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Abstract
Aim: The aim was to characterize fire regimes and estimate fire regime parameters 
(area burnt, size, intensity, season, patchiness and pyrodiversity) at broad spatial 
scales using remotely sensed individual- fire data.
Location: Western part of the Palaearctic realm (i.e., Europe, North Africa and the 
Near East).
Time period: 2001– 2021.
Methods: Initially, I divided the study area into eight large ecoregions based on their 
environment and vegetation: Mediterranean, Arid, Atlantic, Mountains, Boreal, 
Steppes, Continental and Tundra. Next, I intersected each predefined ecoregion with 
individual- fire data obtained from remote sensing hotspots to estimate fire regime 
parameters for each environment. This allowed me to compute annual area burnt, fire 
size, fire intensity, fire season, fire patchiness, fire recurrence and pyrodiversity for 
each ecoregion. I related those fire parameters to the climate of the ecoregions and 
analysed the temporal trends in fire size.
Results: Fire regime parameters varied across different environments (ecoregions). 
The Mediterranean had the largest, most intense and most recurrent fires, but the 
Steppes had the largest burnt area. Arid ecosystems had the most extended fire sea-
son, Tundra had the patchiest fires, and Boreal forests had the earliest fires of the 
year. The spatial variability in fire regimes was largely explained by the variability of 
climate and vegetation, with a tendency for greater fire activity in the warmer ecore-
gions. There was also a temporal tendency for large fires to become larger during the 
last two decades, especially in Arid and Continental environments.
Main conclusion: The fire regime characteristics of each ecoregion are unique, with a 
tendency for greater fire activity in warmer environments. In addition, fires have been 
increasing in size during recent decades.
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1  |  INTRODUC TION

Fire regimes are shaped by climate, landscape structure and the 
frequency of ignitions (Pausas & Keeley, 2021) and vary glob-
ally across space, biogeographies and environments (Archibald 
et al., 2013; Bradstock, 2010; Chuvieco et al., 2008, 2021; Dennison 
et al., 2014; Krawchuk et al., 2009; Pausas & Ribeiro, 2013; van 
der Werf et al., 2008). This variability in fire regimes selects for 
distinct species traits (Keeley et al., 2011; Keeley & Zedler, 1998), 
structures the assembly of communities (Pausas & Ribeiro, 2017; 
Ponisio et al., 2016; Sauquet et al., 2009; Verdú & Pausas, 2007) 
and determines biome distributions (Bond et al., 2005; Pausas & 
Bond, 2020). Fire regimes are also strongly sensitive to human ac-
tivities (Archibald, 2016; Balch et al., 2017; Pausas & Fernández- 
Muñoz, 2012; Syphard et al., 2017) and global change drivers (Abram 
et al., 2021; Hanes et al., 2019; Pausas & Keeley, 2021; Westerling 
et al., 2006), and the changes in fire regime have strong effects on 
ecosystems, biodiversity (Kelly et al., 2020; Mahood & Balch, 2019) 
and societies (Reisen et al., 2015). Fire regimes are therefore a key 
factor for understanding many past and future ecological patterns. 
However, we lack knowledge on fire regimes for many world regions 
because data on wildfires have not always been recorded and pub-
lished systematically. This might be because in many regions, fires 
were not sufficiently important to justify establishing a fire agency, 
or because political instability precluded the existence of such agen-
cies. This data gap limits our understanding of the effects of global 
change on fire regimes at broad scales. Remotely sensed data can, to 
some extent, fill this gap, because there are satellites detecting ther-
mal anomalies across the entire globe (hotspots; Giglio et al., 2006). 
In fact, remotely sensed fire data have provided a novel view of fire 
across the world by showing us its ubiquity (the fire overview effect; 
i.e., similar to the awareness by astronauts when viewing the entire 
Earth during space flight).

Now that we have a couple of decades of remotely sensed fire 
data, we can start to understand fire regimes at broad spatial scales. 
By fire regime, we refer to the variations in a diversity of fire pa-
rameters (e.g., size, intensity, recurrence, seasonality and patchiness) 
that characterize the occurrence of fires in each region. Although 
remotely sensed data have limitations (Schroeder et al., 2008; van 
der Werf et al., 2008), such data provide a standardized way to 
compare regions (and periods) where ground information is scarce 
or uneven (e.g., across different countries). These data can also be 
useful for describing current fire regimes and detecting future fire 
regime shifts, which are especially relevant in our changing world. 
The question is, to what extent do remotely sensed fire data depict 
fire regime variability for estimation of fire regime parameters?

Previous research on remotely sensed fire data has focused 
mostly on grid- cell (pixel- scale) analysis of fire regimes (Archibald 
et al., 2013; Chuvieco et al., 2008) and classified those pixels into a 
handful of groups describing global syndromes of fire regimes (py-
romes; Archibald et al., 2013). The use of arbitrary grid cells has lim-
itations (spatial autocorrelation; van der Werf et al., 2008), and the 
results are difficult to incorporate into ecological and management 

problems. Analyses based on ecological regions (ecoregions) might be 
more appropriate for many biological questions (Smith et al., 2018), 
including fire regimes (Erni et al., 2020; Hanes et al., 2019; Syphard 
& Keeley, 2020), because fires are strongly related to vegetation 
(fuel) and climate, and these factors are key for the definition of 
ecoregions. However, in most cases, previous region- based analy-
ses have used point data for fires (MODIS hotspots; e.g., Pausas & 
Ribeiro, 2013, 2017), and these data do not capture useful fire re-
gime characteristics fully and make it difficult to estimate fire regime 
parameters.

To improve our understanding of fire regimes at broad scales, 
I consider various environmentally homogeneous areas with broad 
vegetation types, and I benefit from the recent development of 
data based on individual fires (fire scars; Andela et al., 2019; Artés 
et al., 2019; Laurent et al., 2018, 2019). A regional fire scars approach 
(instead of hotspots and grid cells) should provide more ecologically 
meaningful information on fire regimes (i.e., at the ecological and 
biogeographical scale) and enable regional patterns to be found 
that can later be related to other regional processes (e.g., species 
and biome distribution). Such an approach is also more aligned with 
ground- based statistics and management concepts (e.g., fire size, 
fire recurrence) and more useful for modelling purposes. Adopting 
this approach, I aim to compare and estimate fire regime parameters 
for different ecoregions with different environmental conditions, 
different dominant vegetation (biomes) and different biogeograph-
ical origins. I also aim to determine whether there is any temporal 
tendency for some of the fire regime parameters during the last de-
cades. Although human activities diminish the importance of these 
factors for fire regimes (Archibald, 2016; Balch et al., 2017; Chergui 
et al., 2018; Pausas & Fernández- Muñoz, 2012; Syphard et al., 2017), 
I propose that at broad scales, the interactions among vegetation, 
climate and fire are still relevant even in highly populated areas. I 
hypothesize that different environmentally defined regions (hereaf-
ter, ecoregions) have distinct fire regimes. I predict that in temper-
ate environments, warm ecosystems will tend to be more flammable 
than cold ones, and that there will be a tendency towards increasing 
fire size.

Specifically, I test this approach in the western part of the 
Palaearctic realm; this is a large biogeographical unit that includes 
Europe, North Africa and the Near East (Figure 1), comprising 78 
countries and encompassing most major temperate ecosystems. 
This area includes regions with high and low population densities, 
regions that are fire- prone and others traditionally considered non- 
fire- prone, and regions with ineffective policies. These differences 
make field fire information data unavailable or spatially heteroge-
neous. I use large regions with different environmental conditions 
and dominant vegetations (ecoregions; Figure 1a) to study variation 
in the fire regime across the western Palaearctic, including tempo-
ral trends in fire size for each of the ecoregions. Although fires in 
the European Mediterranean area are relatively well known, our 
knowledge of other Palaearctic regions is fragmentary (e.g., Belhadj- 
Khedher et al., 2020; Chergui et al., 2018; Curt et al., 2020; Dubinin 
et al., 2011).
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2  |  METHODS

2.1  |  Ecoregions

The study region is the western part of Palaearctic Realm; it in-
cludes 78 countries (21,896,929 km2) of Europe (52% of the area), 

North Africa (30%) and the Near East (18%). In this extensive 
area, I defined the following eight environmental regions (ecore-
gions): Mediterranean, Arid, Atlantic, Mountains, Boreal, Steppes, 
Continental and Tundra (Figure 1a; for details see Supporting 
Information Tables S1 and S2; Figure S1). The use of large ecore-
gions enables the estimation of some fire parameters with relatively 

F I G U R E  1  (a) Map of the study area (dotted lines indicate latitude 40 and longitude 0), with the eight ecoregions indicated in different 
colours (the same colours are used for the other figures). (b) Proportion of the area burnt annually (as a percentage). (c) Mean fire size (in 
hectares). (d) Mean fire intensity (fire radiactive power, in megawatts in 1 km pixels). (e) Fire season (mean of the day of the year that fires 
start; dotted horizontal lines separate different months). (f) Patchiness of the fire intensity for each fire. (g) Fire recurrence as number 
of fires in each fire patch (boxplot) and as the proportion of fire patches with more than one fire (numbers at the top). (h) Pyrodiversity 
(diversity of fire patches). Details of the ecoregions and data are given in the Supporting Information (Tables S1 and S2). Boxplots reflect 
variability over the years and include the median (horizontal line), the first and third quartiles (box) and extreme values (excluding outliers). 
Dotted lines refer to the median value across ecoregions, except for panel (a), where they indicate latitude = 40, longitude = 0, and panel (e), 
where they separate months. A summary of all this information is provided in the ordination of Figure 2. See also the Supporting Information 
(Figures S1– S11).
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few years of data. These ecoregions are defined by aggregating 
81 World Wide Fund for Nature (WWF) ecoregions (Dinerstein 
et al., 2017; Supporting Information Table S1) with the help of the 
bioregions (https://www.oneea rth.org/biore gions - 2020). The eight 
ecoregions differ in their climates, dominant vegetation (biome) and 
biogeographical origin. The use of these ecoregions reduces the spa-
tial autocorrelation problems faced by studies using grid cells, while 
providing useful fire regime information at an ecological and bio-
geographical scale. The Arid region is the largest (c. 10.5 x 106 km2), 
followed by Continental (c. 3.4 x 106 km2), Boreal (2.2 x 106 km2), 
Mediterranean (2 x 106 km2), Steppes (1.5 x 106 km2), Atlantic 
(0.9 x 106 km2), Mountains (0.7 x 106 km2) and Tundra (0.6 x 106 km2; 
Supporting Information Table S1).

2.2  |  Data

To estimate fire regime parameters in each ecoregion, I considered 
the three available databases that include the geolocated individual 
fires across the globe: GlobFire (Artés et al., 2019), FRY (Laurent 
et al., 2018, 2019) and FireAtlas (Andela et al., 2019). These data-
bases were prepared using different algorithms and assumptions, as 
described in the references; they also differ slightly in the period 
considered (Supporting Information Table S3). GlobFire is the most 
recently published and has the most years of data. It also includes 
a comparison with precedents and validations with independent 
data, and considerable agreement was found among the databases 
(see also Galizia et al., 2021), but some biases in the precedents 
were also found (e.g., the problem of using tildes that split fires in 
FireAtlas). In addition, GlobFire provides the perimeter of all fires in 
a GIS format, enabling me to study fire overlaps (hence recurrence 
and pyrodiversity; see below). However, GlobFire and FireAtlas 
do not have any indicators of fire intensity. Therefore, my analysis 
for size- based statistics is based on GlobFire, whereas for fire in-
tensity statistics, I rely on FRY and on direct remotely sensed data 
(MODIS hotspots; Collection 6 Active Fire Products from Terra and 
Aqua satellites, dataset MCD14ML; spatial resolution: 1 km; down-
loaded from the University of Maryland, USA; period 2001– 2021; 
Supporting Information Table S3). Note that the latter data (MODIS 
fire intensity) are at pixel scale (not for individual fires). To ensure 
that my results do not depend on the data set used, I repeated the 
same analyses with alternative data sets (results shown in Figure S2– 
S11 of the Supporting Information). For a general characterization 
of the ecoregions, I use climate data from WorldClim v.2.1 (Fick & 
Hijmans, 2017).

2.3  |  Analysis

Remotely sensed fire data are prone to false positives because they 
are based on thermal anomalies. To reduce these false positives, I 
initially applied a mask on all the fire databases using a map of po-
tential false positives that included petrochemical industry centres 

(e.g., Algeria and Persian Gulf), volcanoes (e.g., Iceland and Etna) and 
highly industrialized centres. Each fire/hotspot was then assigned to 
an ecoregion by intersecting its geolocation with the ecoregion map. 
I computed the following fire statistics for each ecoregion and year 
(sources for each parameter are in Supporting Information Table S3): 
number of fires; area burnt; fire size; fire intensity; fire season; dura-
tion of the fire season; and fire patchiness (coefficient of variation 
of the fire intensity in each fire). For fire size and intensity, I also 
computed the maximum values as the 95th percentile (Archibald 
et al., 2013). The data were then averaged by ecoregion and year 
and displayed by ecoregion using boxplots (with the median and 
percentiles across years). GlobFire data enabled me to compute the 
overlap between fires throughout the study period and to study the 
different fire- produced patches in the landscape. Fire recurrence for 
each ecoregion was estimated as the number of times each patch 
was burnt. The pyrodiversity of each ecoregion (i.e., fire- caused 
landscape heterogeneity; Martin & Sapsis, 1992, He et al., 2019) was 
estimated as the Shannon diversity of fire patches; that is, consider-
ing the relative abundance (sizes) of fire- produced patches in each 
ecoregion.

Ecoregion mean values for fire parameters were summarized 
with a principal components analysis (PCA) using the R stats library, 
with variables centred and scaled. Ecoregion means were also re-
gressed against average climate variables using generalized addi-
tive (smoothing) models as implemented in the R package “mgcv” 
(Wood, 2017). I tested precipitation and temperature variables for 
annual averages and for the driest and wettest quarter of the year 
following WorldClim data.

Skewness (asymmetry) and Pearson's kurtosis (“tailedness”) of 
the fire size and fire intensity distribution for the whole study area 
and for each ecoregion were computed using the R package “mo-
ments”. The relationship between fire size and intensity was anal-
ysed for FRY data (the only data set that had both variables) using 
generalized additive models (“mgcv” R package). To check whether 
there was a temporal trend in the extreme fire activity, I regressed 
fire size against time using 95% quantile regression as implemented 
in the R package “quantreg” (Koenker, 2021). The previously 
published pyrome map (Archibald et al., 2013) has relatively poor 
information for much of the study area, but I overlaid it with my 
ecoregions to check whether my results were consistent with the 
pyrome map.

3  |  RESULTS

During the last two decades, fire has been omnipresent in most of 
the western Palaearctic. Fire occurred across all ecoregions and, ex-
cept for the Tundra, it occurred every year; however, there were con-
spicuous differences in fire regime among ecoregions (Figures 1 and 
2). Steppes and Continental areas were the areas with the highest 
number of fires (Supporting Information Figure S2); considering the 
size of the ecoregion, Steppes had the largest proportion of annual 
area burnt, followed by Continental and Mediterranean (Figure 1b; 

https://www.oneearth.org/bioregions-2020
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Supporting Information Figures S3 and S4). However, fires in Steppes 
and Continental ecoregions were relatively small and of low inten-
sity when compared with the Mediterranean ecoregion, which had 
the largest and most intense fires (Figures 1c,d and 2; Supporting 
Information Figures S5– S8). European boreal fires were of relatively 
low intensity (Figures 1d and 2). The smallest and least intense fires 
occurred in the Tundra, where fires were very patchy (Figures 1c,d,f 
and 2; Supporting Information Figure S8). Boreal fires mostly oc-
curred in spring or early summer; Mediterranean fires peaked in 
August, and fires peaked in July for the other ecoregions (Figure 1e; 
Supporting Information Figure S9). July was the month with most 
fires across the whole region. The longest fire seasons were ob-
served in Arid and Mountains, and the shortest in Tundra and Boreal 
ecoregions (Supporting Information Figure S10). During the period 
with fire data (c. 18 years; Supporting Information Table S3), fires 
were frequent enough to overlap, especially in the Mediterranean, 
and to lesser extent in Arid and Steppes ecoregions; and this gen-
erated a landscape with patches recurrently burned (Figure 1g). 
Landscape pyrodiversity (Figure 1h) showed a similar pattern across 
ecoregions for the number of fires (Supporting Information Figure 
S2) and area burnt (Figures 1b and 2), with the highest pyrodiversity 
in Steppes, followed by Continental and Mediterranean ecoregions. 
Average fire size, fire intensity and fire recurrence tended to in-
crease towards warmer ecoregions, whereas fire patchiness tended 
to be greater in cold ecoregions (Figure 3; Supporting Information 
Table S4).

For all ecoregions, fire size distributions and fire intensity distri-
butions were positively skewed, with long tails (Table 1; Supporting 
Information Figures S12– S14); that is, the larger and the more intense 

the fires, the rarer they were. Skewness and kurtosis were correlated 
across ecoregions for both fire size and fire intensity (r = 0.96, 
t = 8.68, d.f. = 6, p < .01 and r = 0.98, t = 11.89, d.f. = 6, p < .0001, 
respectively; i.e., the greater the distribution asymmetry, the longer 
the tail). Fire size was much more skewed than fire intensity (Table 1; 
Supporting Information Table S5); the most skewed distribution was 
for Continental, followed by Steppe and Boreal; Tundra was the least 
skewed. The consequence of this strong skewness with high kurto-
sis was that the largest 1% of fires accounted for 30% of the area 
burnt (over the entire study region; Table 1; Supporting Information 
Figure S15). This value varied across ecoregions (Table 1; Supporting 
Information Figure S12), being highest in the Mediterranean (34.2%) 
and lowest for Tundra (16%). Fire size and fire intensity were pos-
itively correlated (Supporting Information Figure S16), suggesting 
that high- intensity fires propagate faster and tend to generate larger 
fires (Laurent et al., 2019). Despite the relatively short temporal 
window considered, there is a significant tendency for large fires 
to increase in size, especially in Arid and Continental environments 
(Table 1).

The pyrome map (Archibald et al., 2013) has no information for 
Tundra and little information for Arid, Atlantic, Boreal and Mountains, 
yet it tends to agree with the present results (Supporting Information 
Figure S17 compared with Figure 1). For instance, the dominant py-
rome for Atlantic, Boreal and Mountains was RCS (rare- cool- small 
fires), which is consistent with the present results (Figures 1 and 2). 
It is also consistent with the fact that the area with most pixels with 
rare- intense- large fires was the Mediterranean, the area with most 
pixels with frequent- cool- small fires was the Steppes, and fires in the 
Continental area were small and cool (intermediate- cool- small, RCS) 
(Supporting Information Figure S17).

4  |  DISCUSSION

Wildfires are currently common across all the western Palaearctic. 
The Mediterranean ecoregion is where the fires are the largest, most 
intense and most recurrent, as can be expected given the consider-
able fire activity in this ecoregion each summer (Keeley et al., 2012; 
also evidenced in headlines of newspapers). However, fires are not 
limited to this ecoregion (Figures 1 and 2). For instance, the Steppes 
(e.g., the Pontic steppes) is the ecoregion where fires are most nu-
merous and occupy the largest proportion of the landscape, despite 
being small and of low intensity, and it is also the area with the great-
est temperature seasonality (Supporting Information Table S2). The 
Steppes evolved with large herbivores that are now extinct or drasti-
cally reduced in number (e.g., Librado et al., 2021; Zimov et al., 1995), 
hence fires are likely to be replacing them as an alternative biomass 
consumer (Bond & Keeley, 2005; Pausas & Bond, 2020). Therefore, 
including large herbivores (rewilding or livestock) would seem ap-
propriate for fuel management in these steppes. Tundra, in contrast, 
is the ecosystem with least fire activity, and when fires occur they 
are the patchiest. Tundra ecosystems are especially sensitive to in-
creased fire activity owing to climate warming and the subsequent 

F I G U R E  2  Principal components analysis of seven fire 
characteristics (area burnt, seasonality, fire recurrence, fire 
intensity, fire size, patchiness and pyrodiversity) across the eight 
ecoregions (for details, see Figure 1). The first axis (PC 1) accounts 
for 43.6% of the variability, and the second (PC 2) for 32%; that is, 
the two- dimensional space accounts for 75.6% of the variability.
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shrub cover expansion and ice shrinkage (Hu et al., 2010). European 
boreal fires are of relatively low intensity (Figure 1d), which is con-
sistent with field observations in the Eurasian boreal forest (e.g., 
understorey and litter- fuelled fires; Sannikov & Goldammer, 1996; 
Kharuk et al., 2021) and in contrast to American boreal fires, as has 
been observed previously (Archibald et al., 2018; Rogers et al., 2015). 
Palaearctic fires are strongly seasonal (Figure 1e), and this empha-
sizes the importance of weather conditions for fire.

Overall, fire regimes are diverse across the study area (Figure 1), 
and each ecoregion is unique in its fire characteristics (Figure 2), with 
an increasing fire activity in warmer ecoregions (Figure 3). These re-
sults suggest that at the broad scale, summer temperature is a good 
indicator of ecosystem flammability in temperate environments 
(Figure 2), with the Mediterranean showing higher than expected 
fire activity for its temperature (positive residuals in Figure 2), and 
the Arid ecoregion (the warmest) showing lower than expected fire 
activity (negative residuals). This deviation from expectation is likely 
to be explained by fuel, with heavy fuels in Mediterranean shrub-
lands and sparse fuels in Arid ecosystems. These results also high-
light the sensitivity of temperate ecosystems to changes in summer 
temperatures (Pausas & Paula, 2012). Certainly, there is also vari-
ability within ecoregion, not only because of the variability in climate 

and topography, but also because of the diversity of socioeconomic 
factors (e.g., European vs. African Mediterranean ecoregions; 
Chergui et al., 2018), yet the present results suggest that there 
are strong constraints imposed by climate and vegetation. In other 
words, human factors are important in shaping fire regimes (Andela 
et al., 2017; Archibald, 2016; Balch et al., 2017; Cattau et al., 2020; 
Chergui et al., 2018; Pausas & Fernández- Muñoz, 2012; Syphard 
et al., 2017), but at broad scales they are unlikely to be the main 
driver differentiating ecoregions.

The present results are consistent across fire databases 
(Supporting Information Figures S2– S11) and with global pyromes 
(Archibald et al., 2013), and they provide finer- scale information 
on fire regimes. Aggregating fire data on climatically homogeneous 
ecoregions allows the estimation of some fire parameters that are 
difficult to estimate when aggregating small pixels in fragmented 
pyromes. This is important when the temporal window is relatively 
short, because large areas have more information for understand-
ing fire regimes. The drawback of the ecoregion approach is that 
some areas might be heterogeneous in vegetation and fire param-
eters, thus both approaches might be complementary. The simple 
fire regime classifications most typically used (i.e., low- intensity 
surface fires vs. high- intensity crown fires) have been very useful 

F I G U R E  3  Relationship between fire 
regime parameter (y- axes) and average 
climate characteristics (x- axes) across 
ecoregion (colours; see Figure 1). Climate 
parameters are mean temperatures (in 
degrees Celsius) of the driest quarter 
(a, b, d) and the wettest quarter (c). The 
lines are significant (p < .05) smoothing 
regressions (generalized additive model) 
with confidence intervals (shading). For 
details of the statistical models, see the 
Supporting Information (Table S4). CV, 
coefficient of variation.
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as a primary axis of variation for understanding fire adaptive traits 
(Keeley et al., 2011; Keeley & Zedler, 1998; Pausas, 2015). The pres-
ent finer- scale differences in fire regime among ecoregions open the 
opportunity for a deeper analysis of the relationship between fire 
regimes and the distribution of species, traits and biomes.

Despite the relatively short temporal scale considered, I detected 
a significant overall tendency for large fires to increase in size, and 
this tendency was driven mainly by the Arid and Continental environ-
ments (Table 1). This is consistent with the general perception of in-
creasingly frequent large fires in the region and with observations in 
other regions (e.g., Dennison et al., 2014). This is important because 
fire size is often related to the severity of the fire and to the postfire 
regeneration, because the recolonization capacity of fire- sensitive 
species might increase with fire size (García et al., 2016; Owen 
et al., 2017); this is not considered when using annual area burnt. In 
addition, fire size is sensitive to fire management and societal factors 
(Pausas & Fernández- Muñoz, 2012; Piñol et al., 2005), which might 
also be unnoticed or confounded with an increasing number of fires 
when studying annual area burnt instead of individual fires. In fact, 
it is possible to have a declining tendency in the number of fires and 
area burned (Andela et al., 2017; Marlon et al., 2008) but an increas-
ing size of fires, which might reflect an increase in extreme fires. And 
this is the expectation when firefighting resources and abilities are 
increasing but conditions (climate, weather and fuels) are becoming 
more conducive to fire. Overall, the present results suggest that to 
account better for the variability in fire regimes and their impact, it 
is important to consider a diversity of dimensions of fire regime that 
can be estimated using individual fire scars. This should also enable 
us to gain a better understanding of future regime shifts (i.e., shifts 
in any of the fire dimensions).

Remotely sensed data come with limitations for estimating 
fire regimes; these include: (1) a short time window, which might 

preclude finding clear differences across regions; (2) the variety 
of sources, algorithms and assumptions, which might make results 
inconsistent; and (3) light understorey fires and underground fires 
might go unnoticed by remote sensors (Schroeder et al., 2008). The 
short time window limits our ability to understand the frequency of 
fires and the long- term regime. This limitation is, in part, compen-
sated by the large size of the ecoregions considered, and the present 
results show clear and expected differences across environments. In 
the future, this limitation will be even more relaxed. In relationship 
to the different sources, I evaluated fire regime parameters from a 
range of sources (Supporting Information Table S3), and the results 
were consistent, suggesting that this is not a key issue, at least at 
the scale of the present study (see also Artés et al., 2019; Galizia 
et al., 2021). Small fires are likely to be underrepresented (Galizia 
et al., 2021), but they are also the least important. Finally, remote 
sensing data are likely to fail to capture underground (peat) fires that 
occur mainly in Tundra (Turetsky et al., 2011), hence this type of fire 
needs to be added to the present results to gain a full understanding 
of fires in this ecoregion. However, the great patchiness of tundra 
fires (Figure 1) suggests that, to some extent, it might be depicting 
a range of fire types. In any case, the intensity of peat fires might be 
defined better by the depth they reach than by the above- ground 
radiation captured remotely. The low fire intensity of some forest bi-
omes (e.g., Boreal and Mountain) suggests that remotely sensed data 
might be depicting understorey fires. Despite many limitations, the 
analysis of individual fires based on remotely sensed data enables us 
to study fire regimes at broad spatial scales that cannot otherwise be 
achieved, hence it becomes an essential tool for ecological studies.

Fires are sensitive to climate, increased urban population in 
wildlands and changes in land use (Pausas & Keeley, 2021). In a 
business- as- usual scenario, the continuous abandonment of many 
rural landscapes across the Palaearctic, climate change and the 

TA B L E  1  Skewness and Pearson's kurtosis of the fire size and fire intensity distributions, in addition to temporal trends in large fires 
(in hectares), for the eight environments considered (Figure 1; Supporting Information Figures S12 and S13) and for the overall western 
Palaearctic (Supporting Information Figure S15)

Ecoregion

Fire size distribution Fire intensity distribution Temporal trend in fire size

Skewness Kurtosis %AB Skewness Kurtosis F Coefficient

Mediterranean 42.1 2,872.3 34.2 10.5 180.3 1.37 −8.40

Arid 35.2 2,046.3 31.4 11.3 240.1 33.28*** 55.02***

Mountains 31.7 1,875.8 26.6 14.3 392.4 0.63 −12.77

Atlantic 19.7 657.6 27.1 8.4 125.2 1.17 24.11

Boreal 80.1 7,298.6 33.9 16.8 554.6 0.58 13.25

Steppes 146.2 31,694.5 32.7 8.2 131.5 1.25 2.02

Continental 230.8 81,391.3 21.3 12.3 380.9 163.49*** 21.40***

Tundra 6.4 58.1 16.2 4.3 28.3 1.14 0.12

Overall 149.7 35,961.2 30.0 14.7 419.5 163.06*** 15.99***

Notes: %AB refers to the proportion of area burnt by the largest 1% of fires. The temporal trend is computed as the 95% quantile regressions for each 
environment considered; the columns are the F- values and the coefficient of the regressions. Fire size is based on GlobFire (Artés et al., 2019) and 
fire intensity in the MODIS hotspots (aqua) (for alternative data sources, see Supporting Information Table S3). Bold values indicate the ecoregion 
with the highest value for the corresponding column.
***There was a significant increase in large fires (p < .0001).
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tendency for increasing human activities in the wild (e.g., the 
spread of the wildland– urban interface) have established the ap-
propriate conditions for increasing the frequency of large fires. 
To what extent we will deviate from this path is unknown; it will 
depend on our own decisions. Monitoring changes in fire activity 
using individual fires in the different regions might provide us with 
a realistic picture of the trends and shifts of fire regime at broad 
spatial scales.
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Fig. S14. Frequency distribution of fire intensity (fire scale) for the eight ecoregions

Fig. S15. Frequency distribution of fire size and fire intensity for the whole study area

Fig. S16. Relationship between fire size and fire intensity for the different ecoregions

Fig. S17. Map of pyromes for the study area and number of cells for each pyrome in each of the 

ecoregions considered
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Table S1. Brief description of the eight regions with different environments considered in western 
Eurasia. WWF ecoregions codes are from Dinerstein et al. (2017); each ecoregion is fully included 
in a single region. Countries are indicated by their official codes (ISO Alpha-2) followed by the 
proportion of the country within the regions (rounded, i.e., 0 refers to < 0.5%).

Region Extension 
(km2)

Description

Mediterranean 2,091,232 Evergreen forest and shrublands around the Mediterranean sea, with 
Mediterranean climate
WWF Ecoregions: 644, 701, 758, 785, 786, 788, 789, 790, 791, 792, 
793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806.
Countries: AL 90, BA 9, BG 0, CY 98, DZ 13, EG 0, EH 1, ES 84, FR 
12, GI 69, GR 88, HR 24, IL 39, IQ 0, IT 68, JO 8, LB 99, LY 4, MA 
78, MC 100, ME 31, MK 22, MT 75, PS 81, PT 80, SA 0, SI 7, SM 100,
SY 27, TN 53, TR 34, VA 100, XK 2

Arid 10,597,943 North Africa (excluding the northernmost part, with Mediterranean 
climate) and the Arabian Peninsula. Arid climate; the driest region
WWF Ecoregions: 722, 723, 739, 744, 745, 747, 787, 809, 810, 811, 
821, 822, 830, 831, 832, 833, 836, 837, 839, 840, 842, 844, 845, 846
Countries: AE 99, BH 84, DZ 85, EG 99, EH 99, ES 1, IL 60, IQ 91, IR 
1, JO 92, KW 97, LY 96, MA 22, ML 34, MR 54, NE 44, OM 98, PS 
19, QA 98, SA 95, SD 29, SY 73, TD 31, TN 47, TR 0, YE 70

Atlantic 915,465 The west most, including British Islands, temperate with Atlantic (rainy)
climate
WWF Ecoregions: 647, 648, 651, 663, 664, 672, 691, 729,
Countries: BE 74, DE 30, DK 92, ES 12, FO 86, FR 46, GB 98, GG 64, 
IE 98, IM 93, JE 81, NL 97, PL 14, PT 16, SE 2

Mountains 737,196 Discontinuous region that include Eurasian high mountains (Alps, 
Pyrenees, Urals …). Mountain coniferous forests and above treeline. 
Cold climate
WWF Ecoregions: 650, 660, 676, 678, 689, 692, 719,
Countries: AD 100, AL 7, AM 52, AT 58, AZ 30, BA 54, BG 25, CH 56,
CZ 2, DE 1, ES 3, FR 6, GE 73, GR 1, HR 20, IT 18, LI 71, ME 68, 
MK 5, PL 6, RO 23, RS 4, RU 1, SI 43, SK 36, TR 3, UA 6, XK 4

Boreal 2,262,366 North European boreal (coniferous) forests; cold climate
WWF Ecoregions: 717,
Countries: FI 97, NO 30, RU 9, SE 58

Steppes 1,336,754 The east part, Black sea and Anatolian forest and steppes (dry/cold 
grasslands), with continental climate.
WWF Ecoregions: 652, 658, 662, 703, 725, 735,
Countries: BG 0, KZ 3, MD 23, RO 10, RU 4, TR 40, UA 41

Continental 3,457,712 Mix forest and moist grasslands in the central part of Western Eurasia. 
Cold temperate climate
WWF Ecoregions: 646, 654, 661, 665, 674, 675, 679, 686.
Countries: AL 2, AT 42, AX 61, BA 37, BE 26, BG 74, BY 100, CH 44, 
CZ 98, DE 68, EE 98, FI 1, FR 36, GE 9, GR 8, HR 54, HU 100, IT 14, 
LI 29, LT 100, LU 100, LV 100, MD 77, ME 1, MK 73, NL 0, NO 3, PL
80, RO 67, RS 96, RU 6, SE 27, SI 50, SK 64, TR 11, UA 52, XK 94
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Tundra 590,337 The top north with tundra (non-forested) vegetation. The coldest.
WWF Ecoregions: 774, 776, 780.
Countries: FI 1, NO 58, RU 2, SE 11

TOTAL 21,896,929 81 WWF ecoregions; 78 countries

Table S2. Average climatic variables for each of the ecoregions considered. For each variable, the 
highest and lowest are indicated in bold and italics, respectively. Temperature (temp) is oC, 
prcipitation in mm. 
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Annual mean temperature 14.91 24.17 5.10 9.35 1.33 9.04 7.15 -1.95

Temp seasonality (sd x 100) 638.9 660.75 832.29 474.81 936.73 952.92 868.77 862.69

Max temp warmest month 30.36 39.55 22.11 20.27 19.59 28.14 23.99 14.86

Min temp of coldest month 2.42 7.99 -9.89 0.77 -14.86 -7.65 -7.87 -16.39

Temperature annual range 27.94 31.56 32.00 19.5 34.45 35.79 31.86 31.26

Mean temp of wettest quarter 10.45 21.9 10.97 8.47 11.19 11.88 15.2 6.61

Mean temp of driest quarter 22.13 27.14 0.25 9.35 -4.85 8.46 0.41 -6.92

Mean temp of warmest quarter 22.97 31.73 15.35 15.36 13.14 20.52 17.69 9.17

Mean temp of coldest quarter 7.44 15.65 -5.04 3.86 -10.00 -2.75 -3.57 -11.83

Annual precipitation 575.63 78 870.96 1038.79 666.45 503.64 673.47 675.13

Precipitation of wettest month 88.38 18.99 109.68 118.84 84.03 66.25 85.13 84.57

Precipitation of driest month 12.09 0.38 43.81 53.89 32.02 21.21 34.49 33.21

Precipitation seasonality (CV) 56.01 76.92 30.85 24.05 31.83 34.06 29.8 30.66

Precipitation of driest quarter 50.92 2.48 149.12 177.63 106.06 72.51 114.73 109.55
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Table S3. Source of data for estimating the different fire regime parameters

Fire regime 
parameter

Source1 Period2 Scale Comments

Number of fires GlobFire 2001-2019 Fire Fig. S2

FRY MODIS 2000-2017 Fire Fig. S2

GFA 9/2002-4/2017 Fire Fig. S2

Fire size, area 
burnt

GlobFire 2001-2019 Fire Fig. 1

FRY MODIS 2000-2017 Fire Scenario 3 and 14, Fig. S3-S6

GFA 9/2002-4/2017 Fire Fig. S3-S6

Fire intensity FRY MODIS 2000-2017 Fire Mean fire radiative power 
(megawatts/pixel), Fig. S7-S8

MODIS hotspots 11/2000-1/2021 Pixel Fire radiative power (megawatts), for 
Terra and for Aqua satellites; Fig. 1, 
S7-S8; spatial resolution: 1 km

Fire season GlobFire 2001-2019 Fire Fig. 1

GFA 9/2002-4/2017 Fire Fig. S10

FRY MODIS 2000-2017 Fig. S10

MODIS hotspots Fire Fig. S10

Fire patchiness FRY MODIS 2000-2017 Fire CV of fire intensity (radiative power). 
Scenario 3 and 14, Fig. S9

Fire recurrence GlobFire 2001-2019 Patch Fig. 1; patch obtained by overlying all 
fires

Pyrodiversity GlobFire 2001-2019 Patch Fig. 1; idem

1) Acronyms: GWIS: Global Wildfire Information System (Artés et al. 2019); GFA: Global Fire 
Atlas (Andela et al. 2019), FRY MODIS (Laurent et al. 2019), MODIS hotspots (NASA, 
MCD14ML data obtained from the University of Maryland; data with confidence > 60)
2) Some sources include incomplete years, thus for annual information, only complete years where 
considered



5

Table S4. Summary of the statistical of the smooth fitting in Fig. 2 (main text) using generalised 
additive models.

Fire (dependent)
variable

Climate (independent)
variable

AIC F P-val R2 adj Dev. Expl.
(%)

Fire size Mean temperature of 
the driest quarter

8.85 8.118 0.0292 0.504 57.5

Fire intensity Mean temperature of 
the driest quarter

5.93 5.44 0.0396 0.579 66.1

Fire patchiness Mean temperature of 
the wettest quarter

14.46 21.61 0.0033 0.860 90.0

Fire recurrence Mean temperature of 
the driest quarter

7.17 12.88 0.0115 0.629 68.2

Table S5. Skewness and Pearson’s kurtosis of fire size and intensity based on FRY, for scenarios. 
Extreme low fire intensity values (mean = 4·10-7) are excluded. Values in bold indicate the 
ecoregion with the highest vaule for each column. 

Modis, scenario= 03 Modis, scenario =14

Fire size Mean fire intensity Fire size Mean fire intensity

Ecoregion Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

Mediterranean 19.29 530.13 6.56 82.55 18.04 471.61 6.49 80.51

Arid 26.53 1111.41 5.54 59.62 18.03 470.18 4.25 30.47

Mountains 15.49 447.57 5.62 62.35 8.45 130.72 6.16 80.39

Atlantic 12.72 276.01 3.61 21.98 10.85 191.94 6.76 97.49

Boreal 35.46 1496.27 3.85 30.48 33.97 1443.20 3.70 27.30

Steppes 54.76 4225.45 5.90 72.37 54.59 4157.05 6.41 87.54

Continental 62.34 6718.75 6.98 109.86 71.15 9579.49 6.42 84.54

Tundra 1.38 3.66 0.43 2.33 1.05 2.68 0.25 1.91

Overall 64.76 6430.67 7.09 110.15 61.73 5835.59 7.45 122.35
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Fig. S1. Distribution of the ecoregions in the environmental space defined by mean annual 
temperature (y axis, oC) and annual rainfall (x axis, mm) (left), and by maximum temperature of the
warmest month and precipitation of the driest month (x axis, mm) (right). Colored symbols are the 
media, and lines are the 25% and 75% percentiles (spatial variability). 

Fig. S2. Mean annual number of fires. Variability refers to different years. Scenarios 3 and 14 refers
to the 3 and 14 days cutoff following Laurent et al. 2018, 2019.
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Fig. S3. Annual area burnt. Variability refers to different years. Scenarios 3 and 14 refers to the 3 
and 14 days cutoff following Laurent et al. 2018, 2019.

Fig. S4. Relative annual area burnt (in relation to the size of the region)
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Fig. S5. Mean fire size

Fig. S6. Max fire size (percentile 95%)
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Fig. S7. Fire intensity as mean fire radiative power (left), and pixel fire intensity (left).

Fig. S8. Maximum fire intensity as 95% quantile of fire radiative power (left), and pixel fire 
intensity (left).
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Fig. S9. Indicators of fire patchiness: coefficient of variation of the fire radiative power (FRP) 
within a fire. The most patchy fires occur in the Tundra.

Fig. S10. Fire season 
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Fig. S11. Duration of the fire season calculated as the number of days between the 0.05 and the 0.95
percentiles of the first and last fire (GlobFire, GFA) or hotspot (MODIS) of each year.
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Fig. S12. Fire size distribution for the eight ecoregions in the western Palearctic. Vertical dotted 
lines indicate the percentile 99%, and the number in the right of the line is the proportion of the area
burned by the top 1% fires. This value for the entire regions is 30% (see Fig. S15). 
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Fig. S13. Frequency distribution of fire intensity (pixel scale, Table S2) for the eight ecoregions in 
the western Palearctic. Vertical dotted lines indicate the percentile 99%. 

Fig. S14. Frequency distribution of fire intensity (fire scale; from FRY, see Table S2) for the eight 
ecoregions in the western Palearctic. Vertical dotted lines indicate the percentile 99%. 
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Fig. S15. Frequency distribution of fire size (left) and fire intensity (right; hotspots, pixel scale) for 
the whole study area (western Palearctic). Vertical lines indicate the 99% percentile.

Fig. S16. Relationship between fire size and fire intensity (mean fire radiative power) for the 
different regions considered. The figure shows the smoothing (generalized additive model) and the 
AIC change after fitting the model (note that for Tundra is negative, i.e., non-significant). Shade 
areas are confidence intervals. The two axes are in log-scale. Data from FRY.
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Fig. S17. Map of pyromes for the study area from Archibald et al. (2013) (top) and number of cells 
(pixels) for each pyrome in each of the regions considered (bottom). Note that there were no pixels 
with pyrome information in the Tundra, so it is not shown in the bottom figure. Abbreviations as in 
Archibald et al. (2013): FIL (frequent–intense–large), ICS (intermediate–cool–small), RCS (rare–
cool–small), RIL (rare–intense–large), and FCS (frequent–cool–small).
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