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Highlights
There are many ancient open vegetation
formations worldwide that maintain a
high diversity of shade-intolerant species
where the climate is suitable for forests.

Fire and herbivores are ancient con-
sumers of plant biomass that maintain
open ecosystems and shape shade-
intolerant species.

Therefore, open ecosystems are not
necessarily either produced by defores-
There is growing interest in the application of alternative stable state (ASS)
theory to explain major vegetation patterns of the world. Here, we introduce
the theory as applied to the puzzle of nonforested (open) biomes growing in
climates that are warm and wet enough to support forests (alternative biome
states, ABSs). Long thought to be the product of deforestation, diverse lines
of evidence indicate that many open ecosystems are ancient. They have
also been characterized as ‘early successional’ even where they persist for
millennia. ABS is an alternative framework to that of climate determinism and
succession for exploring forest/nonforest mosaics. This framework explains
not only tropical forest–savanna landscapes, but also other landscape mosaics
across the globe.
tation or early successional, but have
been maintained by consumers as
ABSs to forests.

ABSs are not only found in tropical envi-
ronments, but also in temperate and
Mediterranean conditions.
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Forests and ‘Nonforests’
Traditionally, the distribution of different vegetation types across the world was thought to be
driven by climate [1,2], while soil interactions (e.g., competition for resources) were considered
the main assembling process [3,4]. One of the clearest arguments suggesting that soil and cli-
mate cannot fully explain vegetation distribution is the existence of mosaics of strikingly different
vegetation in the same environment [5–7]. Many regions of the world can support forests (as in-
dicated by forest patches and forestry plantations) yet are covered by ‘nonforest’ ecosystems,
such as grasslands, prairies, shrublands, or open woodlands (collectively called ‘open
ecosystems’, see Glossary). This mismatch between climate and vegetation has long puzzled
ecologists [8–10].

One common explanation is that open ecosystems are the result of anthropogenic deforestation,
especially through human use of fire and that, given enough time, these ‘early successional
stages’ will transform to a higher biomass ecosystem (forest) as trees shade out smaller growth
forms (Table 1). A prominent alternative idea is that open and closed ecosystems share the
same landscape because of divergent soil conditions influencing plant growth, with forests
growing on soils conducive to tree growth, and open ecosystems on soils hostile to tree growth.
A prediction is then that forests cannot develop on grassland soils, for example. However, as we
will see later, diverse lines of evidence have cast doubt on the generality of both sets of
explanations.

A third idea is that open ecosystems are maintained by ecological processes that consume trees,
preventing succession to a closed forest. Fire is a prominent and widespread plant consumer
with many analogies to large vertebrae herbivory. Both wildfire and large vertebrates can reduce
tree cover, either by killing established trees or by inhibiting their recruitment. Open (consumer-
controlled) ecosystems would be predicted to switch to closed forest if the consumer was
excluded from the system for long enough for forest trees to grow. Contrary to succession theory,
open ecosystems can be maintained for millennia if the feedback between the plants and the
consumer persists.
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Glossary
Basin of attraction (attractor): range
of conditions in which an ecosystem can
oscillate due to disturbances, without
changing state (see ‘Resilience’). Each
basin of attraction corresponds to a
stable state. It is typically represented by
a cup, with a ball (ecosystem) oscillating
inside it.
Bimodal (multimodal): a frequency
distribution with two (or more) peaks. In
relation to vegetationmosaics, it refers to
peaks in the frequency distribution of a
vegetation indicator (e.g., tree cover,
basal area, biomass, or tree density) in a
given landscape or region
(i.e., intermediate values are rare).
Biome: grouping of vegetation types
with the same dominant growth form
(s) that remains stable over generations.
Open and closed biomes (see later) can
be alternative stable states.
Consumers (plant consumers):
agents that consume plant biomass
generating feedback to the vegetation
by influencing their own regime;
consumers include herbivores and fire,
and consumed-controlled systems
includemany grasslands, savannas, and
shrublands. Consumers convert
complex organic compounds into
simpler by-products. Note that physical
disturbance agents (wind, flood,
landslide, etc.) do not consume or
convert plant matter, neither is their
disturbance regime altered via
feedbacks with vegetation.
Encroachment (woody
encroachment): the increasing
dominance of woody plants in a
grass-dominated system.
Hysteresis: difficult-to-reverse shifts
because the two pathways of change
between ASSs differ. For instance,
grazing may maintain a savanna, and
removing grazers may drive the system
to a forest, but the savanna is not
recovered by just adding back grazers in
the forest.
Landscape anachronism: those
landscapes that are best explained by
extinct animals and are currently
maintained by human intervention. Many
European landscape mosaics are
anachronistic because they include
species-rich grasslands currently
maintained by livestock or mowing.
Open versus closed biomes: open
biomes are those dominated by
shade-intolerant plants; they can include
some trees, but tree density and leaf
area is low enough to allow abundant
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We currently know that both the open ecosystems and the consumers that maintain them are
many millions of years old. Paleoecological [11–16] and phylogenetic [17–20] evidence indicates
that fires and large herbivorous tetrapods have been consuming plants for hundreds of millions
of years; their impact on ancient ecosystems is currently an active area of research
[11,14,18,19,21,22]. The sudden dominance of C4 grasses during the Miocene is among the
most dramatic examples of the assembly of an open ecosystem in the geological record
[23–25]. Further evidence for the ancient origin of open ecosystems is the richness and ende-
mism of their biota. Global biodiversity hotspots include open grasslands, shrublands, and sa-
vannas rich in endemic shade-intolerant plants and animals, and subject to regular fires or
herbivory [26–30]. The existence of a species-rich open habitat biota contradicts the idea that
open ecosystems are recent products of deforestation, but supports the evidence that they are
persistent stable habitats [31].

ASS theory has recently emerged from being a theoretical backwater to becoming a major hy-
pothesis for explaining mosaics of open and forested ecosystems around the world. Here, we in-
troduce readers to ASS theory by exploring its utility in explaining mosaics of forests and
nonforest biomes (ABSs). We discuss why ABS is considered an important contender for
explaining the distribution of tropical grassy biomes, and why it may explain many of the forest/
nonforest mosaics elsewhere. We also note points of contention that cause vigorous debate, dis-
cuss conservation implications of ABS, and indicate new directions and questions raised by the
ABS theoretical framework.

Alternative Biome States: The Concept
The biome concept was first introduced to characterize structurally similar vegetation types in
similar climates around the world. Climate classifications, such as that of Koppen, use annual
and seasonal means of precipitation and temperature to categorize climates that encompass dif-
ferent biomes. The biomes, then, are supposed to represent distinct climate zones. The circularity
of this definition (vegetation and climate are indistinguishable) narrowed our understanding of the
processes behind vegetation patterns.

The problem was recognized, and structural definitions of biomes were developed independent
of climate or location. Biomes were instead based on the shared dominance of particular major
growth forms within a vegetation type, but with different growth forms among biomes [32]. Con-
sequently, ABSs refer to the potential dominance of different growth forms (and, thus, different
biomass, leaf area, shade tolerance, and community structures) under the same environment,
with each state (open versus closed biome) persisting over generations. ABS is a special
case of the more general theory of ASS [33–38], which has been applied to a range of biological
systems, from cells to oceans [36]. In such systems, each state returns to the same state (stable
state) after small disturbances (resilience) thanks to the existence of stabilizing feedback pro-
cesses [39–41]. However, occasional strong stochastic events (perturbations) or gradual shifts
in environmental drivers (see [42] for a detailed distinction) can push the system from one state to
the other (a biome shift); the new state remains stable, while the intermediate situations are unsta-
ble. Removing the driver that induced the state change may not necessarily cause the system to
switch back to the previous state (hysteresis).

Here, we first introduce the case of ABS in the tropics, because it is there where it has been best
documented; we then examine the difficulties in testing the ABS and review ABS beyond tropical
environments. As feedback mechanisms, we focus on fire and vertebrate herbivory (plant con-
sumers), which have been most widely studied as the major drivers generating ABS at broad
scales. Other processes have been proposed as candidates for regime shifts (e.g., freezing,
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shade-intolerant species. Typical
examples are grasslands, savannas,
and shrublands. Closed biomes are
forests, that is, tree-dominated
ecosystems inwhich the density and leaf
area is high enough to exclude
shade-intolerant plants in the
understory. Closed biomes typically
have higher plant biomass than open
biomes. Open biomes are often
maintained by plant consumers.
Open versus closed ecosystems: as
for biomes, but in more general terms
(i.e., open ecosystems are those
dominated by shade-intolerant plants
while closed ecosystems are dominated
by trees that exclude shade-intolerant
plants in the understory). Open versus
closed ecosystems should not be
confused with open/closed as used in
thermodynamics and system theory.
Perturbation: disturbance (often
infrequent) that shifts the state of a
system; also called extrinsic
disturbances or destabilizing factors.
Note that not all disturbances generate a
perturbation of the system.
Resilience: ability to return to the
reference state after disturbance (i.e., to
fluctuate within the basin of attraction),
and maintain functions, structure, and
feedback processes. ‘Elasticity’ is the
speed of the return.
Threshold: point where a small gradual
change in conditions lead to large
changes (discontinuous jumps) in
system state variables (e.g., biomass,
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drought, and cyclone damage [43,44]); however, these are typically of local importance and do
not generate feedbacks that maintain one of the states; thus, they are not considered here.

Alternative Biome States Explain Tropical Forest–Savanna Mosaics
The striking differences and sharp boundaries between tropical forests and tropical grassy bi-
omes (savannas and grasslands; Figure 1) led to early suggestions that they were ecological ex-
amples of ABS. ABSs are maintained over generations by stabilizing feedback processes that
enhance the conditions required for a given state while hindering the conditions for the other
state. For forest–savanna systems controlled by fire (Figure 2), the main stabilizing feedback pro-
cesses are as follows [39,40,45–48]: in the low biomass state (savanna), frequent fires keep the
system open and enable a dominance of shade-intolerant flammable grasses that enhance
frequent fires. In the higher biomass state (forest), shade limits the growth of flammable (shade-
intolerant) grasses, and the higher humidity and the lower wind speed inhibits fire spread while
enhancing the growth of forest trees (which further inhibits flammable conditions). Under extreme
weather (dry, hot, and windy) conditions, fire may spread from savannas into the forest and open
the canopy beyond a light threshold that allows the colonization of flammable grasses, poten-
tially causing a shift to an open stable state [10,49]. By contrast, a long fire-free interval may en-
able tree colonization of the open state, causing eventual exclusion of shade-intolerant trees and
flammable grasses and their replacement by shade-tolerant forest trees [45,47]. The regime shift
to forests is stabilized by changes in microclimatic conditions and the loss of flammable grasses
(Figure 2). The two rates of change are different (i.e., the basins of attractions are asymmetri-
cal). In general, closed ecosystems cannot easily switch to open ecosystems because forests
may be insufficiently flammable, or because the size of the woody species may have exceeded
the threshold at which they become fire and/or grazing resistant. Thus, the switch requires an
infrequent disturbance event (a perturbation, e.g., a long El Niño/La Niña event; Figure 2
[10,49,50]). This difficulty in reverting the state (hysteresis) is a characteristic of many ABSs.
The savanna-to-forest switch is slower, but well within the lifespan of a tree, with a tipping point
when difficult-to-ignite bush clumps exceed the threshold at which fire no longer ‘percolates’
through the landscape and the system switches to a nonflammable forest state [51]. The
number of individuals, or cover).

Table 1. Comparison of the Three Main Dynamic Processes Assembling Disturbance-Prone Communities and Landscapesa

Characteristics Succession Autosuccession ABS

Mechanisms Facilitation Resprouting, seeding Positive feedbacks

Stable states 1 1 2 (or more)

Changes in spatial structure
(boundaries)

Gradual No Abruptb

Temporal changes Gradual No Abruptb

Community trajectory Unidirectional Low, nondirectional Multidirectional

Disturbance External property Inherent property Inherent property

Predictability of composition High (temporal sequence) Very high Low

Key plant traits Height, leaf and root traits, shade tolerance Bud and seed banks Shade tolerance, leaf area index, bud bank,
flammability, palatability

Typical examples Post volcano, oldfields Chaparral-type shrublands Forest–savanna mosaicsc

aThe three processes compared are: classical (facilitation) succession, autosuccession, and ABSs. Under the ABS framework, autosuccession is understood as a
mechanism that maintains an alternative state.
bAbrupt relative to the tree longevity. Note that, in aquatic ecosystems, abrupt changes are faster than in terrestrial ecosystems due to the different generation times of the
organisms.
cSee also Table 2 in the main text.
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Figure 1. Examples of Multibiome Landscape Mosaics Where Closed Forests Alternate with Open Biomes (Grasslands and Shrublands) That Are
Maintained by Mammal Herbivory and Fire. These examples include tropical (A, B, E); temperate (D); and Mediterranean climates (C, F). Locations: (A,B) Lope,
Gabon; (C) Sonoma county, CA, USA; (D) Larzac, France; (E) Drakensberg mountains, South Africa; (F) closed forest and adjacent burnt Cape fynbos, South Africa,
showing fire stopping in the forest. Photos by W.J. Bond.
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contrasting fire regimes and responses between the two states lead to divergent functional
characteristics of the woody plants, as observed in several studies: forest trees typically have
thin bark and exposed buds and, thus, are sensitive to grass fires, while trees and shrubs from
Trends in Plant Science, March 2020, Vol. 25, No. 3 253
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Figure 2. Generalized Feedback Processes in Fire-Prone Landscapes Where Open and Closed Biomes
(e.g., a Grassland and Forest) Are Stable States Maintained by Stabilizing Feedbacks, While Perturbations
Generate Abrupt Transitions among States (Destabilizing Factors). In open ecosystems (A), with lower moisture
and higher fire frequency, woody plants have less leaf area and invest in fire-resistant mechanisms (thick bark and insulated
buds), while in closed canopies (B) with higher shade and moisture, trees shade and inhibit understory plants. In the closed
state, one or two consecutive fires (a pulse perturbation) may kill some fire-sensitive trees, open the canopy, and allow the
colonization of flammable vegetation, which may surpass the flammability threshold that led to stabilizing the low biomass
state. This is a sudden and quick transition. In the open state, a long period without fires (perturbation) may allow the invasion
of fast-growing fire-sensitive trees that close the canopy beyond a threshold that generates enough shade and moisture to
stabilize the closed canopy state. This shift may be slower. The open state (A) can also be maintained by herbivory, enhancing
palatable vegetation (grazers) while inhibiting woody vegetation (browsers). Herbivory exclusion may drive the system to a
closed woody state, while browsing and fire may revert to the savanna state [7,39,64].

Trends in Plant Science

254 Trends in Plant Science, March 2020, Vol. 25, No. 3
flammable open ecosystems have either thick fire-resistant bark [45,46,52] or a high resprouting
ability from either insulated epicormic buds [53–55] or underground bud banks [20,56].

While fire has been extensively studied as a global consumer maintaining open ecosystems, the
same is not true for large vertebrate herbivores; the spatial extent and environmental conditions
favoring herbivore-maintained open ecosystems are still not well known. Large vertebrate herbi-
vores, similar to fire, can generate feedbacks by consuming woody vegetation (browsing) while
favoring grasses [5,57–59]. Herbivore exclusion favors the establishment of woody vegetation
[14,60,61]. Herbivory may maintain grasslands [7,62–64], but a biome switch from woodlands
to grasslands may require fire [10,49,65]. While both herbivory and fire compete for the same re-
source (biomass), their relative importance in a landscape varies depending on a range of factors
(e.g., herbivores require more fertile soils [64]). For instance, in Africa, there is a relatively abrupt
shift from herbivory- to fire-controlled systems along a precipitation gradient [7,64,66]. Semiarid
savannas and nutrient-rich soils support heavy grazing, whereas humid savannas with leached
soils support unpalatable vegetation (high C/N), thereby inhibiting herbivory and promoting fire
[64,67]. In southern South America, the density of cattle modulates fire activity along the precip-
itation gradient [68]. In other regions, fire may have increased in importance as a plant consumer,
after the extinction of large herbivores [11,69,70].

Given that abrupt transitions among biomes are related to time-dependent processes
(e.g., intervals between disturbances and plant growth rate; Figure 2), environmental conditions
can influence the dynamics among states by controlling the speed at which the system reaches
thresholds. Thus, climate influences the probability of finding alterative biome states, with very wet
tropical climates having high probabilities of closed forest, whereas very dry tropical climates

Image of Figure 2
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generally only support grasslands [7,64]. Similarly, spatial heterogeneity in microenvironmental
conditions can influence the dynamics among states. Thus, patches of higher soil fertility, deeper
soils, or small topographic depressions enhance the transition towards the closed state, while
patches of unproductive environment favor open states [71,72].

Testing Alternative Biome States
Despite conceptual and modeling advances in ASS theory, experimental ecologists have had dif-
ficulties demonstrating the existence of ABS, particularly because of the high bar set by theoret-
ical ecologists (Box 1) and the problem of demonstrating stability in systems with long-lived
organisms [40]. ABS theory differs from traditional succession theory in predicting that the
open states are stable and not early successional (Table 1). However, the states are also dynamic
and, thus, the capacity to switch from one state to another must also be demonstrated. Experi-
mental ecologists would need several decades to convincingly demonstrate that a tree can recruit
and grow to maturity in a grassland, but several centuries to convince themselves that an exper-
imental forest can stably occupy the ‘grassland’ site. Since rigorous long-term experiments are
difficult to perform in complex terrestrial ecosystems [38,40,73] (Box 1), many ecologists have
overlooked ABS and rely on bottom-up (resource) explanations for biome mosaics [74,75]. The
pervasive idea that forests are ancient and nonforests are derived (by human deforestation) has
been an additional hindrance to unbiased research on the causes of ABS, in which natural distur-
bances can switch between alternative biomes [21].

More recently, field ecologists have suggested protocols for testing ABS, emphasizing different
features of the theory. For example, a recent protocol emphasized the dynamism of the alterna-
tive states [76] and included demonstrating stability over time using paleoecological and historical
data, then searching for field evidence of dynamism (e.g., tree growth rates and biome boundary
movements), and finally testing it with natural or designed experiments supplemented with simu-
lation models. However, much of the recent surge of interest in ABS emphasizes pattern, not dy-
namics, especially thanks to new global remote-sensing information [6,7,64,77–80]. These
studies reveal that tree cover across a precipitation gradient is multimodal and tends to be either
high or low, with few intermediate values. This is consistent with tree densities falling into different
basins of attraction, and strongly supports the ABS theory. Subsequent studies have shown
Box 1. The Difficulties of Testing Alternative Biome States in Terrestrial Ecosystems

The criteria for recognizing ASSswere hotly debated during the 1980s and became strongly restrictive. The proposed pro-
tocol was as follows [35,38]: (i) identify potential alternative states; (ii) apply a range of perturbation levels hypothesized to
switch states; (iii) perturbations should mimic natural regimes; (iv) perturbation should not be maintained (pulse distur-
bance); (v) the monitoring should be long enough for the alternative state to develop; (vi) perform the reverse experiment,
preferably in the same site; and (vii) if the two experiments are performed in a different site, then both experiments need to
be well replicated. We could even add: (viii) atmospheric conditions (climate, CO2, or nutrient deposition) during the exper-
iment should reflect the natural regime. This protocol is difficult to accomplish (if even possible) when studying terrestrial
ecosystems and long-lived plant species.

Using these criteria, very few studies have demonstrated the existence of alternative states in natural systems [38,73],
let alone the existence of alternative biomes. The criteria emphasize experimental studies, and this possibly leads to a fail-
ure to recognize patterns consistent with ABS theory at regional and continental scales. Fire and grazing exclusion exper-
iments are probably the closest approach for testing whether environmental heterogeneity maintains distinct states.
Although many such experiments have been maintained for decades, they are still relatively short in relation to plant lon-
gevity, and none were designed for testing ABS [75]; stabilizing disturbance and perturbations often do not mimic natural
processes. The existence of tree plantations in open landscapes is a useful indirect evidence in support of ABS in demon-
strating that environmental conditions (soils and climate) are not responsible for excluding forests. Thus, an analysis of pat-
terns should form part of the criteria for recognizing ABS as a global phenomenon (see Box 2 in the main text). A large and
randomized sampling may be needed to overcome some of the shortcomings when concluding processes from patterns.
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similar patterns using ground-based analyses of basal area, a surrogate for biomass [7]. By
contrast, a unimodal distribution of tree importance would be expected if tree populations were
controlled by resource availability.

In parallel with the development of remote sensing for broad spatial-scale analyses, the emer-
gence of new paleoproxies provides strong temporal evidence for both stability of states and
their potential to shift [10,14,76]. For example, there is isotopic evidence that current forests re-
placed savannas in southern Africa [81]. Savannas persisted for thousands of years before
being replaced by forests, which have now persisted for at least 2000 years [82]. Both states
are stable and both occupy soils that can be occupied, and have been, by the other state [82].
Such studies have made it feasible to demonstrate both stability and regime shifts on timescales
far beyond what is practical in field experiments.

However, manipulative and opportunistic experiments are important tests of whether each biome
state can occupy the domain of the putative alternative state. For instance, forest plantations in
landscapes dominated by grasslands, prairies, savannas, and shrublands are evidence that the
environment is warm and wet enough to support forests. Multidecadal burning experiments
show that fire exclusion can transform grasslands to shrublands [83] or closed forests [84–86],
while recurrent fires continue to maintain open ecosystems and savannas. Fire exclusion policies
at landscape scales have also shifted open ecosystems to closed forests in both tropical and
temperate environments [87–89]. Grazing exclusion experiments show a clear increase in
woody biomass [14,60,61], while browsers and mixed feeders reduce woody biomass and
favor savannas [39]. However, the level of grazing needed to suppress fire, and the growth rate
of trees needed to escape browsing and fire thresholds, depend on system productivity and,
thus, in most tropical systems, fire, grazing, and rainfall interact in determining the dynamics of
the ABS [39,64,66,68]. There are also instances where, after decades, fire and/or herbivory ex-
clusion do not trigger shifts to an alternative biome state [90,91]; these are likely caused by
edaphic constraints on tree growth, but no synthesis has yet been made. Understanding in
which conditions shifts do occur, and in which they do not, is a major research challenge.
Box 2. Identifying Alternative Biome States

We propose the following requirements for two vegetation types in a landscape to be considered good ABS candidates.
None of these requirements may prove the existence of ABS, but together provide strong support for it.

(i) They should differ in the dominant growth form and their aboveground characteristics: typically, open biomes have
high light incidence and are dominated by shade-intolerant plants, while closed biomes have higher plant biomass
and leaf area index that exclude shade-intolerant plants.

(ii) They should co-occur in the same environment (see Figure 1 in the main text), providing these conditions are indepen-
dent of the system, that is, are not modified by the states (e.g., topsoil nutrient content is a poor test for ABS). Exper-
imental studies of the potential for a regime shift, such as forest colonization following long-term fire suppression,
provide important insights into the suitability of the environment for the alternative state.

(iii) They should differ in their species composition (i.e., the open state is not just a subset of species of the closed state,
but has a distinct flora, with a different set of functional traits related to feedbacks that maintain the states). For in-
stance, the degradation of tropical rainforests may generate open ecosystems structurally similar to savannas,
yet lacking the specific flora that characterizes ancient savannas [31]. Typically, the open state has plants with
disturbance-related traits that are missing in the closed state. Fauna is also markedly different [26,29].

(iv) They often show abrupt boundaries between each state with limited invasibility, especially for high light-demanding
species entering forests. This is typically demonstrated by the existence of a bimodal distribution of a vegetation
indicator (e.g., tree density, basal area, and tree cover) across the landscape [7,77,78]. Demographic studies may
help to identify instances where the juveniles of colonizing species may temporarily coexist with adults from the system
being invaded.

(v) They are stable over generations, that is, there are feedback processes that maintain the states and drive the system away
from unstable intermediate states (see Figure 2 in the main text) [40,45]. Stability can be tested using paleoindicators, such
as pollen, phytoliths, and stable isotopic composition of organic matter [40,81].
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In summary, there are different ways to test the different assumptions of the ABS theory (Box 2),
and current research suggests that the ABS is the most likely explanation for many of the tropical
savanna–forest mosaics. There is now growing evidence that ABS also operates beyond tropical
systems [92].

Alternative Biome States Beyond the Tropics
Among the earliest attempts to understand landscape mosaics were those of Wells in central
California [93] and Jackson in Tasmania [94] during the 1960s. They provided pioneering analy-
ses of multiple stable states in what we would now consider an ABS framework. Both proposed
that the complex mosaics of grassland, shrublands, and forests were explained by divergent fire
regimes, rather than by soils and substrate differences. There is increasing evidence that different
biomes in temperate and Mediterranean climates (grasslands, shrublands, broad-leaved forests,
and coniferous forests) can overlap in the environmental space, co-occur in the landscape, gen-
erate sharp boundaries, and alternate over time in each climate (Table 2, Figure 1). Long-term
human impact may blur natural patterns, particularly in Eurasia, hindering our understanding of
the drivers shaping temperate landscapes; however, ABS still leaves traces in modern land-
scapes. For instance, large areas of mountain grasslands in eastern USA and temperate
Europe are maintained by grazing, occasionally with fire, and the cessation of grazing can initiate
Table 2. Examples of Likely ABSs from Nontropical Ecosystemsa

Closed biome: higher
biomass state

Perturbations (closed to
open)b

Open biome: lower
biomass state

Maintenance of the open
biomeb

Examplesb Refs

Evergreen broad-leaved
forest

Fires in extreme weather Shrubland Short FRI, grazing S Europe [102]

Serotinous conifer forest Infrequent very short FRI Shrubland Short FRI S Europe Personal Observation
(Pausas, 2019)

Tall (nonserotinous)
coniferous forest

Infrequent high intensity
crown-fire

Shrubland Frequent crown fires S Europe [30,101]

Deciduous broad-leaved
forest

Infrequent severe fires Shrubland Short FRI Patagonia [92,107]

Broad-leaved forest Infrequent crown-fire Coniferous savanna Short FRI, other disturbances SE USA [109,110]

Forests (conifers,
broad-leaved)

Climate extremes
(glaciations)

Mountain grasslands Grazing (and fire) E USA, CE
Europe

[95]

Tundra (including forest
tundra)

Pleistocene grazing,
Pleistocene low-CO2

Steppe Grazing, trampling Eurasia [97]

Woodlands High FI Grasslands and/or
shrublands

Short FRI Great Plain,
USA

[83]

Forest Fire, herbivory Wood pastures Mammal herbivory Europe [57]

Shrubland Short FRI and grazing Grassland Short FRI and grazing Great Plain,
USA

[135]

Forested wetland Fire Nonforested wetland Low transpiration and interception;
water-logging

Tasmania,
AU

[10]

Forest High FI Sedgeland/shrubland Short FRI Tasmania,
AU

[76,94]

Forest Browsing + Fire Oak savanna Browsing Canada [63]

Broad-leaved
deciduous

Long FRI, accumulation of
peat

Conifer forest Predictable FRI of low FI Boreal [113,114]

aOpen and closed biomes represent two ASSs. Perturbations switching the closed state to the open state, and the processes maintaining these open lower biomass states
are also shown based on the examples indicated. Perturbations related to fire are often tied to infrequent extreme weather and/or climate events, but the main direct
(mechanistic) effect is fire and not drought. This is not an exhaustive list.
bAbbreviations: CE, central-east; E, east; FRI, fire return interval; S, south; SE, south-east.
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encroachment by trees [95,96]; this suggests that forests and temperate grasslands are ABSs.
Similarly, large areas of cold steppes are maintained by grazing, and a decrease in grazing drives
the system to a tundra state with some trees [97]. Although temperate grasslands are currently
mainly maintained by livestock or mowing, there is evidence of a long history of grazing in these
ecosystems [14,57,62,67,98]. Megafauna collapse coincided with the arrival of early human pop-
ulations, but many herbivores (e.g., elk, deer, bison, horses, and wild cattle) remained at signifi-
cant densities, as reproduced in the wall of numerous Paleolithic caves in Europe, and reported
by early travelers in America [95]. Thus, domestic livestock may have replaced Pleistocene
grazers in maintaining ancient open ecosystems [57,98]. In some regions, it is likely that the
loss of the Pleistocene megaherbivores would have led to a substantial reduction in grasslands
and plant diversity in favor of forest and tundra [67,95,97,99]. In fact, fossil dung beetles in
Europe indicate that vegetation was more open during the last Interglacial than after the mega-
fauna extinctions [15]. Thus, sharp grassland–forest boundaries currently maintained by livestock
or mowing may be a landscape anachronism of a previous natural system.

A relatively well-documented ABS is the oak savanna and forest in temperate North America
[61,63]. Many of these oak savannas are maintained by deer browsing, which suppresses forest
tree regeneration. This favors unpalatable species, some of which are highly competitive under
high light incidence, and this further suppresses tree regeneration. In addition, the openness
makes large forest trees more susceptible to windstorms. These feedbacks maintain open sa-
vannas as stable states; a reduction in deer populations is usually insufficient to cause a regime
shift to a forest [61,63]. Similar processes (feedback and hysteresis) have been documented in
areas with introduced browsers [100].

In many nontropical environments, forests alternate with shrublands that have a radically different
species assemblage (Table 2). While in temperate and cold environments, ABS appears to be
driven by herbivores (above), in warmer Mediterranean conditions, species-rich chaparral-type
shrublands are often maintained by regular fires [30,101,102]. For instance, in South Africa,
patches of evergreen forest occur in landscapes dominated by flammable fynbos shrublands
on some of the most nutrient-poor soils in the world [102–104]. Here, the ABSs have major ef-
fects on the chemistry of quartzite-derived soils, with forests enriching the soil and fynbos main-
taining very low nutrient concentrations [104], reinforcing the divergence of the two states.
Mediterranean shrublands are among the most species-rich ecosystems in the world [30,105],
yet they grow in environments that can sustain high biomass forests, including tall eucalypt
(Australia) and redwood (California) forests, as well as vast forest plantations. In these Mediterra-
nean conditions, extreme changes in fire regime can drive a coniferous forest to a shrubland.
Such is the case under a reduced fire return interval in serotinous trees, or after an increased
fire intensity in nonserotinous tree forests. Once the system has shifted to a shrubland, it can re-
main stable under relatively frequent fires of high intensity (traditionally termed ‘autosuccession’;
Table 1) with a species-rich shade-intolerant flora with high postfire regeneration capacity
[30,106]. These fire-dependent forest–shrubland mosaics also occur in colder environments
[92,107,108].

The alternation of fire-maintained open vegetation and fire-resistant broad-leaved forests is also
well known in temperate warm ecosystems, especially in the eastern USA (Table 2). Frequent
grass-fueled fires maintain pine and oak savannas, while fire suppression promotes closed
broad-leaved forests with contrasting shade, fire regimes, and feedbacks [88,109,110]. In boreal
ecosystems, these forest mosaics may be driven by ungulate browsing and budworm outbreaks
[111,112] or changing fire regimes [113]. Studies in Alaska have shown that needle-leaved
(conifer) boreal forests switch to broad-leaved (angiosperm) forests after intense fires when
258 Trends in Plant Science, March 2020, Vol. 25, No. 3



Outstanding Questions
How we can unambiguously test ABS
theory?

How can biotic feedbacks be
distinguished from fixed physical site
conditions?

What are the specific critical thresholds
of change for a given biome shift?

How are ABSs changing with climatic
changes? Can we observe changes
in the thresholds due to changes in
climate? Can we use ABS along envi-
ronmental gradients to predict future
biome shifts?

How can ABS modify predictions of
species distribution under climate
change scenarios?

What proportion of terrestrial ecosystems
comprise ABSs?

What factors determine the existence
of ABSs instead of other dynamic
processes?

Where and under which conditions do
the different consumers (fire, herbivory,
or both) maintain ABSs?

What is the evolutionary history of
ABSs and the consumers that help
maintain them?

To what extent do stabilizing feedbacks
act as a selective force?
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these convert organic to mineral soils [114]. Besides suggesting the potential for extremely rapid
vegetation change in the future [113], these studies also suggest the possibility of ABS if the
broad-leaved forests are maintained for long periods (a century or two); otherwise, the switch
back to a conifer-dominated ecosystem would be an example of classic succession.

Implications for Conservation in a Changing World
Open ecosystems harbor a huge diversity of light-demanding species and species that require
large open habitats [115]; most of these species cannot live in forests. In addition, many biodiver-
sity hotspots are savannas and shrublandsmaintained by fire; indeed, fire is a strong driver of bio-
diversity [116]. Thus, the ABS provides a framework for the conservation of landscape mosaics
where different alternative states coexist in an ecologically and evolutionary dynamic way. Classi-
cal succession theory suggests markedly different (narrower) conservation priorities because
open ecosystems are considered transient (immature, nonoptimal), and fire and herbivory are
viewed as processes that delay succession towards the optimum. Thus, an ABS perspective
on conservation management can be seen as promoting fire as essential for conserving the
open state, whereas a succession approach is more likely to suppress fire as a process
preventing succession to a forest climax.

Global warming is increasing the probability of heat waves and intense fires and, thus, it may en-
hance the tendency towards open ecosystems. However, increasing atmospheric CO2, the
abandonment of rural activities (e.g., livestock), and strong fire suppression in some ecosystems
are promoting woody encroachment worldwide and threatening ancient open habitats [117,118].
Afforestation of open ecosystems for CO2 sequestration has been widely promoted and is a
growing threat to their future [119]. This is despite great uncertainty as to the effectiveness of af-
forestation as a carbon sink and the disruptive social, economic, and ecological consequences of
landcover change over enormous areas [119–121]. Anthropogenic defaunation of large herbi-
vores (e.g., poaching or habitat fragmentation) is another threat to ABS landscapes. Managing
these landscapes should include the management of consumer regimes because they can
alter biome trajectories and even alleviate some of the effects of global change [28,122–125]. Pre-
scribed fires and wildfire management are becoming key options in many ABS landscapes [126].
Rewilding [127] is another management option increasingly considered for restoring landscape
mosaics, although its application is still limited. The ABS framework also provides an indication
of when management strategies can make significant changes for conservation (e.g., close to
the thresholds) and when they would fail [128].

ABS has also implication for species distribution modeling under climatic change, because this
technique often assumes that species respond individualistically to climate. Given that plants in
ABS landscapes respond within a biome, changes in species distribution are not expected if
the biome does not change. Thus, in ABS landscapes, predictions based on individual species
response to environment are likely to be poor.

Overall, ABS provides the appropriate framework for the conservation of the different alternative
states, and the processes that maintain them.

Concluding Remarks
Despite the difficulties in performing rigorous long-term experimental tests to demonstrate terres-
trial biome shifts under a given environment (Box 1), there are diverse lines of evidence suggesting
that ABS are common in the tropics and beyond. However, the relative importance of ABS versus
successional processes or fixed soil constraints on vegetation distribution remains to be quanti-
fied in different regions and environments (see Outstanding Questions). ABS theory provides a
Trends in Plant Science, March 2020, Vol. 25, No. 3 259
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valuable alternative framework for understanding spatial and temporal vegetation patterns that
differ from those based on gradual changes (e.g., gradient analysis and succession), and sug-
gests that multistability in a given environment is common. This view has some startling implica-
tions: for example, instead of asking how organisms fit the environment, we need to ask how the
organism can change the environment to fit the organism (niche construction). While classic suc-
cession theory suggests that communities change as species modify their environment, making it
more favorable for later successional species, the ABS perspective is that speciesmodify their en-
vironment, making it more favorable for their own continued occupancy (Table 1, Figure 2), which
is better aligned with a Darwinian view of nature.

One of the advantages of the ABS is that disturbances (plant consumers) are well
integrated into the system in contrast to classical successional theory (based on facilitation
and competition), where disturbance is an external factor that reverts succession (Table 1).
The ABS framework highlights fire and vertebrate herbivory as the key processes promot-
ing ABS since both affect the plants growing in a community and, in turn, the plants influ-
ence the activities of both consumers (feedback). The relative role of each consumer
requires further research (see Outstanding Questions), but is likely to depend on historical
contingencies and productivity; for instance, fires dominate at intermediate productivity
[129] and where herbivores were decimated (e.g., Pleistocene overkill); and herbivores
tend to be important where fires are limited (too dry or too moist). There is growing evi-
dence that disturbance regimes affect plant biomass and select for distinct strategies.
Thus, ABS also provides the appropriate context for the evolution of contrasting functional
traits in plants [19,46,130,131] and animals [29,132]. Of particular importance to the idea of
consumer control and feedbacks between the consumer and the ecosystem is whether
plants have evolved to promote the consumer and the associated disturbance regime
(see Outstanding Questions). For example, there is considerable interest in whether plants
have evolved flammability, promoting fire, or palatability, promoting increased grazing, with
feedbacks to ecosystem properties [133,134].

Thus, is it not time to broaden the idea found in most biogeography textbooks that climate con-
trols the major vegetation formations of the world to the richer notion of consumer control? Work-
ing within climatic and edaphic constraints and depending on the plant species pool, consumers
can produce vastly different ecosystems from the climate potential and have done so for millions
of years.
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