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BACKGROUND: Fire has shaped the diversity
of life on Earth for millions of years. Variation
in fire regimes continues to be a source of
biodiversity across the globe, andmany plants,
animals, and ecosystems depend on particular
temporal and spatial patterns of fire. Although
people have been using fire tomodify environ-
ments for millennia, the combined effects of
human activities are now changing patterns of
fire at a global scale—to the detriment of human
society, biodiversity, and ecosystems. These
changes pose a global challenge for understand-
ing how to sustain biodiversity in a new era of
fire. We synthesize how changes in fire activity
are threatening species with extinction across
the globe, highlight forward-looking methods

for predicting the combined effects of human
drivers and fire on biodiversity, and foreshadow
emerging actions and strategies that could revo-
lutionize how society manages fire for bio-
diversity in the Anthropocene.

ADVANCES: Our synthesis shows that inter-
actions with anthropogenic drivers such as
global climate change, land use, and biotic
invasions are transforming fire activity and
its impacts on biodiversity. More than 4400
terrestrial and freshwater species from a wide
range of taxa and habitats face threats asso-
ciatedwithmodified fire regimes.Many species
are threatened by an increase in fire frequency
or intensity, but exclusion of fire in ecosystems

that need it can also be harmful. The promi-
nent role of human activity in shaping global
ecosystems is the hallmark of the Anthropo-
cene and sets the context in whichmodels and
actions must be developed. Advances in pre-
dictive modeling deliver new opportunities to
couple fire and biodiversity data and to link
themwith forecasts of multiple drivers includ-
ing drought, invasive plants, and urban growth.
Making these connections also provides an
opportunity for new actions that could revo-
lutionize how society manages fire. Emerging
actions include reintroduction of mammals
that reduce fuels, green fire breaks comprising
low-flammability plants, strategically letting
wildfires burn under the right conditions,
managed evolution of populations aided by
new genomics tools, and deployment of rapid
response teams to protect biodiversity assets.
Indigenous fire stewardship and reinstatement
of cultural burning in a modern context will en-
hancebiodiversityandhumanwell-being inmany
regions of the world. At the same time, interna-
tional efforts to reduce greenhouse gas emissions
are crucial to reduce the risk of extreme fire
events that contribute to declines in biodiversity.

OUTLOOK: Conservation of Earth’s biological
diversity will be achieved only by recognition
of and response to the critical role of fire in
shaping ecosystems. Global changes in fire re-
gimes will continue to amplify interactions
between anthropogenic drivers and create dif-
ficult trade-offs between environmental and
social objectives. Scientific inputwill be crucial
for navigating major decisions about novel
and changing ecosystems. Strategic collection
of data on fire, biodiversity, and socioeconomic
variables will be essential for developingmodels
to capture the feedbacks, tipping points, and
regime shifts characteristic of the Anthropo-
cene. New partnerships are also needed to
meet the challenges ahead. At the local and
regional scale, getting more of the “right” type
of fire in landscapes that need it requires new
alliances and networks to build and apply
knowledge. At the national and global scale,
biodiversity conservation will benefit from
greater integration of fire into national bio-
diversity strategies and action plans and in the
implementation of international agreements
and initiatives such as the UN Convention on
Biological Diversity. Placing the increasingly
important role of people at the forefront of
efforts to understand and adapt to changes in
fire regimes is central to these endeavors.▪
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Interactions between fire and anthropogenic drivers such as global climate change, land use, and invasive species
are reshaping ecosystems worldwide. A hotter and drier climate causes more extreme fire weather in southeastern
Australia and significant loss of biota. Human-caused ignitions at the interface of urban areas and forests increase the risk
of large, severe fires in the western United States, with growing human and ecological costs. In South Africa, fynbos
shrublands depend on recurrent fire, yet invasive woody species can promote high-intensity fires that harm native plants
and seedbanks. Changes in climate, land use, and species redistributions are underpinned by socioeconomic drivers. In
many parts of the world, cessation of traditional fire practices has been linked with detrimental outcomes for biodiversity. In
the fire-dependent savannas (cerrado) of Brazil, deliberate use of fire by Indigenous and local peoples, such as the Xavante,
can have positive effects on biodiversity.P
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Fire has been a source of global biodiversity for millions of years. However, interactions with
anthropogenic drivers such as climate change, land use, and invasive species are changing the nature of
fire activity and its impacts. We review how such changes are threatening species with extinction and
transforming terrestrial ecosystems. Conservation of Earth’s biological diversity will be achieved only
by recognizing and responding to the critical role of fire. In the Anthropocene, this requires that
conservation planning explicitly includes the combined effects of human activities and fire regimes.
Improved forecasts for biodiversity must also integrate the connections among people, fire, and
ecosystems. Such integration provides an opportunity for new actions that could revolutionize how
society sustains biodiversity in a time of changing fire activity.

F
ire has shaped the diversity of life on
Earth for millions of years (1). Variation
in fire regimes enables many plants to
complete their life cycles (2), creates
habitats for a range of animals (3), and

maintains a diversity of ecosystems (4). Al-
though people have used fire to modify envi-
ronments for millennia (5–7), the cumulative
effects of human activities are now changing
patterns of fire at a global scale—to the det-
riment of human society, biodiversity, and
ecosystems.
Many recent fires have burned ecosystems

where fire has historically been rare or absent,
from the tropical forests of Southeast Asia (8)
and South America (9) to the tundra of the
Arctic Circle (10). Large, severe fires have also
been observed in areas with a long history of
recurrent fire, and this is consistent with
predictions of increased wildfire activity in
the boreal forests of Canada and Russia (11, 12)
and the mixed forests and shrublands of
Australia, southern Europe, and the western
United States (13–15). Conversely, fire-dependent
grassland and savanna ecosystems in coun-
tries such as Brazil, Tanzania, and the United
States have had fire activity reduced and even
excluded (16–18). These emerging changes pose
a global challenge for understanding how to
sustain biodiversity in a new era of fire. This
requires improvedknowledgeof the interactions
among fire, biodiversity, and human drivers and
new insights into conservation actions that will
be effective in this changing environment.
In this review, we explore the causes and

consequences of fire-induced changes to bio-
diversity in the Anthropocene, the current era
characterized by the prominent role of human
activity in shaping global ecosystems. We start

by synthesizing how changes in fire activity
threaten species with extinction across the
globe. Next, we examine howmultiple human
drivers are causing these changes in fire acti-
vity and biodiversity.We then highlight forward-
looking methods for predicting changes in
ecosystems and forecasting the positive and
negative effects of fire on biodiversity. Finally,
we foreshadow emerging actions and strategies
that could revolutionize how society manages
biodiversity in ecosystems that experience fire.
Our review concludes that conservation of
Earth’s biodiversity is unlikely to be achieved
without incorporating the critical role of fire
in national biodiversity strategies and action
plans and in the implementation of interna-
tional agreements and initiatives such as the
UN Convention on Biological Diversity.

Extinction risk in a fiery world

A central concept in fire science is the fire re-
gime, which describes the type, frequency, in-
tensity, seasonality, and spatial dimensions of
recurrent fire (19). Many species are adapted to
a particular fire regime, so substantial changes
to these fire characteristics can harm popula-
tions (20) and shift ecosystems (21). For example,
plants that require fire to release seeds can be
threatened by fire intervals shorter than the
time needed for them to mature and reestab-
lish a seed bank or by fire intervals longer than
seed and plant life spans (22). For animals,
changes in the frequency and intensity of fire
can reduce the availability of key resources
for foraging and shelter, limit the capacity to
recolonize regenerating habitats, and, in the case
of severe fires, directly increase mortality (23).
We reviewed the 29,304 terrestrial and fresh-

water species categorized as threatened with

extinction by the International Union for the
Conservation of Nature (IUCN) (24) and found
that for at least 4403 (15%), modification of
fire regimes is a recorded threat. Changes in
fire activity threaten a range of taxonomic groups
that have been assessed comprehensively or
through sampling representative species or
multiple regions, from birds, dragonflies, and
mammals to gymnosperms, legumes, and
monocots (Fig. 1A). Some groups, such as
gymnosperms, are at greater risk of fire-driven
extinction: Changed fire activity is a threat
to 28% of these taxa classified as critically
endangered, endangered, or vulnerable (Fig. 1A).
Changes in fire activity threaten biodiversity

in habitat types worldwide (Fig. 1B). Propor-
tionally, the threat from changed fire activity
to species at risk of extinction is greater for
savannas (28%), closely followed by grasslands
(26%), rocky areas (26%), shrublands (26%),
and forests (19%) (Fig. 1B).
Across nine taxonomic groups that have

been assessed systematically (Fig. 1A), we
found that at least 1071 species are catego-
rized as threatened by an increase in fire
frequency or intensity and 55 species by
exclusion of fire. This delineation, however,
oversimplifies the nature of threats; for example,
it masks the relationship in some ecosystems
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between fire exclusion and subsequent intense
wildfire from fuel accumulation. Nevertheless,
important differences within and between
habitat types emerge when the direction of
fire regime change is considered. For example,
of the species categorized as threatened by an
increase or decrease in fire activity in forests
(Fig. 1B), exclusion of fire is a threat to 17% of
those in temperate forests and only 1% of those
in tropical moist montane forests.
Changes in fire activity also threaten other

levels of biodiversity. Assessments undertaken
through the IUCN Red List of Ecosystems
show that altered fire regimes, in combination
with other drivers, threaten whole ecosystems

with collapse, including the Cape Flats Sand
Fynbos of South Africa and the mountain ash
(Eucalyptus regnans) forests of Australia (25).
Many biodiversity hotspots remain inadequately
studied, and unprecedented recent fires such as
the 12.6 million ha of vegetation burned in
easternAustralia from late 2019 to early 2020 (26)
mean that numerous species may have declined
since their statuswas assessed. Thus,weare likely
underestimating the total number of species
threatened by ongoing changes in fire regimes.

Drivers of change in the Anthropocene

Among the profound consequences of the
Anthropocene is the acceleration of Earth

toward a hotter climate and a markedly
different biosphere (27). Fire is both a con-
sequence of and a contributor to this acceler-
ation (28) but it is not acting alone: Interactions
between fire and anthropogenic drivers such as
global climate change, land use, and invasive
species are reshaping ecosystems worldwide.
Recentwork describing global fire regimes has
shown that patterns of fire are closely linked
to climate, vegetation, and human activity
(7, 17, 29, 30). Here, we synthesize linked
changes in biodiversity and fire regimes and
how they are shaped by three groups of direct
drivers arising from human actions (Fig. 2 and
table S1), as well as indirect socioeconomic
drivers that underpin them (31). Our focus is
on taxa and ecosystems likely to be threatened
by the pace and magnitude of such change
while recognizing that some taxa stand to
benefit from these changes.

Global climate change

Anthropogenic climate change, including rising
atmospheric CO2 and a hotter global climate,
modifies fire regimes by changing fuels, igni-
tions, and fire weather (32). These changes in
turn alter the composition of ecosystems and
the nature of species interactions. A prime
example is fire interacting with more-severe
droughts. In the Mediterranean Basin, abrupt
shifts in ecosystems from forest to shrubland
are triggered by large fire events followed by
at least one extreme drought year (33). Else-
where, intensifying droughts are contributing
to more widespread fires in tropical forests in
Amazonia, the Congo Basin, and Southeast
Asia, with high mortality of thin-barked trees
(34). More frequent or more intense climate-
induced fires even threaten forests with a long
history of high-intensity fire. For example, suc-
cessive fires that occur before trees can set seed
and reproduce are reshaping the species com-
position of temperate forests in Australia (35),
subalpine forests in the United States (36), and
boreal forests in Canada (11) and Russia (12).
Such changes have cascading effects on the biota.
For example, high-intensity fires in boreal forests
in Alaska negatively affect microbes and fungi
through soil heating (37) and by reducing the
cover of lichens, a critical food source for caribou
(Rangifer tarandus) (38).

Land-use change

Humans alter fire regimes through land-use
changes associated with agriculture, forestry,
and urbanization and by intentionally starting
or suppressing fires (6, 7, 13). How changes
in land use affect fuels, fire, and biodiversity
varies depending on the type of activity and
ecosystem.
Until recent decades, tropical broadleaf

forests of the Afrotropical, Indomalayan,
and Neotropical realms rarely experienced
large fires (8, 39). Contemporary land use,
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Fig. 1. Fire-driven extinction risk by taxonomic group and habitat type. (A) The percentage of
threatened species (those classified as critically endangered, endangered, or vulnerable) for which
modification of fire regimes is a threat (defined as threat type “Natural system modifications - Fire and
fire suppression” in the IUCN Red List) for nine taxonomic groups. n is the total number of threatened
species within each taxonomic group. Selected species include those globally assessed for the IUCN Red List,
from groups assessed either comprehensively (amphibians, birds, gymnosperms, mammals), through a sampled
approach of global data (dragonflies and damselflies, legumes, monocots, reptiles), or across several regions
(freshwater fishes). The estimated percentages of species in each group that has been assessed include:
gymnosperms, 91%; legumes, 17%; birds, 100%; monocots, 10%; amphibians, 84%; dragonflies and damselflies,
72%; mammals, 90%; reptiles, 71%; and freshwater fishes, 61%. (B) The percentage of threatened species for
which modification of fire regimes is a threat for seven selected habitat types. n is the total number of threatened
species, of the nine taxonomic groups within each habitat type [as defined in the IUCN Red List (24)].
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including deforestation fires to clear primary
forest for agriculture, often promotes more
frequent and severe fires. In the Amazon
basin, logging, habitat fragmentation, and
climate change act synergistically to increase
the risk of larger and more severe fires (39).
This can drive abrupt change from forest to
derived savannas (40). Cascading effects on
a host of forest fauna have been observed,
including declines in ant and butterfly com-
munities (40, 41) (Fig. 3). In tropical forests
in Indonesia, massive wildfires caused by
land clearing threaten some of theworld’smost
biodiverse ecosystems and emblematic species
such as the orangutan (Pongo borneo) (8).
By contrast, fire has been markedly reduced

and almost eliminated from some grassy eco-
systems, such as the Serengeti-Mara savanna
of Tanzania, through increased livestock grazing
and habitat fragmentation (18). This has led
to woody encroachment, which threatens wild
populations of large herbivores (Fig. 3) (42).
Fire exclusion in the hyperdiverse Brazilian
Cerrado is threatening biodiversity in areas
where recurrent fire, which limits woody
encroachment, has been impeded by habitat
fragmentation and fire suppression policies.

Where forests have encroached into unburned
Cerrado, plant species richness has declined
by 27% and ant richness by 35% (43). In other
areas, such as parts of the Great Plains of
North America, a century or more of active
fire suppression has led to the replacement
of grassland with juniper (Juniperus spp.)
woodland (16).
Urbanization and habitat modification are

important drivers of fire regimes (13) and of
biodiversity (44) in Mediterranean-type and
temperate ecosystems. In Southern California,
native chaparral shrublands support excep-
tionally high plant diversity. Short intervals
between fires, associated with increased igni-
tions near urban areas, trails, and roads, are
converting chaparral into vegetation dominated
by exotic herbs (45). In the Mediterranean
Basin, expansion of urban areas is linked with
agricultural land abandonment: After rural
depopulation, mosaics of farmland and open
forest have shifted to more fire-prone shrub-
lands and forests (46). Larger andmore severe
wildfires are expected to negatively affect forest-
dwelling birds, but some open-country species
will benefit from more frequent fires (47). In
temperate mountain ash forests of Australia,

the cumulative impacts of logging and exten-
sive wildfires have removed large trees, plac-
ing populations of arboreal mammals that
nest in old trees, such as Leadbeater’s possum
(Gymnobelideus leadbeateri), at increased risk
of extinction (48).

Biotic mixing

Humans have redistributed species across the
globe (49) and, in doing so, have created novel
assemblages that modify fuels, fire regimes,
and postfire dynamics (50). In many parts of
the world, invasive plants have increased
flammability and fire frequency (22, 51). For
example, in deserts and shrublands of the
western United States, invasive cheatgrass
(Bromus tectorum) increases fuel loads and
continuity, which alters regional fire regimes
(52). In turn, increased fire frequency reduces
habitat for the greater sage-grouse (Centrocercus
urophasianus), a bird that prefers to forage in
dense sagebrush (53). Invasive animals can
also modify fire regimes by altering fuels (54).
The introduction of exotic vertebrate herbi-
vores to New Zealand generated open con-
ditions favorable for frequent low-intensity
fires and contributed to the conversion of
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Fig. 2. Global portrait of linked changes in fire and biodiversity. Examples of documented and predicted fire-driven changes in biodiversity are shown.
Details of the anthropogenic drivers associated with each of these changes are provided in the main text or table S1, following the numbered key. Examples are
overlaid on a map of the number of times a fire was recorded from 2000 to 2019 in a given 500 m by 500 m MODIS pixel averaged across the 10 km by 10 km pixels
displayed on the map.
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temperate forests to shrublands (55). Invasive
animals can also affect biodiversity through
their influence on the postfire recovery of
species: In Australia, an increase in the activity
of the red fox (Vulpes vulpes) and feral cat
(Felis catus), as well as their greater hunting
success in postfire environments, increases
mortality of native animals (56).
Disruption of biotic interactions and the

removal of species can also shape fire and
biodiversity associations. Experimental evidence
indicates that removal of large grazing mam-
mals in Africa and North America alters eco-
system structure and increases fire activity (57).
Indeed, our review of IUCN Red List data indi-
cates that modification of fire activity has con-
tributed to the recent extinction of 37 species,
including a suite of marsupials in Australia
whose digging and foraging activity may have
influenced fire regimes (58).

Socioeconomic drivers
Demographic, economic, political, and insti-
tutional factors underpin changes in land use
and other direct drivers of fire regimes and
their impact on biodiversity (6, 15, 59). Con-
temporary changes in human population size
and distribution shape fire regimes worldwide,
with corresponding pressures on biodiversity
and ecosystems (17, 60). In the Amazon basin,
increases in deforestation and uncontrolled
fires have underlying societal causes, includ-
ing market demand for beef, soybean, and
timber, as well as transportation and energy
projects and weak institutional governance
(9, 61). Political and social institutions also
are important. After the collapse of the Soviet
Union, the abandonment of large areas of
cropland in Kazakhstan provided opportuni-
ties for the restoration of steppe grasslands.
However, in some recovering grasslands,

the removal of grazing animals and the
subsequent increase in fire activity has re-
duced plant species richness. (62). Conflicts
are a largely unrecognized driver of changes
in fire regimes: An endangered dragonfly,
Asiagomphus coreanus, inside the demili-
tarized zone between South Korea and North
Korea is threatened by anthropogenic fire used
to reduce vegetation for increased visibility (24).
Even before the acceleration of social and

ecological changes in the mid-1900s (31), ces-
sation of traditional fire practices in many
parts of the world transformed landscapes.
For example, colonialism in the southwestern
United States disrupted fire-dependent human
cultures with cascading effects for ecosystems,
including dense stands of conifer forests re-
placing previously open vegetation (63). In
Australia, changes arising from the displacement
of Indigenous peoples and their purposeful

Kelly et al., Science 370, eabb0355 (2020) 20 November 2020 4 of 10

A  Exclusion of fire threatens wild herbivores in savanna ecosytems in the Serengeti-Mara, Tanzania.

B  Deforestation fires cause shifts in vegetation with cascading effects on fauna in Amazonia, Brazil.

Fig. 3. Some tropical ecosystems are experiencing too much fire and
others not enough. (A) Frequent fires are a key aspect of African savanna
ecosystems that support a large portion of the world’s remaining wild large
mammals. However, fire activity in the Serengeti-Mara of Tanzania has been
reduced, and some areas no longer experience fire. This could increase
shrub encroachment (top left; photo by S. Archibald) and the displacement of
wild herbivores that prefer open areas (top right; photo by D. D’Auria)

(18, 42). (B) The Amazon basin is home to ~10 to 15% of the world’s
terrestrial biodiversity. In southeast Amazonia (bottom left; photo by
P. M. Brando), human drivers increase deforestation fires and uncontrolled
fires. This is driving shifts from humid forest to drier forests or derived
savannas. Cascading effects on fauna include the decline of forest butterfly
species such as the leaf wing butterfly (Zaretis itys) [bottom right; photo
by Morales/agefotostock (40)].
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use of fire have been linked with extinctions
of mammals (24), transformation of vege-
tation types (5), and decline of species such
as the endemic Tasmanian pine (Athrotaxis
selaginoides) (64). Cessation of traditional fire
practices continues to affect species and ecosys-
tems today (5).

Improving the forecast for biodiversity

To underpin new and emerging approaches to
conservation in the Anthropocene, an urgent
task is to better quantify how biodiversity
responds to changing fire regimes. This re-
quires a mix of empirical studies, manipu-
lative experiments, and modeling. Various
methods are available to predict changes
in fire behavior and fire effects (65), changes to
biodiversity (66), and anthropogenic drivers
(67). Here, we focus on methods that couple
information on fire and biodiversity, partic-
ularly those that incorporate human drivers.

A surge of empirical studies has explored
the relationship between biodiversity and
the spatial and temporal variation in fire re-
gimes (sometimes called “pyrodiversity”) (3).
For example, a continent-wide assessment of
savanna ecosystems in Africa showed that
pyrodiversity was important in wet savannas,
where areas with large variation in fire size,
intensity, and timing had 27% more mammal
species and 40% more bird species than areas
with low variation in fire regimes (68). Studies
in California found that the diversity of polli-
nators, plants, and birds inmixed-conifer forests
washigher in areaswith greater spatial variation
in fire interval and severity (69, 70). Linking such
information on fire patterns and biodiversity
with projections of future wildfires or man-
agement actions provides a powerful way to
forecast future changes to ecosystems. For
example, modeling has been used to identify
alternative strategies for prescribed burning

to reduce wildfire risk for populations of the
iconic koala (Phascolarctos cinereus) in south-
eastern Australia (71).
Advances in predictive modeling also de-

liver new opportunities to couple fire and
biodiversity data with likely trajectories of
multiple drivers. For instance, coupling a dy-
namic fire-succession model with species dis-
tribution models enabled projection of the
impact of alternative management and climate
change scenarios on bird communities in
northeastern Spain (47). Letting some wildfires
burn in mild weather conditions was predicted
to create new open spaces that would benefit
open-habitat species (47) (Fig. 4). Forest har-
vesting for bioenergy production, an important
socioeconomic consideration, also benefited
some species by offsetting the loss of open
habitats through a reduction in severe fires.
Integrating projections of climate, wildfires,
and species distributions offers an opportunity
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Managed wildfire + B2

Managed wildfire + A2

No fire suppression + A2

No fire suppression + B2

High fire suppression + B2

High fire suppression + A2

Forest harvesting + B2

Forest harvesting + A2

0-2
0 20-4

0
-6

0

Change in Dartford warbler habitat (%) between 
2000 and 2050 under A2 and B2 climate scenarios

A Recently burnt pine-oak forest and farmland B Dartford warbler (Sylvia undata)

C Model results
Fig. 4. Modeling ecosystems in transition in the Mediterranean
Basin. Integrating data on land use, climate change, and fire
dynamics [(A); photo by L. Brotons] with empirical bird occurrence
data [(B); photo by F. Veronesi, Francesco Veronesi from Italy/CC
BY-SA (https://creativecommons.org/licenses/by-sa/2.0)] is
helping to predict the impact of social and ecological changes on
species distributions. (C) Comparison of management actions
showed that the Dartford warbler, an open-country species,
will benefit from managed wildfire that creates new open
spaces (47). Box plots show the median change in Dartford
warbler habitat and the interquartile range from 10 simulations.
A2 climate scenarios were associated with a lower number
of large wildfires than B2 climate scenarios.
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to design nature reserves that are effective
now and in the future (47).
Process-based models that incorporate bio-

logical mechanisms such as demography and
dispersal offer a robust way tomodel potential
relationships between fire and biodiversity
that may be outside the range of past con-
ditions (66). For example, an individual-
basedmodel was used to examine the response
of Hooker’s banksia (Banksia hookeriana), a
shrub species in southwestern Australia, to
climate-mediated shifts in seed production,
postfire recruitment, and shortened fire inter-
vals (72). Modeling revealed that the effects
of multiple stressors will threaten popula-
tion persistence; a drier climate reduces
the range of fire intervals that enable seed
production and seedling recruitment, and
the intervals between fires are projected to
become shorter (72). Process-based models
can also guide strategic management of
populations of tree and shrub species when
changes in fire regimes interact with habitat
fragmentation (73), pathogens (74), and urban
growth (75).
Currently, predictive models of biodiversity

do not incorporate empirical data on evolu-
tionary responses to fire, yet some aspects of
biodiversity are rapidly evolving in the face of
changing fire regimes. In Chile, where shrub-
lands have experienced human-driven increases
in fire frequency, anthropogenic fires are
shaping the evolution of seed traits in a native
herb, including seed pubescence and shape,
with fire selecting plants with thicker peri-
carps (76). Variation in fire-related traits caused
by heritable genetic variation between indi-
viduals has been assessed only for a small
number of plant species but indicates mod-
erate evolutionary potential (77). There are
exciting opportunities to apply models and
tools developed by evolutionary biologists,
such as the breeder’s and Price’s equations
(66), to forecast fire-driven evolutionary changes
in the Anthropocene.
Feedbacks among fire, biodiversity, and

other natural and anthropogenic drivers of
biodiversity are important and have been as-
sessed using a variety ofmethods (39, 59, 78, 79).
However, new approaches to quantifying feed-
backs between social and ecological systems
are needed. A promising technique is the use of
agent-based models that quantify how changes
in the environment create feedbacks that in-
fluence the likelihood of human actions (80).
Such models can incorporate feedbacks be-
tween fire-driven changes in vegetation and
the likelihood of human actors (e.g., family
forest owners and homeowners) taking actions
such as prescribed burning. In mountain
forests in the United States, incorporating
social and environmental interactions that
influence the probability of planned fire
and wildfire helped to quantify the effect of

alternative fire management strategies on
wildlife such as birds and mammals (80).

Emerging strategies and actions

The prominent role of human activity in
shaping ecosystems at planetary scales is the
hallmark of the Anthropocene and sets the
context for emerging strategies and actions.
First, it demands that scientists, stakeholders,
and decision-makers confront the diverse and
often synergistic changes to the environment
that are occurring worldwide and emphasizes
the need for new, bolder conservation initia-
tives. Second, it places the increasingly impor-
tant role of people at the forefront of efforts to
understand and adapt to ecosystem changes.
Third, by linking people and local land uses
with ecosystems, there is a greater likelihood
of finding effective, place-based solutions to
suit species and ecosystems.
A suite of emerging actions, some established

but receiving increasing attention, others new
and innovative, could be effective in promot-
ing biodiversity in a new era of fire (Table 1).
We summarize these (nonmutually exclusive)
actions under three themes: (i) fire regimes
that are managed by being tailored to species
or ecosystems, (ii) approaches that focus on
“whole ecosystems” (and not just on fire), and
(iii) approaches that recognize the critical role
of people.
A first set of approaches involves actively

managing fire to suit particular species or
ecosystems. This means ensuring the right
amount, pattern, and timing of fire in land-
scapes that need it and less fire in those that
do not. Temperate forests in the western United
States, for example, have had a century-long
history of fire suppression. A new prospect
in temperate ecosystems is forest managers
letting wildfires burn when conditions are
not extreme (81) to promote mixed-severity
fires that advantage a range of species (70).
For example, in Yellowstone National Park,
a policy of permitting lightning-ignited fires
to burn has created more diverse landscapes
(81) that support a high species richness of
plants and their pollinators (69). Some fire-
excluded forests in southern Australia, south-
ern Europe, and the western United States
have such high levels of fuels that mechanical
treatments combinedwith prescribed firemay
be needed to reduce the potential for bio-
diversity losses associated with high-intensity
wildfire (15, 82).
For innovative fire management in the

Anthropocene, careful planning and deep
knowledge of an ecosystem and its biota will
be important to ensure the appropriate fire re-
gime to achieve conservation objectives (3, 68),
whether the aim is to promote critical habitat
features such as hollow-bearing trees (48),
functional resources such as seed banks (20),
or landscapes with diverse fire histories (70).

Although fire suppression threatens some
ecosystems, targeted suppression can be a pos-
itive strategy to protect vulnerable species
and ecosystems in fire-dependent and fire-
sensitive ecosystems alike. For example, the
fire-sensitive Wollemi pine (Wollemia nobilis)
is an endangered Gondwanan relic with less
than 200 individuals in a single rainforest
valley in eastern Australia. During extensive
wildfires in 2020, firefighters used targeted
suppression to save this species (83). In sub-
alpine vegetation of the western United States,
surviving trees in whitebark pine (Pinus
albicaulis) forests devastated by an exotic
pathogen are actively protected by targeted
fire suppression because they represent the
seed source for future populations (84). Active
fire suppression also has benefits in areas where
it can reduce an uncharacteristically high fire
frequency arising from increased human-caused
ignitions associated with urban expansion (45).
A second set of approaches focuses onwhole

ecosystems, not just fire. Ecosystems can be
particularly vulnerable to changes in fire re-
gimes when already stressed by other threats
and the synergies emerging from these threats
(39). For example, populations of plants and
animals affected by extreme drought, or those
that occur in disconnected patches or are under
pressure from exotic predators, are more likely
to be threatened by fire when it interacts with
these other disturbances (56, 72, 73). A whole-
ecosystem approach that manages fire in the
context of wider restoration and conservation
actions is more likely to be effective (79). For
example, strategic rewetting of drained peat-
lands and replanting with fire-resistant mosses
is a promising technique for reducing fire fre-
quency and promoting biodiversity in boreal
forests in Canada (85). In the Amazon rain-
forest, a large-scale restoration project involv-
ing local citizens and national actors has been
proposed to increase the total area and con-
nectivity of rainforest habitat (86).
Reintroduction of species that have key

functional roles offers an innovative oppor-
tunity to promote ecological processes that
moderate fire regimes (57). For example,
the reintroduction of a digging marsupial
(Isoodon fusciventer) in an urban reserve in
western Australia led to reduction of surface
fuel loads and the predicted rate of fire spread
(58). Digging animalsmodify fuels by creating
foraging pits and burrows; the reintroduc-
tion of previously common digging species is
an exciting prospect for restoring fire-prone
ecosystems (58). In Africa, reintroducing native
grazing animals such as the white rhinoceros
(Ceratotherium simum) creates patchy fire re-
gimes (57). Habitats created by these native
megaherbivores differ from areas heavily grazed
by livestock and provide habitat for birds, in-
sects, and plants (57). Reintroduction of species
to assist in the management of fire will likely
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be most valuable in ecosystems that have
experienced an increase in fire activity.
Many circumstances require the simultane-

ous management of multiple threats or drivers
to achieve benefits for biodiversity. Invasion
of highly flammable herbaceous species can
exacerbate increased fire frequency, causing
a positive grass-fire feedback cycle now evi-
dent across a range of deserts, shrublands, and
savannas (51, 52). Preventing or breaking this
cycle in which invasive grasses replace woody
plants relies on coordination among fire
managers, conservation practitioners, and
local communities to not only reduce ignitions
but also to detect and remove invasive species
as early as possible. In other cases, hotter
burns may be applied to tackle encroachment
by unwanted woody plants through the judi-
cious use of “fire storms,” such as in temperate
grasslands of the central United States and
savanna ecosystems in southernAfrica (16, 87).
Simultaneous management of fire regimes
and invasive animals can also be beneficial;
for example, fire management to create un-
burned refuges while also controlling intro-
duced mammalian predators is expected to
benefit diverse populations of native wildlife
across Australia (56).
Evolutionarily informed approaches for

managing whole ecosystems are a newer pros-
pect. Options for building ecological resilience
to fire include managing for larger, better-
connected populations to ensure the mainte-
nance of genetic variation (88). A more radical
approach is to use translocations to enhance
gene flow and increase species’ adaptability in
fire-prone environments (88). For example,

knowledge of within-species variation in plant
traits, such as time to reproductive maturity,
could be used by land managers to select
populations for translocation that are better
equipped to deal with changes in fire fre-
quency. Modeling studies indicate that man-
aged relocations outside of a species’ known
geographic range could also be effective in
addressing population decline caused by high
fire-frequency and land-use change (75). An
increasingly important measure to increase
ecosystem resilience to changes in fire regimes
is to identify fire and climate refuges and en-
sure that they remain connected to secure
habitats now and in the future (89).
Immediate measures to promote postfire

recovery are crucial for whole-ecosystem ma-
nagement. However, there is much to learn
about the most effective actions for rapid re-
covery. After the megafires in eastern Australia
in 2019–2020, large-scale efforts are under way
to assess the value of feeding stations, reducing
browsing pressure by introduced herbivores,
controlling invasive predators, and creating
artificial shelters (26). For plants, rapid recov-
ery actions include aerial seeding (90), seed
collection (75), and restoration plantings (84).
The benefits of restoration plantings are likely
to apply to a range of taxa, including popula-
tions of freshwater fish and frogs threatened
by postfire runoff of soil and sediments into
streams (24).
A third set of approaches focuses on the

critical role of people. Restoring and pro-
moting landscapes that benefit people cre-
ates opportunities to balance biodiversity with
other values in many regions of the world.

Learning from previous and contemporary
management by local and Indigenous people
and promoting collaborative fire manage-
ment are valuable steps in promoting fire
regimes that benefit people and biodiversity
(91–94). For example, reinstating Indigenous
burning practices in the Klamath-Siskiyou
bioregion in the western United States sup-
ports a wide range of species used as resources
for food, materials, medicines, and ceremonial
purposes (91) (Fig. 5). In the western deserts of
Australia, hunting fires used by the indigenous
Martu people increase vegetation diversity
and support high populations of endemic
mammals and reptiles. In the absence of the
Martu, the more extensive lightning-ignited
fires reduce biodiversity (92).
Diversified agriculture can also provide a

range of habitats for plants and animals and
shape fire regimes that benefit biodiversity.
For instance, agricultural and forestry practices
in the Mediterranean Basin that promote
mosaics of low-flammability crops, orchards
and oak trees reduce the risk of large, intense
fires (46) and provide habitats for species-rich
communities of birds (47). In China, more than
364,000 km of green firebreaks – strips of low
flammability vegetation – have been planted in
a range of terrestrial ecosystems and have the
potential to promote biodiversity while reduc-
ing fire activity where it is unwanted (95).

Challenges and opportunities

Global changes in fire regimes will continue to
amplify interactions between anthropogenic
drivers and create challenges for biodiversity
conservation and ecosystem adaptation. But
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A  Yurok and Karuk ignitors burning under oaks 
     to accomplish multiple objectives  

B  Fire improves Huckleberry (Vaccinium spp.) growth, 
     an important food plant for animals and people

Fig. 5. Pyrodiversity with purpose in temperate forests of the western
United States. (A) The Klamath-Siskiyou region is home to Indigenous
peoples with different languages and histories. After more than a century of
policies that promoted fire suppression, newly developed collaborations led
by Indigenous communities and including scientists and local stakeholders
are being formed to reinstate Indigenous fire practices. This cultural burning

diversifies the frequency, seasonality, and intensity of fires and results in a
fine-scale mosaic of disturbance history (photo by F. Lake). (B) Reinstating
Indigenous burning, coupled with other cultural practices such as hunting,
gathering, and tending of habitats for resources, supports a wide range of
biodiversity, including species used for food, materials, medicines, and
ceremonial purposes (91) (photo by F. Lake).
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there are exciting opportunities for finding
solutions that benefit both people and nature.

Historical or novel ecosystems

Restoring historical fire regimes is often re-
garded as the best approach for biodiversity
and ecological resilience (22). However, recre-
ating historical fire regimes in landscapes that
are highly modified by climate change, new
land-uses, and invasive species, will not neces-
sarily lead to effective biodiversity conservation
(96). Conserving organisms requires evidence
of how ecosystems may respond to fires that
are modified by, and subject to, new stressors.
Direct measures of species, populations and
ecosystems and their change through time,
will help in identifying the fire characteristics
that best promotebiodiversity. Thepath forward
requires deep knowledge of both historical and
contemporary landscapes.

Linking biodiversity, ecosystem services, and
human well-being

Promoting fire regimes that benefit bio-
diversity is difficult partly because of the need
to simultaneously consider multiple values. In
Mediterranean-type ecosystems, expansion of
urban areas is bringing more people into
proximitywithwildfire activity,making human
safety a priority in fire planning (13, 15, 59).
Fires also sustain livelihoods (92, 94) and in-
fluence ecosystemservices suchaswater, climate,
pest control and soil regulation (97), and these
too are important considerations for local
communities and policy makers. Developing

strategies and actions that enhance diverse social
and ecological values is not necessarily straight-
forward, but explicitly recognizing trade-offs and
uncertainty between competing values can help
navigate this complexity (44, 71).

Creating innovative partnerships and policies

At local and regional scales, getting more of
the ‘right’ type of fire in landscapes entails
forging new alliances to build and apply
knowledge. Indigenous-led fire stewardship
is an example of a bottom-up approach to
fostering partnerships between Indigenous
and non-Indigenous institutions that aim to
share and implement understanding of cul-
tural burning practices which, in turn, can
improve cultural connections and enhance
ecosystems (91, 93). Another example of forging
new alliances comes from the city of Paradise,
California, burned in 2018 in the catastrophic
‘Camp Fire’. Partnerships among scientists,
conservation organizations and urban plan-
ners are redesigning the city by strategically
locating less-flammable land-uses, such as or-
chards or parklands, and creating opportuni-
ties to achieve social and ecological goals (98).
Sharing knowledge through training and edu-
cation is crucial for integrating biodiversity
into fire policy.
At national and global scales, biodiversity

conservation will benefit from greater integra-
tion of fire into conservation policy. TheUnited
Nations Convention on Biological Diversity
guides national and international efforts to
protect species and ecosystems. A range of

stakeholders, including signatory countries,
nongovernment organizations and scientists,
are currently negotiating a new Global Bio-
diversity Framework of goals and targets for
the decade to 2030. Together with other drivers,
changed fire regimes will affect proposed goals
for increasing ‘the area, connectivity and integ-
rity of natural ecosystems’ and reducing ‘the
number of species that are threatened’ (99).
Explicitly incorporating fire regimes in the
formulation of the new Global Biodiversity
Framework provides an opportunity to develop
innovative policies to set and achieve bio-
diversity targets. Emerging global initiatives
that bring together scientists with a wide range
of stakeholders, such as the Intergovernmental
Science-Policy Platform on Biodiversity and
Ecosystem Services (IPBES), provide a founda-
tion through which new biodiversity policies
and scenarios could be developed and assessed.
At the same time, international efforts to re-
duce greenhouse gas emissions, such as the
Paris Agreement, remain crucial.

Monitoring and manipulating ecosystems

Assessing the effectiveness of conservation
actions requires strategic collection of data
on fire, biodiversity, and anthropogenic drivers.
Data that inform amechanistic understanding
are essential for early warnings of regime shifts
and their consequences (48, 66). Experiments
have provided a large body of knowledge, but
more examples of large-scale manipulations
of ecosystems are needed to assess new initiatives
such as green fire breaks, and translocations
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Table 1. New and emerging actions for sustaining biodiversity in ecosystems that experience fire.

Emerging approach Reference

Managed wildfire whereby wildfires are allowed to burn
naturally in fire-prone ecosystems and are suppressed only under specific conditions

(81)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Targeted fire suppression to protect vulnerable populations
or ecosystems, aided by real-time data

(84)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Reintroduction of grazing and fossorial animals that regulate fire
regimes for the benefit of threatened species or whole ecosystems

(57)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Simultaneous management of fire and other drivers such as invasive plants and animals (56)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Use of extreme weather conditions to create “firestorms” that can be used
to reduce woody plant encroachments in savannas and grasslands

(87)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Building evolutionary resilience by maintaining large and connected populations with
genetic variation, identifying and protecting refuges, and increasing adaptability to future
fire regimes by translocation

(88)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Rapid response and recovery teams that enact emergency conservation management
including providing refuges for animals, planting and reseeding to promote rapid revegetation,
and, in extreme situations, ex situ conservation

(26)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Indigenous fire stewardship and reinstatement of cultural burning in a modern context
to enhance biodiversity, ecosystems, and human well-being

(91)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Diversified agricultural systems that moderate fire regimes and provide habitats
for a range of species

(46)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Green firebreaks comprising low-flammability species planted at strategic locations to
help reduce fire spread while providing refuges for biota

(95)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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aimed at increasing adaptive capacity. How-
ever, experiments that address ecological ques-
tions are not necessarily designed in ways that
most effectively influence management (100).
Adaptive management aims to resolve this
dilemma by identifying a plan for address-
ing critical knowledge gaps, testing alternative
actions and monitoring outcomes to improve
future management (100).

Conclusions

Conservation of Earth’s biological diversity
will be achieved only by recognition of, and
response to, the critical role of fire in shaping
ecosystems. More than 4400 terrestrial and
freshwater species, from a wide range of taxa
and regions, face threats associated with inap-
propriate fire regimes. Innovative science and
new partnerships across a range of sectors are
crucial for navigating big decisions about new
and changing ecosystems – whether it be con-
sideration of fire in the context of meeting
global biodiversity targets, safeguarding re-
gional ecosystem services, or protecting homes
and habitats. Placing the increasingly impor-
tant role of people and their relationships with
biodiversity at the forefront of efforts to under-
stand and adapt to changes in fire regimes is
central to these endeavors.
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