diversity and 
fitness were reasonably symmetrical (Figure S4). The intercepts 
of modified Egger's regressions did not significantly differ from 
zero for abundance (t-	test = 0.317,	 p = 0.751,	 df = 1509),	 diversity	
(t-	test = −0.522,	 p = 0.602,	 df = 502),	 and	 fitness	 (t-	test = −0.579,	
p = 0.563,	df = 340).	Thus,	there	was	no	indication	of	publication	bias.

F IGURE 2 Response	of	plant	abundance	(a),	diversity	(b)	and	fitness	(c)	to	intensified	fire	regimes	across	moderator	categories	and	
overall. Circles are effect size estimates and whiskers are 95% confidence intervals. Open circles indicate that estimates are not statistically 
significantly different from zero at α = 0.05,	while	filled	symbols	indicate	significant	differences.	In	parentheses,	number	of	effects	sizes,	
followed by number of studies. ‘FR com.’ refers to fire regime component; ‘Type’ refers to fire type; ‘Time’ refers to time since the last fire; 
and ‘Hist. FR’ refers to type of historical fire regime. Time since fire was only examined in fire severity studies (not for fire frequency). 
Statistical information on the models underpinning this Figure 2 is given in Tables S3–S5.
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8of15  |    GRAU-ANDRÉS et al.

4  | DISCUSSION

We found global evidence that increasing frequency or severity of 
fires towards historical extreme values (intensified fire regimes) has 
an overall negative effect on plant abundance, diversity and fitness 
(Figure 2). Negative plant responses are observed at high fire sever-
ity or intensity, when the heat of the fire surpasses bark capacity 
to protect the cambium and transport tissues (i.e. not reaching the 
fire resistance threshold; Hoffmann et al., 2012), or when vegetative 
regenerative structures (i.e. buds) or seeds are damaged, affecting 

resprouting and recruiting abilities (Schimmel & Granström, 1996; 
Wright & Fensham, 2016).	Moreover,	 increased	fire	frequency	can	
also impede postfire resprouting and recruiting through exhaust-
ing bud reserves (Clarke et al., 2013) and preventing the accumula-
tion of a soil or canopy seed bank (e.g. immaturity risk, Keeley & 
Pausas, 2022; Zedler, 1995), leading to abrupt post- fire vegetation 
changes (Etchells et al., 2020; Turner et al., 2019). Although fire is a 
natural process in many ecosystems, our findings indicate that the 
intensification of fire regimes has, on average, negative ecological 
consequences (Enright et al., 2015; Johnstone et al., 2016; Keeley 

F IGURE 3 Response	of	plant	abundance	(a),	diversity	(b)	and	fitness	(c)	to	intensified	fire	regimes	across	moderator	categories,	for	each	of	
two fire regime components (i.e. increased fire frequency or increased fire severity). Symbols are effect size estimates and whiskers are 95% 
confidence intervals. Open symbols indicate that estimates are not statistically significantly different from zero at α = 0.05,	while	filled	circles	
indicate significant differences. In parenthesis, number of effects sizes, followed by number of studies; when these values are low, results 
should be interpreted with care. ‘Hist. FR’ refers to type of historical fire regime. Overall effects are provided in Figure 2 (see ‘FR com.’).
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    | 9of15GRAU-ANDRÉS et al.

& Pausas, 2019). However, the overall effects of this intensification 
were relatively minor, at least for the studied fire regime changes, as 
the magnitude of d for abundance (0.24), diversity (0.27) and fitness 
(0.69)	indicate	small	(0.2)	to	medium	(0.5)	effects	(Cohen,	1988).

The extent of negative plant responses varied across modera-
tor variables, with only about a quarter of tests yielding significant 
negative responses (Figures 3–5). This variability in the resilience 
of ecosystems is likely due to differences in their previous fire 
history and the degree of intensification tested compared to his-
torical variability. There was also variability among the response 
variables, with plant abundance being reduced by both increased 
fire severity and frequency, while plant diversity and fitness were 
unaffected by increased fire frequency (Figure 2). This limited 

effect of increased fire frequency on plant diversity and fitness 
could result from negative plant responses being balanced by pos-
itive ones. For example, increased fire frequency often impairs the 
abundance of dominant species, preventing competitive exclu-
sion of other species, and could thus contribute to the observed 
no	effect	on	diversity	(Miller	&	Safford,	2020; Velle et al., 2014). 
Similarly, although increased fire frequency can have direct neg-
ative effects on plant function, it can also enhance growth rates 
or reproductive output through rejuvenating plant communities 
or improving soil nutrient availability (Green et al., 2010; Hobbs 
& Gimingham, 1984), which on average could lead to a neutral ef-
fect on fitness. Overall, our findings point to more negative plant 
responses to increased fire severity (47% of the tests in Figure 3) 

F IGURE 4 Response	of	plant	abundance	(a),	diversity	(b)	and	fitness	(c)	to	intensified	fire	regimes	across	moderator	categories,	for	each	of	
two fire types (i.e. prescribed fires or wildfires). Symbols are effect size estimates and whiskers are 95% confidence intervals. Open symbols 
indicate that estimates are not statistically significantly different from zero at α = 0.05,	while	filled	symbols	indicate	significant	differences.	
In parenthesis, number of effects sizes, followed by number of studies; when these values are low, results should be interpreted with care. 
‘Hist. FR’ refers to type of historical fire regime. Overall effects are provided in Figure 2 (see ‘Type’).
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10of15  |    GRAU-ANDRÉS et al.

than to increased fire frequency (8% of the tests), particularly for 
diversity and fitness indicators.

This greater effect of fire severity was especially evident in 
mixed forests, but was also apparent in grasslands (Figure 3), 
which does not support our second prediction of greater negative 
effects of increased fire severity than of increased fire frequency 
in forests. Additionally, we found weak support for our prediction 
that those greater negative effects are related to step- changes in 
fire behaviour, as switching from surface to crown fires reduced 
plant abundance, diversity or fitness in mixed or conifer forests, 

but these effects were not widespread (Figure 6). Nevertheless, 
our finding that, in surface- fire regimes, plant abundance, diver-
sity and fitness were reduced by increased fire severity but not 
by increased fire frequency (Figure 3) supports ecological theory 
positing that historical fire regimes consisting of frequent, low- 
severity fires are sensitive to increases in severity but resilient to 
increases in frequency (Keeley & Pausas, 2022). Also consistent 
with our second prediction, we found that increased fire frequency 
impaired abundance and diversity of woody plants but not of her-
baceous plants (Figure 3). This is likely due to the generally low 

F IGURE 5 Response	of	plant	abundance	(a),	diversity	(b)	and	fitness	(c)	to	intensified	fire	regimes	across	moderator	categories,	for	each	of	
two levels of time since the last fire (i.e. long- term [>24 months],	or	short-	term	[≤24 months]).	Symbols	are	effect	size	estimates	and	whiskers	
are 95% confidence intervals. Open symbols indicate that estimates are not statistically significantly different from zero at α = 0.05,	while	
filled symbols indicate significant differences. In parenthesis, number of effects sizes, followed by number of studies; when these values are 
low, results should be interpreted with care. ‘Hist. FR’ refers to type of historical fire regime. Overall effects are provided in Figure 2 (see 
‘Time’). These results exclude fire frequency studies, as time since fire was only analysed in fire severity studies.
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    | 11of15GRAU-ANDRÉS et al.

growth rates of woody plants, which require longer fire- free in-
tervals than herbaceous plants to mature and develop fire- coping 
mechanisms (Díaz et al., 2016; Knapp et al., 2015; Zedler, 1995). 
As a result, woody plants may be more sensitive than herbs to 
increased fire frequency.

Increased fire severity reduced plant abundance at early post- fire 
stages,	 but	 the	effect	 decreased	with	 time	 (after	2 years	post-	fire),	
in line with our third prediction (Figure 2). However, increased fire 
severity reduced the short- term abundance of herbs but not woody 
plants, contrary to our expectation that woody plants would be more 
sensitive than herbs in the short term (Figure 5). Although herbaceous 
vegetation is usually more resource- acquisitive and has higher growth 
rates than woody vegetation, the latter is more likely to have fire- 
adaptive traits to survive direct fire effects (e.g. thick bark, growth in 
height; Pausas & Keeley, 2014b; Pekin et al., 2012). Therefore, the set 
of traits that confers quicker recovery from fire may depend on the 
environmental context. Overall, our results indicate that short- term 
responses to increased fire severity at the global scale do not differ 
substantially between herbaceous and woody vegetation.

For a few moderator categories, we detected significant ef-
fects of increased fire severity in the long term, but not in the 
short term (Figure 5). Among these, we found long- term reduced 
plant fitness in crown- fire regimes and in conifer forests. These 
long- term effects could be due to indirect fire severity effects on 
plants (e.g. through post- fire microclimate, soil conditions, compet-
itive interactions, phenological mismatch with pollinators), which 
take longer to affect plant communities than direct fire effects, 

and thus ultimately alter plant communities in the long term (Bowd 
et al., 2022; Ibáñez et al., 2022). Taken together, our findings illus-
trate that plant responses to disturbances, including to altered fire 
regimes, are temporally complex and, in some cases, may become 
stronger with time (Komatsu et al., 2019; Pellegrini et al., 2021).

Plant abundance and diversity were significantly reduced by 
intensified fire regimes in wildfire studies, but not in studies using 
prescribed fires (Figure 2), and this was consistent across many mod-
erator categories (Figure 4). This was expected (fourth prediction) 
as severity and area burnt are generally much greater in wildfires 
than in prescribed fires (Allen et al., 2016). Therefore, the higher fire 
severity in wildfires may further impair plant regeneration through 
damage to vegetative structures and seeds, and the higher fire ex-
tent may limit regeneration from seed sources outside the fire area 
(Alba et al., 2015; Johnstone et al., 2016). Our results suggest that 
the effect of intensified fire regimes in prescribed fire studies are 
mild compared to those in wildfire studies.

Our finding that plant abundance, diversity and fitness were 
overall most strongly affected by intensified fire regimes in coni-
fer and mixed forests supports our fifth prediction that forests are 
particularly sensitive to changes in fire regime (Figure 2). These re-
sults are broadly consistent with theory predicting that plants in less 
fire- prone ecosystems, such as forests, have less fire- adaptive traits 
and are thus more sensitive to fire than shrublands and grasslands 
(Karavani et al., 2018; Pausas & Bond, 2020). The lack of effects of 
intensified fire regimes in broadleaf forests could be due to the high 
fire resilience of Australian eucalypt forests (Foster et al., 2018), as 

F IGURE 6 Response	of	plant	abundance	(a),	diversity	(b)	and	fitness	(c)	in	forests	and	woodlands	to	increased	fire	severity	leading	to	a	
step- change in fire regime type (i.e. surface- to- crown fires), across moderator categories and overall. Circles are effect size estimates and 
whiskers are 95% confidence intervals. Open circles indicate that estimates are not statistically significantly different from zero at α = 0.05,	
while filled circles indicate significant differences. In parenthesis, number of effects sizes, followed by number of studies. ‘HFR’ refers to the 
historical fire regime. Crown HFR include mixed- severity fires.
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these highly fire- prone ecosystems comprised most of the broadleaf 
forest data in our study. In contrast to our results, some previous 
studies at the local scale suggest that shrublands and grasslands are 
more sensitive than forests to fire (Alba et al., 2015) and to increased 
fire frequency (Foster et al., 2018; Pellegrini et al., 2021). This em-
phasizes the importance of meta- analysis in searching for general 
ecological patterns and points out the dangers of extrapolating from 
single studies.

We found that plant abundance and fitness were reduced by 
intensified fire regimes in cold climates and in temperate climates 
with a dry season (Figure 2). While significant effects were also 
found in tropical climates, our results partly agree with our sixth 
prediction that ecosystems in drier and colder climates are partic-
ularly	sensitive	to	fire	effects.	Moisture	limitation,	which	can	hin-
der post- fire plant recovery, may be behind this pattern (Giorgis 
et al., 2021; Pellegrini et al., 2021). Furthermore, in drier climates, 
compound disturbances (i.e. fire followed by drought) that further 
impair plant recovery may have also contributed to the observed 
greater fire effect compared to other climates (Nolan et al., 2021; 
Whitman et al., 2019). Similarly, plants may be particularly sen-
sitive to intensified fire regimes in cold climates where fires are 
not historically common and plant recovery is limited by low tem-
peratures (Sundqvist et al., 2020). Furthermore, given that nutri-
ent limitation is prevalent across much of the boreal region that 
comprises the cold climate (Sponseller et al., 2016), low nutrient 
availability could also hinder post- fire recovery. Conversely, plant 
diversity was only reduced in tropical climates. This is in agree-
ment with the sensitivity of some tropical forests (rainforests) to 
fire (Cochrane, 2003; Jones et al., 2022) but not with the resil-
ience of tropical savannas to fire (Pausas & Bond, 2020). Overall, 
our results point to substantial negative effects of intensified fire 
regimes on plant abundance and fitness in ecosystems of dry and 
cold climates, and on plant diversity in tropical forests.

One of the limitations of this study is that it was not possible to 
measure how extreme the intensified regimes (‘treatments’) were 
compared with the historic variability. This is because of the lack of 
sufficient information on the historic variability of fire regimes for each 
study. Furthermore, for non- fire- prone ecosystems, the very few data 
available and their high variability precluded us from being able to 
confidently assess effects of intensified fire regimes (Figure 2). Finally, 
studies on fire effects are not homogeneously distributed across the 
globe. The high concentration of studies in some regions (e.g. western 
United States, south- eastern Australia, southern Europe) highlights 
that some other environments are underrepresented. Although we 
made an effort to compile as many studies as possible (Figure S1), our 
results are spatially biased by the current research available.

5  |  CONCLUSIONS

Previous broad- scale research has demonstrated that shifts in fire 
seasonality due to global change can fundamentally alter plant 

communities (Tangney et al., 2022). Our global meta- analysis shows 
that the overall effect of increasing fire severity or fire frequency, 
which are occurring in many ecosystems and are projected to in-
tensify, reduces plant abundance, diversity and fitness, although the 
magnitude of the effect is limited and the specific effect depends on 
other factors. It also shows the importance of considering the dif-
ferent fire regime components (frequency, severity, type) for under-
standing the effects of fire in ecosystems (Keeley & Pausas, 2022). 
While spatial variations in fire activity enhance diversity in both 
plants	 and	 animals	 (Moritz	 et	 al.,	 2023; Pausas & Ribeiro, 2017), 
this is not necessarily true for temporal variations, as organisms 
are adapted to the historical fire regime in a given area. Instead, 
the observed overall reduction in diversity suggests that some eco-
systems may become less diverse in the future if fire regimes keep 
intensifying. Our results also indicate that woody plants are more 
sensitive to intensified fire regimes than non- woody plants, which 
suggests that ecosystems dominated by woody plants may be par-
ticularly vulnerable to altered fire regimes (Giorgis et al., 2021). The 
fact that this was not observed in the short term may indicate that 
some time is required for differences between life forms to become 
perceptible. Overall, our study demonstrates that intensified fire re-
gimes can alter plant responses in many ecosystems worldwide, and 
that the magnitude and key drivers of those fire effects are context 
dependent.
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Figure S1. PRISMA flowchart detailing the identification of studies via databases and backward and 
forward searches, and their subsequent screening. Backward and forward searches were performed on 
seven highly cited articles (Enright et al., 2014; Fairman et al., 2016; Hart et al., 2019; Johnstone & 
Chapin, 2006; Peterson & Reich, 2008; Schimmel & Granstrom, 1996; Uys et al., 2004) and on three 
recent reviews (Halofsky et al., 2020; Nolan et al., 2021; Prichard et al., 2017). 

Records identified from: 
SCOPUS (n = 1742) 
Web of Science (n = 1668) 
Backward and forward 
searches (n = 2292) 
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Reports sought for retrieval 
(n = 857) 

Reports not retrieved (n = 4) 

Reports assessed for 
eligibility (n = 853) 

Reports excluded (n = 459) due to inadequate: 
Fire regime contrast (e.g., burnt vs unburnt only) (n = 
158) 
Data reporting (e.g., n and SD missing, results on SEM 
or heatmap) (n = 85) 
Experimental design (e.g., lab-based study, 
confounding factors, simulation study, review) (n = 97) 
Response variable (e.g., soil, plant community 
composition, fire behaviour) (n = 59) 
Fire regime component (e.g., seasonality, time since 
fire) (n = 39) 
Publication characteristics (e.g., conference paper, 
other languages) (n = 20) 
‘Treatment’ group (e.g., higher frequency treatment in 
line with historical fire regime) (n = 2) 
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Figure S2. Response of plant abundance (a), diversity (b), and fitness (c) to intensified fire regimes 
across moderator categories and overall, for data excluding imputed standard deviations. Circles are 
effect size estimates and whiskers are 95% confidence intervals. Open circles indicate that estimates 
are not statistically significantly different from zero at α = 0.05, while filled symbols indicate 
significant differences. In parentheses, number of effects sizes, followed by number of studies. ‘FR 
com.’ refers to fire regime component; ‘Type’, to fire type; ‘Time’, to time since the last fire; and 
‘Hist. FR’, to type of historical fire regime. Time since fire was only examined in fire severity studies 
(not for fire frequency). 
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Figure S3. Response of plant abundance (a), diversity (b), and fitness (c) to intensified fire regimes 
across moderator categories, for each of the two historical fire regime types (i.e., surface fires or 
crown fires). Symbols are effect size estimates and whiskers are 95% confidence intervals. Open 
symbols indicate that estimates are not statistically significantly different from zero at α = 0.05, while 
filled circles indicate significant differences. In parenthesis, number of effects sizes, followed by 
number of studies; when these values are low, results should be interpreted with care. Overall effects 
are provided in Figure 2 (see ‘Hist. FR’). 
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Figure S4. Funnel plots of effective sample size against residuals of overall meta-analysis models of 
plant abundance, diversity, and fitness. P-values refer to the intercept of Egger regressions including 
meta-analytic residuals as the response variable and effective sample size as the explanatory variable. 
The grey vertical line indicates the average of the residuals.  
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Figure S5. Location of studies in areas of high concentration of studies: western US (a), Iberian 
Peninsula (b), and south-eastern Australia (c). Climate zones follow the Köppen-Geiger classification 
system (Peel et al., 2007). 
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Table S1. Word strings used to search peer-reviewed articles relevant to vegetation responses to fire 
regimes in the databases Scopus and Web of Science, and the number of records those searches 
returned. Search fields ‘TITLE-ABS-KEY’ (Scopus) and ‘TS’ (Web of Science) include title, 
abstract, and keywords. Search operators ‘W/3’ (Scopus) and ‘NEAR/3’ (Web of Science) return 
results where words at either side of the operator are spaced up to three words away from each other. 
Asterisks include all possible terminations of the search term. Note that searches in both databases 
were performed in English and Spanish. 

Database Search string Num. 
Scopus TITLE ( ( wildfire OR fire OR burn* ) AND ( ( plant OR vegetation OR flora 

OR understor* OR overstor* OR forest* OR woodland OR rainforest OR 
shrub* OR heath* OR chaparral OR cerrado OR grass* OR savanna* OR 
prairie OR wetland OR tundra OR tree OR seed* OR woody OR graminoid OR 
forb OR herb* OR bryophyte OR moss) AND ( regeneration OR response OR 
recovery OR recruitment OR regrowth OR surviv* OR resilience OR 
germination OR resprout* OR abundance OR cover OR mortality OR richness 
OR diversity OR biodiversity) ) ) AND TITLE-ABS-KEY ( ( fire OR burn* OR 
wildfire*) W/3 (sever* OR frequen* OR intens* OR regime OR interval ) ) 

1742 

Web of 
Science 

TI = ( ( wildfire OR fire OR burn* ) AND ( ( plant OR vegetation OR flora OR 
understor* OR overstor* OR forest* OR woodland OR rainforest OR shrub* 
OR heath* OR chaparral OR cerrado OR grass* OR savanna* OR prairie OR 
wetland OR tundra OR tree OR seed* OR woody OR graminoid OR forb OR 
herb* OR bryophyte OR moss) AND ( regeneration OR response OR recovery 
OR recruitment OR regrowth OR surviv* OR resilience OR germination OR 
resprout* OR abundance OR cover OR mortality OR richness OR diversity OR 
biodiversity) ) ) AND TS = ( ( fire OR burn* OR wildfire*) NEAR/3 (sever* 
OR frequen* OR intens* OR regime OR interval ) ) 

1668 

Scopus TITLE-ABS-KEY ( ( fuego  OR  quema  OR  incendio )  AND  ( severidad  OR  
frecuencia  OR  intensidad  OR  régimen  OR  intervalo ) )  AND  ( LIMIT-TO ( 
LANGUAGE ,  "Spanish" ) ) 

28 

Web of 
Science 

TS = ((fuego OR quema OR incendio) AND (severidad OR frecuencia OR 
intensidad OR régimen OR intervalo)) 

1 
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Table S2. Meta-analytical models output of plant responses to intensified fire regimes for the main 
metrics within each response variable (abundance, diversity, and fitness). Recovery metrics are based 
on a baseline level (e.g., delta-NDVI); flux metrics are rates of fluid exchange (e.g., photosynthetic 
rates, transpiration); diversity metrics were transformed, if necessary, so that larger values indicate 
greater evenness (e.g., for Simpson’s dominance index, the sign of the effect size was changed). k is 
the number of effect sizes, n is the number of studies, and P is the p-value from statistical testing of 
differences from zero. 

Response variables and metrics k n Hedges’ d (95% CI) P 
Abundance 1510 280 -0.244 (-0.353, -0.135) <0.001 
    Density and frequency 613 162 -0.314 (-0.456, -0.171) <0.001 
    Cover 573 106 -0.062 (-0.220, 0.097) 0.446 
    Size and biomass 186 66 -0.205 (-0.422, 0.013) 0.066 
    Recovery 70 17 -0.942 (-1.400, -0.483) <0.001 
Diversity 505 117 -0.268 (-0.478, -0.059) 0.012 
    Richness 308 102 -0.280 (-0.502, -0.059) 0.013 
    Shannon and Simpson 107 47 -0.344 (-0.624, -0.064) 0.016 
    Evenness 38 19 -0.226 (-0.577, 0.126) 0.208 
    Beta-diversity 27 8 -0.246 (-0.728, 0.235) 0.316 
Fitness 342 110 -0.686 (-1.015, -0.358) <0.001 
    Survival 169 59 -0.948 (-1.360, -0.537) <0.001 
    Growth 76 27 -0.404 (-0.893 , 0.085) 0.106 
    Flux 40 11 -0.198 (-1.139, 0.743) 0.680 
    Reproductive effort 23 9 -0.580 (-1.262, 0.101) 0.095 
    Nutrient content 18 8 -0.216 (-1.277, 0.845) 0.690 
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Table S3. Meta-analytical models output of plant abundance responses to intensified fire regimes. For 
each moderator category, k is the number of effect sizes, n is the number of studies, P are statistical 
differences from zero, and QM and QE are Q-statistics from Wald-type chi-square tests that assess 
residual heterogeneity (QE, for the overall model) and the effect of moderators (QM, for models 
including moderator variables). This information is displayed graphically in Figure 2a of the 
manuscript. 

Moderators Category k n Hedges’ d (95% CI) P QM or QE (P) 

Fire regime 
component 

frequency 605 111 -0.267 (-0.435, -0.099) 0.002 
QM = 19.3 (<0.001) 

severity 905 174 -0.229 (-0.368, -0.090) <0.001 

Fire type 
prescribed 530 94 -0.176 (-0.363, 0.012) 0.067 

QM = 19.7 (<0.001) 
wildfire 979 185 -0.278 (-0.413, -0.143) <0.001 

Time since 
last fire 

long 431 102 -0.057 (-0.248, 0.135) 0.563 
QM = 18.1 (<0.001) 

short 430 94 -0.415 (-0.616, -0.214) <0.001 

Historical 
fire regime 

no-fire 46 8 -0.344 (-1.026, 0.337) 0.322 

QM = 15.2 (0.002) surface 621 108 -0.231 (-0.403, -0.058) 0.009 
crown 714 135 -0.218 (-0.375, -0.061) 0.007 

Plant life 
form 

bryophyte 56 19 0.387 (0.028, 0.747) 0.035 

QM = 29.9 (0.001) herb 376 96 -0.089 (-0.255, 0.077) 0.293 

woody 843 209 -0.287 (-0.412, -0.162) <0.001 

Habitat 

forest-broadleaf 299 68 -0.123 (-0.346, 0.101) 0.282 

QM = 23.2 (0.001) 

forest-conifer 594 105 -0.295 (-0.468, -0.121) 0.001 

forest-mixed 83 18 -0.632 (-1.073, -0.190) 0.005 

grassland 127 21 -0.247 (-0.623, 0.129) 0.198 

shrubland 151 28 -0.177 (-0.521, 0.167) 0.313 

woodland 200 36 -0.136 (-0.429, 0.158) 0.365 

Climate 

arid 100 19 -0.227 (-0.637, 0.183) 0.277 

QM = 22.1 (0.001) 
cold 393 71 -0.263 (-0.481, -0.044) 0.019 

temperate-dry 490 74 -0.252 (-0.455, -0.049) 0.015 

temperate-nodry 407 91 -0.149 (-0.344, 0.047) 0.136 

tropical 118 25 -0.531 (-0.913, -0.149) 0.006 

Overall Overall 1510 280 -0.244 (-0.353, -0.135) <0.001 QE = 12615 (<0.001) 
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Table S4. Meta-analytical models output of plant diversity responses to intensified fire regimes. For 
each moderator category, k is the number of effect sizes, n is the number of studies, P are statistical 
differences from zero, and QM and QE are Q-statistics from Wald-type chi-square tests that assess 
residual heterogeneity (QE, for the overall model) and the effect of moderators (QM, for models 
including moderator variables). This information is displayed graphically in Figure 2b of the 
manuscript.  

Moderators Category k n Hedges’ d (95% CI) P QM or QE (P) 

Fire regime 
component 

frequency 276 69 -0.059 (-0.313, 0.195) 0.609 
QM = 14.2 (0.001) 

severity 229 50 -0.543 (-0.826, -0.260) <0.001 

Fire type 
prescribed 202 46 -0.024 (-0.355, 0.306) 0.905 

QM = 9.0 (0.011) 
wildfire 301 70 -0.409 (-0.677, -0.141) <0.001 

Time since 
last fire 

long 132 36 -0.430 (-0.857, -0.003) 0.059 
QM = 6.8 (0.033) 

short 89 23 -0.619 (-1.089, -0.150) <0.001 

Historical 
fire regime 

no-fire 9 4 0.203 (-0.997, 1.402) 0.750 

QM = 5.1 (0.166) surface 263 62 -0.315 (-0.613, -0.016) 0.046 
crown 186 39 -0.161 (-0.536, 0.214) 0.280 

Plant life 
form 

bryophyte 9 4 -0.05 (-0.855, 0.755) 0.842 

QM = 2.3 (0.515) herb 127 33 -0.048 (-0.273, 0.176) 0.605 

woody 120 33 -0.175 (-0.405, 0.056) <0.001 

Habitat 

forest-broadleaf 94 25 -0.186 (-0.623, 0.251) 0.330 

QM = 13.0 (0.043) 

forest-conifer 189 37 -0.139 (-0.501, 0.224) 0.462 

forest-mixed 25 8 -1.108 (-1.790, -0.425) 0.003 

grassland 53 16 -0.217 (-0.801, 0.367) 0.497 

shrubland 24 7 -0.488 (-1.310, 0.334) 0.239 

woodland 97 26 -0.238 (-0.691, 0.215) 0.326 

Climate 

arid 59 9 0.105 (-0.615, 0.825) 0.813 

QM = 10.0 (0.074) 
cold 97 21 -0.289 (-0.779, 0.200) 0.256 

temperate-dry 192 37 -0.328 (-0.684, 0.027) 0.068 

temperate-nodry 122 37 -0.137 (-0.50, 0.227) 0.473 

tropical 35 14 -0.755 (-1.417, -0.093) 0.036 

Overall Overall 505 117 -0.268 (-0.478, -0.059) <0.001 QE = 4593 (<0.001) 
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Table S5. Meta-analytical models output of plant fitness responses to intensified fire regimes. For 
each moderator category, k is the number of effect sizes, n is the number of studies, P are statistical 
differences from zero, and QM and QE are Q-statistics from Wald-type chi-square tests that assess 
residual heterogeneity (QE, for the overall model) and the effect of moderators (QM, for models 
including moderator variables). This information is graphically displayed in Figure 2c of the 
manuscript. 

Moderators Category k n Hedges’ d (95% CI) P QM or QE (P) 

Fire regime 
component 

frequency 102 38 -0.066 (-0.553, 0.421) 0.790 
QM = 28.3 (<0.001) 

severity 240 74 -0.995 (-1.366, -0.625) <0.001 

Fire type 
prescribed 126 43 -0.502 (-1.026, 0.022) 0.061 

QM = 17.5 (<0.001) 
wildfire 216 67 -0.806 (-1.230, -0.383) <0.001 

Time since 
last fire 

long 98 34 -1.034 (-1.636, -0.432) 0.001 
QM = 17.8 (<0.001) 

short 128 42 -1.004 (-1.567, -0.441) <0.001 

Historical 
fire regime 

no-fire 6 4 -0.85 (-2.693, 0.992) 0.366 

QM = 15.9 (0.001) surface 116 43 -0.494 (-1.060, 0.072) 0.087 
crown 178 48 -0.951 (-1.484, -0.417) <0.001 

Plant life 
form 

bryophyte 3 2 -0.177 (-2.704, 2.349) 0.891 

QM = 17.6 (0.001) herb 26 13 -0.062 (-0.770, 0.645) 0.863 

woody 282 87 -0.759 (-1.131, -0.387) <0.001 

Habitat 

forest-broadleaf 100 33 -0.348 (-0.932, 0.237) 0.244 

QM = 28.3 (<0.001) 

forest-conifer 110 32 -1.073 (-1.669, -0.476) <0.001 

forest-mixed 41 6 -2.263 (-3.589, -0.937) 0.001 

grassland 22 9 -0.710 (-1.882, 0.463) 0.235 

shrubland 37 12 -0.709 (-1.716, 0.298) 0.168 

woodland 28 15 0.006 (-0.880, 0.892) 0.990 

Climate 

arid 24 8 -1.187 (-2.382, 0.007) 0.051 

QM = 34.5 (<0.001) 
cold 88 26 -0.734 (-1.367, -0.101) 0.023 

temperate-dry 52 19 -1.918 (-2.67, -1.165) <0.001 

temperate-nodry 150 44 -0.134 (-0.623, 0.355) 0.592 

tropical 27 12 -0.244 (-1.190, 0.701) 0.613 

Overall Overall 342 110 -0.686 (-1.015, -0.358) <0.001 QE = 3604 (<0.001) 
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