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ABSTRACT

Aim It has been suggested that on a global scale, fire activity changes along the
productivity/aridity gradient following a humped relationship, i.e. the intermediate
fire–productivity hypothesis. This relation should be driven by differing relative
roles of the main fire drivers (weather and fuel) along the productivity gradient.
However, the full intermediate fire–productivity model across all world ecosystems
remains to be validated.

Location The entire globe, excluding Antarctica.

Methods To test the intermediate fire–productivity hypothesis, we use the world
ecoregions as a spatial unit and, for each ecoregion, we compiled remotely sensed
fire activity, climate, biomass and productivity information. The regression coeffi-
cient between monthly MODIS fire activity and monthly maximum temperature in
each ecoregion was considered an indicator of the sensitivity of fire to high tem-
peratures in the ecoregion. We used linear and generalized additive models to test
for the linear and humped relationships.

Results Fire occurs in most ecoregions. Fire activity peaked in tropical grasslands
and savannas, and significantly decreased towards the extremes of the productivity
gradient. Both the sensitivity of fire to high temperatures and above-ground
biomass increased monotonically with productivity. In other words, fire activity in
low-productivity ecosystems is not driven by warm periods and is limited by low
biomass; in contrast, in high-productivity ecosystems fire is more sensitive to high
temperatures, and in these ecosystems, the available biomass for fires is high.

Main conclusion The results support the intermediate fire–productivity model
on a global scale and suggest that climatic warming may affect fire activity differ-
ently depending on the productivity of the region. Fire regimes in productive
regions are vulnerable to warming (drought-driven fire regime changes), while in
low-productivity regions fire activity is more vulnerable to fuel changes (fuel-
driven fire regime changes).
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INTRODUCTION

Fire is a widespread process on the earth that affects most

ecosystems (Krawchuk et al., 2009; Pausas & Keeley, 2009).

However, fire regimes vary across the globe (Chuvieco et al.,

2008), mainly in relation to the spatial variability in climate and

in the amount and structure of fuels (Parisien & Moritz, 2009;

Pausas & Keeley, 2009). It has been suggested that fire activity

may change along a productivity/aridity gradient following a

humped (unimodal) relationship (Pausas & Bradstock, 2007;

van der Werf et al., 2008). This model suggests that fire acti-

vity peaks at intermediate levels of aridity/productivity and

decreases towards arid as well as productive ecosystems (the

intermediate fire–productivity hypothesis). This model is based

on the different relative roles of the main fire drivers (fuel

and drought) along the productivity gradient. In moist and
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productive regions, fuel is highly available and fire activity

should be driven by the frequency of droughts (e.g. Cochrane,

2003); in contrast, in unproductive arid systems, droughts are

the rule but fire regimes are fuel-limited (e.g. Pausas & Brad-

stock, 2007). This fire–productivity model has important con-

sequences for the global change agenda as it suggests that global

climatic changes may have contrasting effects on fire regimes in

different ecosystems. For instance, increasing the frequency of

droughts would increase fire activity in productive environ-

ments but could also reduce fires in dry ecosystems by limiting

plant growth and reducing fuel loads. In fact this model is

central in pyrogeography research (Krawchuk et al., 2009) as it

links the global distribution of fire activity to vegetation and

climate, and provides a framework for understanding the

mechanism of change in fire regimes at a global scale. While

there is an extraordinary amount of knowledge regarding fire

regimes in some specific areas, notably in North America (see a

recent review by Parisien et al., 2012), the global picture is still

poorly understood (Chuvieco et al., 2008; Krawchuk & Moritz

2011). Several regional studies have provided some support for

the differential contribution of fire drivers (fuel and weather) to

fire activity under different productivity conditions (Spessa

et al., 2005; Archibald et al., 2009; Littell et al., 2009; Parisien &

Moritz, 2009; Bradstock, 2010; Parisien et al., 2012; Pausas &

Paula, 2012). The physicochemical model of fire frequency also

predicts different fire trends in the USA depending on the cli-

matic conditions (Guyette et al., 2002). However, the full inter-

mediate fire–productivity model across all world ecosystems

remains to be validated.

With the increasing availability of earth observation products

we can now better explicitly test macroecological hypotheses

(Pfeifer et al., 2012). Specifically, we currently have several years

of remotely sensed fire information available for the entire

planet (Giglio et al., 2006, 2009; van der Werf et al., 2008) which

enables us to test fire-related hypotheses on a global scale (e.g. Le

Page et al., 2010). Recent analyses of such data showed a pre-

dictable relationship between fire activity and environmental

conditions, but a limited support for the intermediate fire–

productivity hypothesis (Krawchuk et al. 2009; Krawchuk &

Moritz 2011). It is possible that the strong influence of humans

in current fire regimes (e.g. Guyette et al., 2002; Syphard et al.,

2007; Pausas & Keeley, 2009; Bowman et al., 2011; Pausas &

Fernández-Muñoz, 2012) may blur the theoretical humped

response. Alternatively, the scale considered might not be the

most appropriate for depicting such patterns. For instance,

Krawchuk & Moritz (2011) use fire and climatic data at a

50 km ¥ 50 km scale (grid system) aggregated by 13 biomes;

however, a grid system might not be very appropriate to account

for biological variability (grids tend to have a low ratio of

between-to-within variability), while the use of 13 biomes might

hide considerable within-biome variability (e.g. Schoennagel

et al., 2004; Parisien et al., 2012; Pausas & Paula, 2012).

Van der Werf et al. (2008) also used remotely sensed fire data

for tropical ecosystems and found a tendency for the interme-

diate fire–productivity hypothesis; however, the use of a grid

system precluded Van der Werf and colleagues from finding any

statistical significance. While a grid system is a simple and useful

way to compile biological data for macroecological studies, it

may not be the most efficient way to account for biological

variability because the grids do not necessarily match the

regional biophysical heterogeneity. We propose using homoge-

neous ecological units to better depict fire–climate patterns not

only at regional (e.g. Gedalof et al., 2005; Littell et al., 2009;

Parisien & Moritz, 2009; Pausas & Paula, 2012) but also at global

scales. Specifically, we propose the use of the world ecoregions

(Olson et al., 2001) because they are much smaller than biomes

and homogeneous from the point of view of climate and veg-

etation (fuel). Ecoregions therefore have a more biological

meaning in relation to fire regimes (e.g. Parisien & Moritz, 2009)

than grid cells.

We aim to evaluate the decrease in fire activity at the extremes

of the productivity gradient (intermediate fire–productivity

hypothesis) by first relating remotely sensed global fire activity

with indicators of global productivity using world ecoregions as

a sampling unit. We then estimate the effect of climate on fire

activity for each ecoregion and relate this estimation with a

productivity indicator. We expected to find: (1) the humped

relationship between fire activity and productivity; and (2) a

stronger effect of warm climate on fire activity at the productive

end of the gradient.

METHODS

Geographical unit

Our study units were the terrestrial ecoregions proposed by the

World Wildlife Fund (WWF; Olson et al., 2001). A terrestrial

ecoregion is defined as a relatively large unit of land containing

a distinct assemblage of natural communities sharing a large

majority of species, dynamics and environmental conditions.

These ecoregions represent the original distribution of distinct

assemblages of species and communities (Olson et al., 2001).

The original WWF map included 827 ecoregions distributed in

14 biomes. We first exclude ecoregions that lack burnable veg-

etation, such as those in Antarctica and those dominated by

rocks, ice and lakes. Preliminary analysis showed some incon-

sistencies between the different environmental maps in very

small ecoregions; consequently we excluded the biome Man-

groves, and small islands and ecoregions smaller than 200 km2.

The final data set includes 769 ecoregions distributed in 13

biomes, and accounted for the 88% of terrestrial land

(Table 1).

Data compilation

Global fire activity information was extracted from FIRMS (Fire

Information for Resource Management System, NASA). Specifi-

cally we used the monthly gridded summary (0.5° spatial reso-

lution) of fire activity obtained from the MODIS sensor in the

satellite Terra for the period January 2001 to December 2009

(the Climate Modeling Grid from FIRMS). We selected the Terra

collection over the Aqua satellite because the former had a
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longer period of recorded activity (Terra from February 2000;

Aqua from June 2002). The Terra and Aqua satellites have dif-

ferent overpass times (e.g. Terra overpasses the equator at

approximately 10:30 and 22:30 each day, while Aqua overpasses

it at approximately 13:30 and 01:30) and thus they might depict

slightly different fire activity. However, the fire activity estimates

from the two satellites are very similar (correlation c. 0.9 in most

areas of the world; Giglio et al., 2006) and the differences are

mainly related to seasonality of fire activity which is not consid-

ered here. Our preliminary analysis also showed a very high

correlation in fire detection between the two satellites (e.g.

r = 0.97, P-value < 0.0001 for the data set in Fig. S1 in Support-

ing Information; see below). The traditional fire counts

obtained from orbiting satellites are biased at high latitudes

owing to non-uniform spatial and temporal sampling. The total

number of fire pixels observed in each grid cell is therefore

corrected for multiple satellite overpasses and missing observa-

tions by normalizing the raw fire pixel counts by the expected

equatorial coverage in a complete calendar month containing no

missing observations (Giglio et al., 2006). Consequently, as a fire

activity indicator, we use the overpass-corrected number of fire

incidences in each grid cell obtained from the Terra satellite,

which is a robust index of global fire activity (Giglio et al., 2006,

2009).

To ensure that remotely sensed fire activity is a good proxy for

fire activity (which is rarely examined) we first related remotely

sensed fire activity to official fire statistics from countries with

reliable data. We compiled the official statistics on the area

burned and the number of fires for 45 different countries for

years within the period of the remotely sensed data (January

2001 to December 2009; Table S1). We then aggregated the

overpass-corrected number of fire incidences from the MODIS

sensor in the Terra satellite (Climate Modeling Grid) for these

countries. Finally we tested the relationship between the

remotely sensed and official statistics using a standard regres-

sion, as well as using a mixed-effect model with the country as a

random factor (repeated measures analysis). The results con-

firmed that remotely sensed fire information correlates with

area burned (r = 0.85, P < 0.0001), and to a lesser extent, with

the number of fires (r = 0.69, P < 0.0001) and thus is a good

indicator of fire activity (Fig. S1).

To obtain a fire activity indicator for each ecoregion, we first

summed the number of fire incidences from the Terra satellite

for each ecoregion and month, and we then averaged the

monthly data across the whole period available (2001–09). The

fire activity index for each region was then defined as the loga-

rithm (Fig. S1) of the average corrected number of fire inci-

dences in each region divided by the size of the region, rescaled

from 0 to 1.

As indicators of the local (ecoregion) productivity we selected

two indicators at a global scale obtained from different sources:

the net primary production (NPP) and a remotely sensed veg-

etation index (the normalized differential vegetation index,

NDVI). NPP was obtained from the earth’s average (17 years)

annual NPP compiled by the Socioeconomic Data and Applica-

tions Center (of the International Earth Science Information

Network, CIESIN; Imhoff et al. 2004) at 0.25° spatial resolution.

These pixel data were aggregated (summed) by ecoregions and

divided by the ecoregion area (units Gg km–2). The NDVI for

each ecoregion was computed from the monthly NDVI data

(1981–2002) produced by the Global Inventory Modeling and

Mapping Studies (Tucker et al., 2005; 0.25° spatial resolution).

We first averaged the NDVI pixel data of each month into each

ecoregion, and then averaged the monthly ecoregion data across

the whole period to obtain an average NDVI value for each

ecoregion.

To obtain an indicator of the relative role of fuel and climate

on fire activity at the different extremes of the productivity

gradient, we compiled for each ecoregion the above-ground

biomass and the temporal relationship between fire and climate.

Above-ground biomass (Mt ha–1) was obtained from the Inter-

national Institute for Applied Systems Analyses as compiled by

Kindermann et al. (2008) and is based on country statistics and

downscaled to a 0.5° resolution. We averaged these pixel data at

the ecoregion scale. The temporal relationship between fire and

climate for each region was obtained by relating monthly cli-

matic and monthly fire activity data. For the latter, we used the

same source of information as above (FIRMS, period 2001–09)

but at a monthly scale (before averaging across time). The

monthly fire activity index for each region was defined as the

logarithm of the corrected number of fire incidences in each

month and region divided by the size of the region and rescaled

from 0 to 1. Climatic information from the same temporal

window was obtained from the National Centers for Environ-

mental Prediction (NCEP) Climate Forecast System Reanalysis

(CFSR) (Saha et al., 2010). Specifically, we extracted monthly

Table 1 List of biomes and number of ecoregions considered in
each.

Biome Code

No. of

ecoregions

Tropical and subtropical moist

broadleaf forests

TrMoist 216

Tropical and subtropical dry

broadleaf forests

TrDry 54

Tropical and subtropical coniferous

forests

TrConif 16

Temperate broadleaf and mixed

forests

TempBroad 83

Temperate coniferous forests TempConif 53

Boreal forests (taiga) Taiga 28

Tropical and subtropical grasslands,

savannas and shrublands

TrGrass 45

Temperate grasslands, savannas and

shrublands

TempGrass 41

Flooded grasslands and savannas FlGrass 25

Montane grasslands and shrublands MontGrass 50

Tundra Tundra 33

Mediterranean forests, woodlands

and scrub

Med 39

Deserts and xeric shrublands Desert 93
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maximum temperature (air temperature 2 m above ground

from the ds093.2 dataset) at 0.31° spatial resolution and aver-

aged at the scale of ecoregions.

Analysis

To estimate the proportion of variability in fire activity among

biomes and among ecoregions (within biomes), we computed

variance component estimates from a mixed-effect model with

biome as a random factor. For relating the spatial variability of

fire activity with the predictors, we fitted the average fire activity

index of each ecoregion against the productivity indicators

(NPP, NDVI) using the ecoregions as a sampling unit. Firstly, we

used a standard regression. To test for the humped relationship,

we then used generalized additive models (GAMs) in which the

smoothing parameter is estimated as part of the fitting proce-

dure (Wood, 2006). GAMs are a flexible nonparametric fitting

procedure that enables the detection of complex relationships,

including humped and skewed trends (Hastie & Tibshirani,

1990). We would find a strong support for the intermediate

hypothesis if we found a consistent humped pattern model for

the two predictors; and if these models explained greater vari-

ance and had lower Akaike information criterion (AIC) values

than the linear regression.

The sensitivity of fire to climate was estimated by regressing

for each ecoregion the monthly fire activity index against the

monthly maximum temperature. The regression coefficient is an

indicator of the effect of climate on fire activity; it is similar to

the threshold effects described by Pausas & Paula (2012) as fire

activity on a log-scale. We then related the regression coefficients

of each ecoregion with the indicators of the ecoregion’s pro-

ductivity (NPP, NDVI) using GAMs. If the humped fire–

productivity pattern is driven by different drivers at the two ends

of the productivity pattern, we would observe a significant and

monotonic (i.e. non-humped) relationship. Specifically, it is

predicted that most productive ecoregions should be more sen-

sitive to maximum temperatures than dry ecoregions (i.e. posi-

tive monotonic functions with productivity). We also related the

above-ground ecoregion biomass against NPP to support that

most productive regions have higher above-ground biomass.

Geographically distributed data are prone to a high Type I

error (Legendre, 1993; Lennon, 2000). To evaluate the magni-

tude of this bias in our GAM models, we generated spatial

autocorrelograms (using the Moran’s I statistic) of the depend-

ent variable (spatial fire activity index) and of the residual of the

models that include the variables related to productivity. Spatial

autocorrelograms were computed using NCF software (Bjorns-

tad, 2009). Strong spatial structure in the residuals would

suggest that closely located ecoregions do not provide independ-

ent data points for testing long-distance effects, while low auto-

correlation of the residuals would imply that the regressions are

not affected by autocorrelation (Diniz-Filho et al., 2003).

RESULTS

Ecoregions are distributed in a wide range of environmental and

productivity conditions (Figs 1a, S2 & S3). At the biome scale,

fires occurred in all biomes, and the fire activity differs among

them (F12,756 = 15.77, P < 0.0001). Tropical grasslands, savannas

and dry tropical forest were the biomes with the highest fire

activity; while tundra and deserts had the lowest activity

(Fig. 1). Despite this, the variability in fire activity was higher

within (73.5%) than among biomes (26.5%); suggesting that

working at the ecoregional scale should provide a more proxi-

mate relationship with fire drivers than working at a biome

scale.

There is a large variability in fire activity among ecoregions

(Fig. 2, Table S2). Most ecoregions (94%) had some fires during

the 9-year period considered; the ones that did not suffer any

fire include a variety of vegetation types, mainly tropical moist

forest, tundra and deserts. As expected, the two indicators of

productivity were significantly and positively correlated

(r = 0.84, P < 0.0001). Fire activity was positively and signifi-

cantly related to productivity, and the explained variance was c.

16–19% (linear models; Table 2). Fire activity also showed

a significant humped relationship with productivity, and

explained about 29% of the variance (Table 2, Fig. 3). In other

words, the humped response increases the explained variance

and reduces the AIC in relation to the linear response (Table 2).

This hump-shaped relation was not symmetric along the
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Figure 1 Distribution of the different
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of the biome within each panel; biome
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environmental gradient; but there was a tendency to be nega-

tively (left) skewed in such a way that the highest fire activity

tends to be towards the productive section of the gradient (i.e.

towards higher values than the median of the gradient, Fig. 3).

Specifically, the median of NPP was located close to the initial

hump while the median of NDVI was more towards the drop-

off from the hump.

From the 769 ecoregions considered, 539 showed a positive

relationship between monthly fire activity and monthly

maximum temperature, and in 378 (70%) the relationship was

significant (Table S2). Both the regression coefficients of the

fire–temperature relationship and the above-ground biomass

are linearly related to productivity (linear models in Table 3);

the relationship was maintained either considering all the ecore-

gions or the ecoregions in which the slope was significant

(P < 0.05). Although the GAM models might slightly increase

the explained variance and reduce the AIC, the tendency

remained monotonic and positive (Fig. 4). The temperature

sensitivity of fire changes along the productivity gradient in

such a way that it was very low in low-productivity ecoregions

and greatly increased towards the high-productivity section of

the global productivity gradient (Fig. 4a). As expected, above-

ground biomass was also positively related to productivity –

suggesting that biomass is less limiting at the productive end of

the gradient (Fig. 4b, Table 3). The same relations were observed

for both NPP and NDVI (the latter not shown).

Fire activity across the world showed a spatial structure in

such a way that close ecoregions showed a more similar fire

activity than expected by chance (Fig. S4). After fitting the

models, the autocorrelation was strongly reduced (i.e. in the

Figure 2 Ecologically based global fire map. The intensity of colour in each ecoregions is related to the fire activity index (from 0 to 1,
unitless).

Table 2 Summary of the statistics (F-value and explained
variance) for the LM and GAM relating the fire activity index
with productivity (NPP, NDVI), and model comparison
(reduction in the AIC) between LM and GAM for the same
dependent and independent variables. Both LM and GAM are
significant at P < 0.0001. GAMs are represented in Fig. 3.

Predictors

LM GAM Comparison

F

Exp

Var (%) F

Exp

Var (%) D AIC

NPP 168.7 18.6 73.61 28.6 91.2

NDVI 134.7 15.6 45.06 29.1 117.4

LM, linear model; GAM, generalized additive model; NPP, net primary
productivity; NDVI, normalized difference vegetation index; AIC,
Akaike information criterion.
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Figure 3 Generalized additive model (GAM) fit of the fire
activity index against net primary productivity (NPP) (Gg km–2)
and normalized difference vegetation index (NDVI). Tukey’s
boxplots are shown at the top of each figure summarizing the
variability of the x-variable among ecoregions; and indicate the
median, the first and third quartiles (box), and the range that
excludes outliers (whiskers). Shaded regions are the confidence
bands for the smoothing (two standard errors above and below
the estimate). Summary of the GAM statistics are indicated in
Table 2.
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residuals, Fig. S4). The regression coefficients of the relationship

between monthly fire activity and monthly maximum tempera-

tures, and the above-ground biomass, were both also highly

autocorrelated – but the autocorrelation was drastically reduced

after fitting the model against productivity (Fig. S5). Overall, the

spatial analysis suggested that the influence of the Type I error

on our results is limited.

DISCUSSION

Fires occur in all biomes and in nearly all ecoregions. Different

biomes and different ecoregions have different levels of fire

activity, and this variability is greater within than between

biomes. This differential fire activity is controlled by the pro-

ductivity, and the relationship is not simple as it decreases

towards the extremes of the gradient, supporting the interme-

diate fire–productivity hypothesis (Pausas & Bradstock, 2007;

van der Werf et al., 2008). The results also support the relative

role of climate and fuel as drivers of fire activity along the

productivity gradient. This is in agreement with regional studies

such as those conducted in northern Australia (Spessa et al.,

2005), southern Africa (Archibald et al., 2009) or southern

Europe (Pausas & Paula, 2012). In moist and productive regions,

fuel is not a limiting factor and fire activity is driven by those

climatic conditions (e.g. monthly maximum temperatures) that

increase drought and flammability (i.e. drought-driven fire

regimes). The less productive the system, the less relevant are the

high temperatures in driving fire activity; such low-productivity

systems being limited by the amount of fuel and thus fire

regimes are sensitive to increased fuel levels (fuel-limited fire

regimes).

The highest fire activity is not exactly in the middle (i.e.

median) of the gradient but closer to the productive end than

the arid end. This skewed distribution response may be the

consequence of a threshold effect; i.e. increasing productivity

increases fire activity up to a level (e.g. high moisture all year

round) from which fire activity decreases drastically. In addi-

tion, this skewed distribution may also be driven by anthropo-

genic processes. For instance, deforestation of tropical rain

forests in recent decades has increased fire weather and ignitions

and thus the level of fire activity in these productive ecosystems

that otherwise would rarely burn (e.g. Uhl & Kauffman, 1990;

Siegert et al., 2001). This increase is much stronger than the fire

changes observed in other ecosystems (Mouillot & Field, 2005).

That is, deforestation has probably increased fire activity in the

high-productivity section of the gradient. Another factor that

may have contributed to the skewed pattern is the strong reduc-

tion of fire activity, compared to natural conditions, in some

temperate coniferous forests (fire exclusion policy in USA; Cov-

ington & Moore, 1994; Mouillot & Field, 2005). However, our

results suggest that despite the strong anthropogenic influences

on fire regimes in many ecosystems (Pausas & Keeley, 2009; Le

Page et al., 2010; Whitlock et al., 2010; Bowman et al., 2011),

climate and vegetation still generate a clear underlying pattern

of variability in fire regimes (e.g. Archibald et al., 2009; Aldersley

et al., 2011). While climate determines the frequency and vari-

ability of flammable conditions (e.g. Westerling et al., 2006;

Dimitrakopoulos et al., 2011), vegetation type is related to the

amount and structure of fuel, which in turn determines the type

and intensity of the fire (Pausas & Keeley, 2009) as well as the

climatic conditions needed for fires to spread (i.e. the temporal

aridity threshold sensu Pausas & Paula, 2012).

One of the caveats of the global fire–productivity model is

that it does not differentiate between different fire-type regimes

such as surface and crown-fire regimes (Keeley et al., 2012). For

instance, two ecosystems with similar productivity could have

different fire types because of strong differences in fuel structure

(Pausas & Keeley, 2009). The use of the different landscape

attributes for each ecoregion could form the basis for improving

this model. Remotely sensed fire activity data also have some

limitations because fire detection may be limited (omission

Table 3 Summary of the statistics (F-value and explained
variance) for the LM GAM relating the regression coefficient of
the fire activity–temperature relationship (Coefficient) and the
above-ground biomass (Biomass) against productivity variables
(NPP, NDVI). All F-values are significant (P < 0.0001). AIC
comparisons refers to the comparisons between LM and GAM for
the same dependent and independent variables. The GAM models
against NPP are plotted in Fig. 4.

Model

LM GAM Comparison

F

Expl.

var (%) F

Expl.

var. (%) D AIC

Coefficient–NPP 118.3 14.5 19.7 19.5 29.5

Biomass–NPP 646.8 47.0 165.4 48.3 14.3

Coefficient–NDVI 80.3 10.3 14.0 14.7 22.6

Biomass–NDVI 539.1 42.6 539.1 42.6 0.0

LM, linear model; GAM, generalized additive model; NPP, net primary
productivity; NDVI, normalized difference vegetation index; AIC,
Akaike information criterion.
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Figure 4 Relationship of the regression coefficients of the
monthly fire activity–maximum temperature relationship (left),
and of the total biomass (right), against net primary productivity
(NPP). Shaded regions are the confidence bands for the
smoothing (two standard errors above and below the estimate).
See Table 3 for the statistics.
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errors) during periods and zones featuring very thick cloud

cover. Low-intensity understorey fires and peat fires may also

evade detection (Schroeder et al., 2008). Remote sensing data

also account for a relatively short temporal window. Despite

these limitations, we showed that remotely sensed fire activity is

strongly correlated with the area burned and we found a pre-

dictable pattern between fire and productivity. These results

suggest that despite its limitations, these types of data are appro-

priate for large-scale studies at least. Some other caveats from

previous studies using the same types of global remote sensing

data (e.g. van der Werf et al., 2008) were related to the use of

arbitrary grid cells and are minimized here by working on

homogeneous ecological regions (Littell et al., 2009; Pausas &

Paula, 2012). Ecoregions are a promising way to structure the

variability of fire activity and environmental information at a

global scale because these regions are relatively homogeneous in

climate and vegetation, and thus in the main fire regime drivers.

The within/between variability ratio and spatial autocorrelation

are both minimized by using ecoregions. Thus we encourage

macroecological research to use ecologically homogeneous

regions instead of grid systems (e.g. Williamson et al., 2011).

In the framework of global change, changes in fire regime are

typically associated with warming (e.g. Flannigan et al., 2000;

Westerling et al., 2006) and little consideration is given to alter-

native drivers that may provoke changes in fire regime (e.g.

Schwilk & Keeley, 2012). The intermediate fire–productivity

hypothesis suggests that changes in both climate and fuel are

important factors for predicting alteration in the fire regime,

and the relative importance of each factor depends on the pro-

ductivity of the system. The fact that the sensitivity of fire to

high temperatures is much stronger in high-productivity eco-

systems implies that small changes in temperature have a much

higher effect on fire activity in high-productivity than in low-

productivity ecosystems. Consequently, tropical moist forests

are the ecosystems most vulnerable to increased fire activity due

to global warming (Cochrane, 2003; Scholze et al., 2006; Lewis

et al., 2011). In productive ecosystems, small changes in tem-

perature may have much stronger implications through

increased fire activity than through the direct effect of increased

temperature on plants; in fact, the increased availability of fuels

through drought-induced mortality (e.g., Adams et al., 2009;

Allen et al., 2010) may even accelerate the increase in fire activ-

ity. However, caution is needed to interpret this very high sen-

sitivity of these systems (Fig. 4a) as anthropogenic forcing might

influence in this pattern. For instance, most fires in these systems

are human-caused, and periods of extensive drought are often

taken advantage of to deforest more land; in addition, deforesta-

tion also increase air temperature (Nobre et al., 1991). Thus,

despite the evidence that in tropical rain forests drought events

can significantly increase fire activity even with decreased defor-

estation rates (e.g. Aragão et al., 2008), the influence of anthro-

pogenic factors in shaping the high fire sensitivity to climate of

these systems cannot be discarded. In contrast, fire activity in

arid ecosystems should be less sensitive to warming and more

sensitive to increased fuel loads and connectivity. These

increased fuels may be due to: changes in landscape use and

management (Covington & Moore 1994, Pausas, 2004; Pausas &

Fernández-Muñoz, 2012), increases in invasive species (Brooks

et al., 2004; Keeley et al., 2012) or increases in CO2 (Bond &

Midgley, 2012). In other words, in arid ecosystems, alien inva-

sions not only have implications for biodiversity but also on the

fire regime. Given that fire is a spreading process, changes in the

fuel structure may generate thresholds of continuity and make

fire activity increase exponentially (Pausas & Fernández-Muñoz,

2012). These general predictions on changes in the fire regime

changes are at a relatively short scale, as fire changes may create

complex feedback process that are difficult to predict. For

instance, a short-term increase in fire frequency may finally

reduce fuel loads and drive the system towards a fuel-limited

dynamics (e.g. Westerling et al., 2011). Thus we advocate the

need for a global dynamic model incorporating these possible

feedbacks to accurately predict future fire regimes.
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Erratum in:  Pausas JG, Ribeiro E. 2013. The global fire–productivity relationship. Global Ecology 
and Biogeography 22: 728-736.

In Figure 3b (right) there is a mistake in the x-axis, where it says NDVI should say Biomass 
(gDM/m2/Y/ha). Biomass was obtaied from FAO global maps 
(http://www.fao.org/nr/climpag/climate/index_en.asp). For clarification below we show the 
same figures for both NDVI and Biomass. The figures are not very different, but the units 
clearly difer.


