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Table S2 Carbon reserve compounds in selected BBB species

Examples of carbon reserve compounds recorded for species with different BBB organs. For each species, we include the ecological and
biogeographic distribution, plant woodiness (suffrutex refers to plants with herbaceous short-lived shoots from woody bases), and
location of the carbon storage reported in the given reference. Note that the energy reserves supporting resprouting are mostly non-
structural carbohydrates, usually starch. Nevertheless, many species inhabiting cold or seasonally-dry ecosystems store fructans,
particularly Asteraceae and Poaceae (Hendry, 1993; Moraes et al., 2016). Fructans not only act as a carbon reserve but also provide
resistance to cold, freezing and drought stress (Van den Ende, 2013). Mono- and oligosaccharides might also be present in storage
organs, although in many cases they reflect carbohydrate remobilization and utilization (particularly glucose, fructose and sucrose;
Martinez-Vilalta et al., 2016), rather than carbon storage (but see the raffinose family of oligosaccharides; Van den Ende, 2013). Some
monocots store lipids in root tubers (see table). Proteins are also present in some storage organs (particularly root tubers; Pate &
Dixon, 1982), but they are essentially a nitrogen reserve, and thus are not in this table. Structural carbohydrates might also contribute
to the energy budget supporting resprouting, but evidence is scarce (Braga et al., 2006) and so are not considered here. See Notes S1
for the criteria considered in the taxonomic names.

Australasia

BBB organ |Species Family Distribution Plant C-storage Main Creserve |Reference
(including realm) woodiness |organ
Bulb Drimia maritima |Asparagaceae Mediterranean Non-woody |bulb lipids and Al-Tardeh et al.,
shrublands — polysaccharides |2008
Palearctic
Bulb Cipura paludosa, |Iridaceae Several biomes — Non-woody |bulb starch Almeida et al.,
C. xanthomelas Neotropics 2015
Caudex Xanthorrhoea Xanthorrhoeaceae |Mediterranean Non-woody |stem (in starch Lamont et al.,,
preissii forests to shrublands desmium) 2004
— Australasia
Corm Stylidium Stylidiaceae Mediterranean Non-woody |corm starch Dixon et al., 1983
petiolare shublands —
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Corm Trimezia Trimezieae Tropical savannas — |Non-woody |corm starch Almeida et al.,
cathartica, T. Neotropics 2015
juncifolia
Corm-like Drosera zonaria |Droseraceae Mediterranean Non-woody |[stem tuber starch Pate & Dixon,
stem tuber shrublands — 1982
Australasia
Lignotuber |Erica arborea, E. |Ericaceae Mediterranean Woody lignotuber starch Canadell & Lépez-
scoparia, E. shrublands — and root Soria, 1998; Cruz
australis Paleoarctic & & Moreno, 2001;
Afrotropics Paula & Ojeda,
2009
Lignotuber |Eucalyptus Myrtaceae Temperate and Woody lignotuber starch Carrodus & Blake,
obliqua, E. kochii mediterranean 1970; Wildy &
woodlands — Pate, 2002
Australasia
Non-woody |Tussilago farfara |Asteraceae Several biomes — Non-woody |[rhizome fructans Nkurunziza &
rhizome Palearctic Streibig, 2011
Non-woody |Sasa palmata Bambusaceae Temperate forests — |Non-woody |rhizome starch Magel et al., 2005
rhizome Paleoarctic
Non-woody |Sisyrinchium Iridaceae Tropical forests and |Non-woody |rhizome raffinose-type |Almeida et al.,
rhizome vaginatum savannas — oligosaccharides|2015
Neotropics
Non-woody |Echinolaena Poaceae Tropical savannas — |Non-woody |rhizome and |starch Souza et al., 2010
rhizome inflexa Neotropics root
Non-woody |Imperata Poaceae Several biomes — Non-woody |[rhizome starch Moraes et al.,
rhizome brasiliensis Neoarctic & 2013
Neotropics
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Rhizophore |Smallanthus Asteraceae Montane grasslands |Non-woody |rhizophore fructans Machado et al.,
sonchifolius — Neotropics 2004
Rhizophore |Chrysolaena Asteraceae Tropical forests and |Non-woody |rhizophore fructans Machado et al.,
obovata savannas — 1997
(=Vernonia Neotropics
herbacea)
Rhizophore |Dioscorea Dioscoreaceae Tropical savannas — |Non-woody |rhizophore starch Rocha & Menezes,
kunthiana Neotropics 1997
Rhizophore |Smilax goyazana, |Smilacaceae Several biomes — Suffrutex root starch Martins et al.,
S. brasiliensis, S. Neotropics 2010
oblongifolia, S.
campestris, S.
cissoides
Root crown |Celmisia Asteraceae Montane grasslands |Non-woody |root fructans Tolsmaetal.,
pugioniformis — Australasia 2007
Root crown |Quercus ilex Fagaceae Mediterranean Woody root starch El Omarietal.,
forests — Palearctic 2003
Root crown |Clidemia sericea |Melastomataceae |Tropical forests and |Woody root starch Miyanishi &
savannas — Kellman, 1986
Neotropics
Root tuber |Chamaescilla Asparagaceae Mediterranean Non-woody |root tuber oligosaccharides |Shane & Pate,
corymbosa shrublands — 2015
Australasia
Root tuber |Burchardia Colchicaceae Mediterranean Non-woody |root tuber starch and Pate & Dixon,
congesta forests — Australia fructans 1982
Root tuber |Leptoceras Orchidaceae Mediterranean and |Non-woody |root tuber starch Pate & Dixon,
menziesii temperate forests — 1982
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Australasia
Root tuber |Clematis Ranunculaceae Mediterranean Woody root tuber starch Pate & Dixon 1982
pubescens shrublands —
Australasia
Root tuber |Asphodelus Xanthorrhoeaceae |Mediterranean Non-woody |root tuber lipids and Sawidis et al.,
aestivus shublands — polysaccharides |2005
Palearctic
Roots, root |Chresta Asteraceae Tropical savannas — |Woody root fructans Appezzato-da-
crown sphaerocephala Neotropics Gloria et al., 2008
Roots, root |Cirsium arvense |Asteraceae Several biomes — Non-woody (root fructans Nkurunziza &
crown Palearctic Streibig, 2011
Roots, root |Populus Salicaceae Temperate forests — |Woody root starch Landhausser &
crown tremuloides Nearctic Lieffers, 2002
Stem tuber | Trixis nobilis Asteraceae Tropical savannas — |Suffrutex stem tuber fructans Appezzato-da-
Neotropics Gldria & Cury,
2011
Taproot Gyptis lanigera  |Asteraceae Tropical savannas Non-woody |taproot tuber |fructans Appezzato-da-
tuber Gléria et al., 2008
Xylopodium |Mandevilla Apocynaceae Tropical forests and |Suffrutex xylopodium |starch Appezzato-da-
pohliana, M. savannas — and root Gldria & Estelita,
illustris, M. Neotropics 2000; Lopes-
atroviolacea Mattos et al.,
2013
Xylopodium |Pterocaulon Asteraceae Tropical forests and |Non-woody |xylopodium [fructans Appezzato-da-
alopecuroides savannas — Gloria & Cury,
Neotropics 2011
Xylopodium |Stenocephalum |Asteraceae Tropical forests and |Suffrutex root fructans Appezzato-da-
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(Vernonia) savannas — Gldria & Cury,
megapotamicum, Neotropics 2011
Lessingianthus

elegans
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Table S3 Time of origin of BBB for selected lineages

Oldest time of origin of different types of BBB for selected lineages (see Fig. 3 of the main text), with their vegetation types (all fire-
prone) and distribution. We include both stem (origin) and crown (diversification) ages (in Ma) extracted from published phylogenies:
the specific origin of the trait for the given lineage should be somewhere at or between these ages. Entries under Lineage in parenthesis
is the sister lineage that lacks the trait; in some cases (e.g. Ceanothus, Soroveta), it is possible that the immediate ancestor had the
same condition but knowledge is currently inadequate to determine this (so the age of the BBB is conservative in this regard).
References include the source of information for the phylogeny and for the trait. BBB listed alphabetically. Heath = sclerophyllous
shrubland to 1 m tall, scrub-heath = sclerophyllous shrubland to 2.5 m tall, savanna = (sub)tropical grassland with scattered trees.

BBB

Belowground
caudex

Corm

Lignotuber

Lignotuber

Lignotuber

Non-woody

Family — subfamily

Asphodelaceae -
Xanthorrhoeoideae

Iridaceae

Proteaceae —
Proteoideae

Myrtaceae —
Leptospermoideae

Rhamnaceae

Haemodoraceae

Lineage (sister
lineage)

Xanthorrhoea
(Asphodeloideae)

Gladiolus-
Melasphaerula
(Iris)
Franklandia
(Isopogon-
Adenanthinae)

Melaleuca s.l.
(Osbornia)

Ceanothus subg.
Ceanothus (subg.
Cerastes)

Haemodoraceae

Stem age Crown Vegetation type

(Ma)
59.5

~30

81.5
(fossils to
75 Ma)

50

23

89.5

age (Ma)

22

26

74

35

12

79

Heath, scrub-heath,
woodland, forest

Heath, scrub-heath

Heath, scrub-heath,
woodland

Heath, scrub-heath,
woodland

Heath, scrub-heath,
woodland

Heath, scrub-heath,

Current
location

Australia

Cape,
Mediterranean
Basin

SW Australia

Australia

California

S Hemisphere,

References

Crisp et al., 2014;
caudex diagnostic for
entire genus

Valente et al., 2011;
corm diagnostic for
entire lineage

Sauquet et al., 2009;
He et al., 2016b; T.
He (unpublished)
https://florabase.dpa
w.wa.gov.au/

Crispetal., 2011; M.
Crisp, pers. comm.

Onstein & Linder,
2016; P. Rundel, pers.
comm.

He et al., 2016a; He &
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rhizome

Non-woody
rhizome

Non-woody
rhizome

Non-woody
rhizome

Non-woody
rhizome

Non-woody
rhizome

Root

Root crown
(epicormic*)

Root crown

Root crown
(epicormic*)

Ecdeiocoleaceae

Asphodelaceae -
Hemerocallidoideae

Asphodelaceae -
Hemerocallidoideae

Restionaceae

Anarthriaceae

Proteaceae

Myrtaceae —
Leptospermoideae

Asphodelaceae -
Hemerocallidoideae

Proteaceae —
Grevillioideae

(Pontederiaceae)

Ecdeiocolea-
Georgeantha
(Poaceae)

Pasithea caerulea
(Phormium sub-
clade)

Agrostocrinum-
Dianella-Stypand

Soroveta ambigua
(Restio-Elegia
subclade)
Anarthria-Lyginia-
Hopkinsia
(Restionaceae)

Banksia elegans (B.

ilicifolia lineage)

Syncarpia-
Eucalyptus s.1.
(Leptospermeae-
Chamelaucieae)

Corynotheca
(Caesia-Johnsonia)

Lambertinae
(Floydia-Darlingia)

73.5

56

31.5

91

155

60.5

46.5

45.5

59

42

50

60.0

35

woodland, forest

Heath

Shrubland,
woodland

Shrubland,
woodland

Scrub-heath

Heath, scrub-heath,
woodland

Scrub-heath

Scrub-heath,
woodland, forest

Heath, scrub-heath,
woodland

Scrub-heath, forest

SE USA
SW Australia

Peru, Chile

SW/SE Australia

S Africa

SW Australia

SW Australia

Australia

SW, NW, C
Australia

SW, E Australia

Lamont unpubl.

Bremer, 2002;
https://florabase.dpa
w.wa.gov.au/

Crisp et al., 2014; He
& Lamont unpubl.;
https://florabase.dpa
w.wa.gov.au/

Crisp et al., 2014; He
& Lamont unpubl.

Litsios et al., 2014

Bremer, 2002;
https://florabase.dpa
w.wa.gov.au/

He etal., 2011;
Lamont et al., 2011

Crisp et al., 2011; M.
Crisp, pers. comm.

Crisp et al., 2014;
https://florabase.dpa
w.wa.gov.au/

Sauquet et al., 2009;
He & Lamont unpubl.
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Root tuber -
adventitious

Root tuber -
adventitious

Root tuber -
taproot

Stem tuber

Woody rhizome

Woody rhizome

Xylopodium

Orchidaceae

Asphodelaceae -
Hemerocallidoideae

Caricaceae

Haemodoraceae

Proteaceae

Fabaceae —
Faboideae

Melastomataceae

Orchidoideae
(Epidendroideae)

Caesia (Johnsonia)

Jarilla (Horovitzia)

Tribonanthes
(Conostyloideae)

Prostrate Banksia
lineage (shrubby B.
baueri lineage)

Millettia
makoudensis (M.
Spp. hon-savanna)

Microlicieae
(Rhynchanthera)

58 48
35 ?
18.3 7.1
41.8 11.7
17 12
12.4 12
17.2 9.8

Heath, scrub-heath

Heath, scrub-heath,
woodland

Savanna

Heath, wetland

Heath, scrub-heath,
woodland

Savanna

Savanna (Cerrado)

Cape, SE Africa,
Med Basin,
Australia

SW, E Australia,
Cape,
Madagascar

México,
Guatemala

SW Australia

SW Australia

SW Africa

Brazil

Gustafsson et al.,
2010; Givnish et al.,
2015; Lamont & He,
2017

Crisp et al., 2014;
https://florabase.dpa
w.wa.gov.au/

Carvalho & Renner,
2012; Olson, 2002

Pate & Dixon, 1982;
He etal., 2016a

He et al., 2011;
Lamont & He 2017

Maurin et al., 2014;
Lamont et al., 2017

Simon et al., 2009 —
Fig. S2d

*All species are lignotuberous at the juvenile stage but many outgrow this stage to become epicormic or root-crown resprouters from a
main trunk; thus, these lineages can be used to estimate the origin of root-crown resprouting.
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Notes S1 Description of the BBB database

The aim of the BBB database (Table S1) is to provide examples of structures that support
belowground bud banks (BBBs) of plants in different ecosystems and regions of the world. The
emphasis is on plants indigenous to fire-prone ecosystems (but not exclusively); information on
BBBs for non-woody plants in temperate environments is given in KlimeSova et al. (2017). The
database is largely based on published work, although personal observations of the authors
(and collaborators) are also included. However, there is a lot of confusion in the literature
about the terminology and definitions of the different BBBs. For instance, there are authors
who call any basal resprouter lignotuberous without checking whether the plant actually has a
lignotuber or another type of BBB; and various authors use the term rhizome and sobole in
different ways. This database reflects our interpretations based on our literature review, and
we have provided, for each species, the references on which we have based our interpretation,
although the term used in the reference may differ from that accepted in the database. Where
we are unsure of the BBB, we use a question mark (?). We discarded references that mentioned
a BBB, but the actual BBB was unclear to us. We also avoided including generalizations of some
species groups; for instance, most terrestrial orchids have adventitious root tubers, but we only
included those for which we have specific references. Thus, the emphasis is on data quality
rather than on quantity.

The current version of the BBB database (BBBdb_2017.11) includes 2115 species in 737 genera
and 173 families. The database is provided in a spreadsheet (xls format; see Table S1), and
includes 2 sheets: Data, References. The Data sheet is explained below, the Reference sheet
provides the full references to the reference codes mentioned in the Data sheet.

The Data sheet includes a matrix with species in rows (2115 species + 1 header = 2116 rows)
and the following information for each species in columns:

+ Family: taxonomic family

« Taxon: taxonomic binomial name. In general, we used accepted names following the
Taxonomic Name Resolution Service (Boyle et al., 2013). For Brazil, we used a local flora
(Brazilian Flora, 2020), and for Western Australia the https://florabase.dpaw.wa.gov.au.
- Woodiness: presence and distribution of wood in the plant using the following five
categories:

Woodiness Definition

Woody Woody plant
Herb Non-woody plant, typically herbaceous
Suffrutex Subshrub with herbaceous short-lived (or fire-killed) shoots arising from

a woody base
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Fibrous Some plants, such as tree-like monocots, tree ferns, cycads, graminoids
and bamboos, have a fibrous stem consistency that is neither woody nor
herbaceous

Variable Plant that shows variability or limited information

- BBB: belowground bud bank organ; 15 types, see table below for the categories considered
and a short definition; for more details see the main text, Box 1, Fig. 1 and Notes S2. Some
species may have several BBBs.

BBB type Location of the buds
Root Lateral roots that give rise to buds (‘gemmiferous roots’)
Root crown Root-shoot transition, typically not thickened.

(Thickened) Root crown

Lignotuber

Xylopodium

Basal burl

Rhizome

Rhizophore

Woody rhizome

Bulb

Corm

Stem tuber
Adventitious root tuber

Taproot tuber

Root-shoot transition, often thickened after multiple resprouting events
(i.e., burls of secondary origin). Thickened root crowns are often termed
‘lignotubers’ by many authors, but theses swellings are not present at a
young age.

Basal woody burl (at the root-shoot transition) of shrubs, mallees and
small trees much wider than the taproot. They appear when young
(burls of ontogenetic origin) and develop at the cotyledonary axils.

Basal woody burl of some subshrubs that originates from the hypocotyl
or the upper part of the main root provided not swollen, or from both,

and can also include the base of the stems. Only marginally wider than

the taproot.

Basal woody burl of unknown origin. It could refer to a lignotuber, a
xylopodium or to enlarged thickened root crown, but we do not have
enough information to know which.

Non-woody rhizome, i.e., a subterranean non-woody stem that usually
grows horizontally

Non-woody subterranean stem with downward-facing shoots that
produces roots

A subterranean woody stem that grows horizontally (‘sobole’)

A globose stem structure composed of outer dry and inner fleshy scales
Compressed swollen stem that lacks fleshy scales

Tuber of stem origin

Swollen, soft, lateral roots of adventitious origin that produce buds

Solitary tuber originating from the primary root that produces buds
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Belowground caudex Belowground caudex (non-woody trunk of some palm-like plants)

- References: Code for the references that are used to support the BBB type.

- Biome: Biogeographical biome where the species occurs, based on Olson et al. (2001). The
14 biomes are termed as follows: TrMoist (tropical & subtropical moist broadleaved forests),
TrDry (tropical & subtropical dry broadleaved forests), TrConif (tropical & subtropical
coniferous forests), TempBroad (temperate broadleaved & mixed forests), TempConif
(temperate conifer forests), Taiga (boreal forests), TrGrass (tropical & subtropical grasslands,
savannas & shrublands), TempGrass (temperate grasslands, savannas & shrublands), FIGrass
(flooded grasslands & savannas), MontGrass (montane grasslands & shrublands), Tundra,
Med (mediterranean forests, woodlands & scrub), Desert (deserts & xeric shrublands),
Mangrove, several. This is indicative only, and it may be based on details in the references or
from other sources; some species may occur in other biomes and this is not fully accounted
for here; this column does not aim to be comprehensive but indicative.

- Realm: Biogeographic realm as follows: Afrotropic, Antarctic, Australasia, Indo-Malay,
Nearctic, Neotropic, Oceania, Palearctic, and Cosmopolitan.

- Comments: some comments are included here.
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Notes S2 Types of fleshy underground swellings

Bulb: A globose stem structure with extremely short internodes and composed of outer dry and
inner fleshy scales (non-chlorophyllous leaf structures) with a bud at the apex of the
compressed stem core. Because the bud is located in the center, it is not only protected by the
soil but also by the scales. Bulbs mainly occur among herbaceous monocots (and in a few
dicots, Table S1), and are present in many ecosystems, where the bud is protected against
many environmental constraints, such as cold, frost, and fire. They are abundant in many fire-
prone ecosystems, with some remarkable examples of species with fire-stimulated flowering
(e.g. Rhodophiala advena (Amaryllidaceae) in Chile; Keeley, 1993; Lamont & Downes, 2011).

Corm: Of the stem origin, this is morphologically similar to the bulb but it lacks fleshy scales and
the swollen is compressed. It may possess axillary buds as well as the dominant apical bud as
with stem tubers. Corms mainly occur among herbaceous monocots (Table S1). Many cormous
species display fire-stimulated flowering (e.g. Moraea; Lamont & Downes, 2011).

Stem tuber: This is a localized, swollen, underground shoot that bears nodes, each subtending
one or a few buds (‘eyes’) that may give rise to new, non-swollen shoots. Sometimes, the scars
of the primordial leaves (cataphylls) are visible at these nodes. The presence of nodes
distinguishes a stem tuber from a root tuber (Box 1). They often terminate non-swollen,
horizontally-aligned rhizomes of indefinite length, as in Solanum (dicot). In some species, stem
tubers are associated with rhizophores (see main text). The BBB organs in Drosera behave
functionally like corms but are anatomically stem tubers, and thus have been termed
pseudocorms or carm-like stem tubers (Conran, 2008). Some droseras produce rhizomes from
their tuber (called ‘droppers’), especially after fire, that bend down at their tips to produce new
organs and can create clones by this process (Dixon & Pate, 1978). Stem tubers are produced
annually as overwintering structures in some herbaceous plants of temperate ecosystems. The
only stem-tuberous species with fire-stimulated flowering recorded by Lamont & Downes
(2011) were droseras, suggesting that this structural type is rare in fire-prone systems.

Root tuber: There are two well-defined types:

Adventitious root tuber: Swollen lateral root of adventitious origin from stem bases that looks
similar to a stem tuber but lacks nodes or leaf scars. Usually a plant has multiple tubers at any
time whereas others are solitary but are replaced annually (Pate and Dixon 1982). They do not
have secondary xylem; they have one or a few buds at their apex that produce a single stem or
are stemless above ground. It occurs among monocots in particular and a few dicots. Typical
examples include most terrestrial orchids (Table S1), many of which display fire-stimulated
flowering (Lamont & He, 2017).

Taproot tuber: Taproot of primary origin, swollen at its base that looks similar to a xylopodium
but is soft-wooded at best. Thus it is a solitary (very rarely 2[@3), globose or carrot-shaped
swelling, sometimes very large in relation to the rest of the plant (e.g. Venter, 2009). One or a
few, often ephemeral, stems arise from the apex of the tuber. It is restricted to dicots. Taproot
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tubers may be non-woody or soft-wooded, i.e., with some secondary xylem (e.g. Moringa
tuberous shrubs in Olson & Carlquist, 2001), but all are formed almost entirely of axial
parenchyma. They are often associated with semiarid as well fire-prone ecosystems, and one of
their functions is storing water. They are present in African and South American savannas
(Table S1), and have previously been grouped with the subshrub geoxyles (White, 1977; Maurin
et al., 2014), though they are not woody. While often cultivated for their ornamental basal
swellings, it is not appreciated that these are usually located underground in the wild (e.g.
Fockea edulis, Apocynaceae). Their secondary shoots are usually deciduous (or destroyed by
fire) and replaced from a few buds located in the upper part of the swelling.
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Notes S3 Some special cases

Many species have one of the BBB structures described in the main text; however, there are
many cases of combinations of different bud-bearing organs. For instance, there are plants that
generate an initial burl when young, but later they develop woody rhizomes and knots that
connect different rhizomes, as is the case for many geoxyles in savannas (Fig. 2F in the main
text), in temperate ecosystems (Quercus gambelii; Tiedemann et al., 1987), and in various
Australian Myrtaceae species (Lacey, 1974; Lacey & Whelan, 1976). Similarly, the combination
of lignotubers and bud-bearing roots that sucker after fire is present in some Banksia and Erica
species (Table S1). Some species with rhizophores also produce stem tubers. We distinguish the
non-woody, non-fleshy (wiry) rhizomes typical of graminoids and ferns from the woody
rhizomes of some dicots. An exception is the dicotyledonous tree-mistletoe, Nuytsia floribunda,
that produces long spongy rhizomes (>100 m) from a stem tuber that may exceed 1 min
diameter, and forms clones that may cover several thousand m? and is widespread in SW
Australia (Lamont & Downes, 2011). Layering involves procumbent or stoloniferous stems that
form roots from nodes that touch the ground, sometimes forming fire-resistant knots from
which roots and ramets arise (Fig. 1), as in Poikilacanthus humilis (Acanthaceae) in the Brazilian
savannas (Rachid, 1947).
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