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Abstract Wildfires underpin the dynamics and diversity of many ecosystems worldwide,

and plants show a plethora of adaptive traits for persisting recurrent fires. Many fire-prone

ecosystems also harbor a rich fauna; however, knowledge about adaptive traits to fire in

animals remains poorly explored. We review existing literature and suggest that fire is an

important evolutionary driver for animal diversity because (1) many animals are present in

fire-prone landscapes and may have structural and phenotypic characters that contribute to

adaptation to these open landscapes; and (2) in some cases, animals from fire-prone

ecosystems may show specific fire adaptations. While there is limited evidence on mor-

phological fire adaptations in animals, there is evidence suggesting that different behaviors

might provide a rich source of putative fire adaptations; this is because, in contrast to

plants, most animals are mobile, unitary organisms, have reduced survival when directly

burnt by fire and can move away from the fire. We call for research on fire adaptations

(morphological, behavioral, and physiological) in animals, and emphasize that in the

animal kingdom many fire adaptations are likely to be behavioral. While it may be difficult

to discern these adaptations from other animal behaviors, making this distinction is fun-

damental if we want to understand the role of fire in shaping biodiversity. Developing this

understanding is critical to how we view and manage our ecosystems in the face of current

global and fire regime changes.
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Introduction

It is now well known that fire is an intrinsic and natural process in many ecosystems

(Pausas and Keeley 2009). Yet while plants have a plethora of adaptive traits that enable

then to persist under recurrent fires (Keeley et al. 2011, 2012), understanding of how fauna

has responded to fire is much more limited (Parr and Chown 2003). There is a rich fauna

occurring in fire-prone ecosystems that has evolved under frequent fires, therefore it is

likely that this recurrent and predictable disturbance has influenced the evolution of fauna.

However, the evolutionary role of fire on animals remains inadequately explored (Fig. 1),

and this gap in knowledge has cascading effects on how we view and manage our

ecosystems.

Different fire responses are expected to evolve in animals and plants (in terrestrial

ecosystems) due to their intrinsic differences in mobility and modularity. Plants are rooted

(i.e., immobile) and modular; they cannot easily escape from fires but can survive with a

reduced number of modules. This has allowed the evolution of structural traits for in situ

persistence (survival and population persistence; Pausas et al. 2004; Keeley et al. 2011).

There are also some plants that rely on seed dispersal (the mobile phase of plants) for

postfire recolonization from neighbor populations (exogenous regeneration), although they

are not common in most fire-prone ecosystems. Most terrestrial animals are mobile and

unitary organisms (colonies that function as a superorganism, such as those of ants and

termites, may be a notable exception); survival and persistence is negatively affected if

they are burnt, although they have the capacity to move away from the fire. Consequently,

behavioral traits to avoid fires are expected to be particularly important in animals in

flammable environments. However, if demonstrating that some structural traits in plants

are the response to a history of fire is challenging (Keeley et al. 2011), disentangling the

Fig. 1 Number of papers published on the evolutionary fire ecology of plants (green line; upper line) and
animals (orange line; lower line) during the recent years. Data based on the number of papers in the Science
Citation Index Expanded that matched the following searches: for plants: ‘‘fire AND (plants OR vegetation)
AND evolution*’’; for animals: ‘‘fire AND (animals OR fauna OR wildlife) AND evolution* NOT ‘fire
ant*’’’
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role of fire from the role of other enemies (predators) in shaping fire avoiding behavior in

animals is even harder; yet this is fundamental if we aim to understand the role of fire in

shaping biodiversity.

There are many papers and several reviews (e.g. Whelan 1995; Smith 2000; Swengel

2001; Whelan et al. 2002; New 2014; van Mantgem et al. 2015; Bowman et al. 2016) on

the ecological responses of fauna to fire, including postfire successional studies and studies

of animal communities under different fire regimes. They depict a reorganization of animal

communities in response to fire, with positive and negative responses, depending on the

species, fire characteristics, and recovery speed of the system. Our aim is not to summarize

these studies but to highlight that fires are an important evolutionary driver for under-

standing animal biodiversity. To do so we briefly compile evidence suggesting that there

are animals well adapted to fire-prone ecosystems, that is, to the habitat generated by

recurrent fires; yet although they require fires for survival (fire-dependent animals), they
do not necessarily show any specific morphological adaptation to fire. There are also a few

documented cases of animals with traits that can be considered shaped by fire (fire-
adapted fauna). However, research on the evolutionary aspects of the fire-fauna rela-

tionship is still in its infancy, and many of the putative adaptations have not been rigor-

ously tested. Here we aim to stimulate further research in this potentially fruitful area to fill

a gap in understanding biodiversity drivers (Table 1). Developing this understanding is

critical in the face of the current rapid global changes, which certainly include fire regime

changes (mostly increasing in size and intensity, although it depends on the ecosystem; see

Keeley and Syphard 2016; Schoennagel et al. 2017; Chergui et al. 2018).

Fauna adapted to fire-prone habitats

There are many animals present in fire-prone landscapes and they have structural and

phenotypic traits that contribute to adaptation to this habitat; that is, they benefit from the

habitat generated by recurrent fires (Table 2). In some instances, they may be quite spe-

cialized in the sense that they require fire to create the appropriate conditions for growth

and reproduction. Although these species may not show any apparent adaptation to survive

or to avoid fire, their population size increases after fire, i.e., they are adapted to the

Table 1 Some key questions for improving our understanding of the evolutionary role of fire in animals

Scale/approach Question

Among closely-
related taxa

Can taxa (or populations) in fire-prone habitats detect, avoid and survive fire better
than those in non-fire prone areas, and if so, how?

Population To what extent are fire-related behavioural traits variable and heritable?

Population To what extent have fire regime changes (e,g., fire exclusion, increased fire
frequency, lengthened fire season) generated evolutionary shifts in these
behavioural traits? i.e. how labile are these traits?

Population Are (post-fire) colonization traits under strong selection in fire landscape mosaics?

Population What fitness benefit is conferred by the use of fire directly or postfire habitats for
species without any apparent fire-adaptation?

Community Does the prevalence of species with behaviour that confer fire protection (e.g.,
burrowing behaviour) differ under contrasting fire regimes?
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conditions generated by fire, and thus, dependent on a given fire regime (fire-dependent

animals). In many cases, drivers other than fire, like human disturbances (e.g., clearing),

can generate similar habitats and responses, however here we focus principally on cases in

natural settings, where these conditions are mostly generated by wildfires (and in some

cases, by prescribed fires too).

Table 2 Example of the possible benefits to animals of fire and fire-altered habitat

Benefit Category Fauna [references]

Fresh grasses, and leaves Food
resource

Herbivores, e.g., large mammalian grazers, insect
herbivores, arboreal marsupials [1, 2]

Fire-released seed, and more
exposed seeds in the soil

Food
resource

Granivores including rodents, seed-removing ants [3]

Animals fleeing or dying Food
resource

Predators, scavengers (e.g., birds, kites, owls, ants)

Weakened and dead trees Food
resource

Bark beetles, cavity-dependent (hollow-nesting)
animals like woodpeckers, other birds, lizards,
possums [4]

Dead wood Food
resource

Saproxylic insects [5–7]

Flowers, post-fire blossom Food
resource

Insect pollinators [12–15], hummingbirds [16]

Meeting point Mating cue Saproxylic insects [8,9], smoke flies [10], mole crickets
[22]

Synchronization of the
emergence

Mating cue Insects (some beetles; [11])

Reduced habitat complexity:
increased visibility

Habitat
alteration

Birds of prey; large herbivores, primates (easier to
move and detect their predators [17]);

Reduced habitat complexity:
movement through the
environment

Habitat
alteration

Grouse (gaps for mating; [18]), seed-dispersing ants
(move further with fire [19])

Microclimate change Habitat
alteration

Ectotherms—e.g. thermophilous reptiles, insects [20]
(warmer post-fire environment)

Reduction of parasites Biotic
interactions

Vertebrates [21]

Reduction of predators Biotic
interactions

Insects (e.g., reduction of insectivore vertebrates) [23]

By benefits (first column) we refer to the changes in resources and conditions generated by fire that can be
used by the fauna groups mentioned (third column), and are aggregated in four categories (second column):
Changes in food resources, mating cues, habitat alterations, and changes in biotic interactions. Note that the
benefits have cascading effects affecting interacting species (e.g., predators, parasites, mutualistic partners).
For instance, fire attracts many insects (e.g., bark beetles, saproxylic insects) that are the food of many birds
(e.g., Hovick et al. 2017). Additional examples can be obtained from reviews like those in North America
(Smith 2000) or in Australia (Whelan et al. 2002)

References [1] Lopes and Vasconcelos (2011), [2] Romme et al. (2011), [3] Andersen (1988), [4] Gibbons
and Lindenmayer (2002), [5] Boucher et al. (2012), [6] Koivula et al. (2006), [7] Kiltie (1989), [8] Evans
(1966), [9] Evans (2010), [10] Klocke et al. (2011), [11] Jacobs et al. (2011), [12] Bernhardt (1990), [13]
Fulton and Carpenter (1979), [14] Prada et al. (1995), [15] Potts et al. (2003), [16] Contreras Martı́nez and
Santana (1995), [17] Jaffe and Isbell (2009), [18] Hancock et al. (2011), [19] Parr et al. (2006), [20]
Christian and Morton (1992), [21] Scasta (2015), [22] Howard and Hill (2007), [23] Pausas et al.
(unpublished)
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Some animals are directly killed by fire (by either heat or smoke), but it is generally

thought that many escape from it by moving to safe sites. Because the postfire environment

differs strongly to prefire conditions, some animals substantially alter their diet and

behavior after fire (e.g., Stawski et al. 2015; O’Donnell et al. 2016). Other species can be

negatively affected due to either starvation or increased predation in open conditions

(indirect fire effects; e.g. Leahy et al. 2016). Fire-related mortality and the degree of habitat

structural change largely depend on the characteristics of the fire (intensity, season, extent,

patchiness); for example, high intensity crown-fires usually cause greater changes in the

habitat and faunal communities than low intensity surface fires (see Smith 2000 for

examples).

Among the animals that require habitat created by fires, there are those species that

inhabit open conditions or large forest gaps (Table 2); these include large mammalian

herbivores that feed on new high quality vegetation regrowth after fires. Many large

herbivores are adapted to the grassy environment provided in flammable open habitats

(Parr et al. 2014; Bowman et al. 2016) (e.g., tropical savanna, tallgrass prairies), and easily

coexist and interact with the surface fires occurring in these ecosystems (Fuhlendorf et al.

2009). Although in many instances the benefits have not usually been framed in terms of

fitness, there are exceptions. For instance, the availability of postfire regrowth in the early

dry season has been shown to be help sable antelope (Hippotragus niger) cope with the

nutritional limits posed by the dry season, and is especially critical to lactating females

(Parrini and Owen-Smith 2010). The evolution of some diets in animals (C4 diet spe-

cialists, e.g., grasses and sedges) has been linked to the evolution and spread of fire-prone

grassy ecosystems (Edwards et al. 2010). In addition, herbivores may also modify fire

regimes themselves (Pausas and Keeley 2014), and in some cases, there may be feedback

processes between fire and animals in such a way that animals generate fire regimes more

appropriate for their survival (niche construction); this includes large herbivores that

maintain tree-grass ecosystems (van Langevelde et al. 2003), and animals that by removing

litter, inhibit surface fires around them (e.g. ants and some ground-nesting birds, Carvalho

et al. 2012; Nugent et al. 2014; Smith et al. 2017). Given that many parasites, including

ticks, have a life stage in the vegetation, fire can also benefit some vertebrates by killing

parasites and reducing the spread of diseases (Scasta 2015). Thus, the post-fire period can

provide a window of health and opportunity for many vertebrates.

Some animals using the post-fire environment are opportunistic species that are widely

distributed, while others are highly specialized to postfire conditions and seldom occur

outside burned areas. For instance, there are many insects living in dead wood or weakened

trees that benefit from (or depend on) fire and respond positively by increasing their

populations after fire (Table 2). In fact, some populations of fire-dependent saproxylic

insects have been reduced in northern Europe due to the suppression of natural fires from

managed forests; prescribed burns are now being used as management strategy to aid their

conservation (e.g., Wikars 2002). Among vertebrates, there are some emblematic examples

of fire-dependent birds in different environments, including the black-backed woodpecker

(Picoides articus) that inhabits severely burned coniferous forest of North America

(Collard 2015); it feeds on wood-boring beetle larvae and nests in trees recently killed by

fire. That is, fires may favour some species (e.g., the beetles in this case) and have positive

cascading effects on other trophic levels (predators; Hovick et al. 2017) and interacting

species. Other emblematic examples of fire-dependent animals include the migratory

hummingbirds in tropical ecosystems that depend on post-fire flowers (Contreras Martı́nez

and Santana 1995), or grouse (Tetrao species) that require open gaps in the boreal forest for

mating (Hancock et al. 2011). Frill-necked lizards (Chlamydosaurus kingii) of northern
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Australia occur at higher densities and have higher body mass on burnt as opposed to

unburnt sites, because of greater prey accessibility (Corbett et al. 2003). Feral cats have

been shown to travel long-distances to reach intensely burnt habitats where food is easier to

detect (McGregor et al. 2016). Small prey must balance their increased risk of predation

against the benefit of available resources (e.g. new plant shoots) in the burned area. The

altered conditions postfire (light, soil nutrient availability, enhanced seed germination)

often result in a bloom of flowers shortly after fire that benefits pollinators (e.g., Bernhardt

1990; Contreras Martı́nez and Santana 1995; Potts et al. 2003). This increase in pollination

is likely to also benefit predators (Hovick et al. 2017; cascading effects), and to affect the

whole structure of the web of interactions, but little research has been performed at this

scale in postfire conditions.

There are other animals that appear to benefit from specific postfire successional stages;

many are from forested environments were changes to the habitat following fire persist

much longer than in grassy systems (e.g. savannas). Vegetation structure is a classical

niche dimension (MacArthur and MacArthur 1961). There are many studies across a range

of taxonomic groups documenting successional replacement of species over several dec-

ades as habitat changes following a fire (for a classical example, Fox 1982). Similarly,

there are a number of studies reporting different animal communities depending on the

different vegetation structure determined by different fire regimes. While many species

may do well across different stages, in some cases the specialization is particulary strong.

An iconic example is the Leadbeater’s possum (Gymnobelideus leadbeateri) that was very

rare in Australia and thought to have gone extinct after the extensive 1939 Black Friday

fires burned their entire distribution range (Gibbons and Lindenmayer 2002). However,

forest regrowth provided food, and large dead trees left still standing after the fires pro-

vided shelter and nesting allowing the Leadbeater’s possum population to greatly expand

from prefire conditions (Gibbons and Lindenmayer 2002). No obvious adaptation to sur-

vive fire can be seen in this creature, yet their habitat requirements are only provided by the

occurrence of large infrequent fire. The existence of species adapted to different vegetation

structures or to a mix of different postfire successional stages provides conservation value

to landscape mosaic of different postfire age and has led to the use of ‘‘patch mosaic

burning’’ for conservation (e.g., Legge et al. 2015; Berry et al. 2016). It is also the base of

the idea that ‘‘pyrodiversity begets biodiversity’’ (Martin and Sapsis 1992; Parr and

Andersen 2006; Bowman et al. 2016).

While some species can benefit from the habitat generated by recurrent fires, other animals

also benefit from the fire itself, i.e., directly as it is occurring. It is common, for example, to see

birds of prey (e.g., Bonta et al. 2017) and other opportunistic species (e.g., fork tailed drongos,

Dicrurus adsimilis, in Africa; C.L. Parr, pers. observ.) catching insects fleeing the fire front,

while other bird species (e.g., white storks,Ciconia ciconia; Corbett et al. 2003; and different

egrets species, J.G. Pausas, pers. observ.) walk behind the fire feeding on recently charred

invertebrates (fire-foranging). There is even some evidence of raptors intentionally spreading

fire for increasing the availablility of preys (Bonta et al. 2017). However, the contribution of

this food source to their diet and survival during the dry season remains to be quantified

(Table 1). Insects that have fire detectors and are attracted to the flames also benefit directly

from fire (Schutz et al. 1999; Evans 2010; see below).

Overall there are many species that, in one way or other, are dependent on particular fire

regimes for completing their life cycle. These species may not show any apparent fire

adaptation, but almost certainly they would become very rare or even extinct in the absence

of fires generating their habitat. Species in open fire-prone habitats may not necessarily be

adapted to fire but to landscapes or biomes generated under a certain fire regime. In short,
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we cannot imagine the great diversity of many open ecosystems, including the fauna they

contain, without the existence of fires. This begs the question: to what extent do some of

these animals show specific fire adaptations? This is relevant for understanding the evo-

lutionary pressures shaping diversity, and has implications for land and fire management.

Below we review evidence of putative adaptations to (a) survive fire, and (b) to survive and

exploit postfire conditions.

On the search for fire adaptations in animals

Dealing with fire: fire survival adaptations

Many plants in fire-prone ecosystems persist after a fire thanks to morphological adaptive

traits conferring survival (e.g., thick bark and resprouting structures; Keeley et al. 2012;

Pausas 2015; Pausas et al. 2018). This is not necessary true for animals; their mobility and

general lack of modularity means that behavioral traits are more likely to evolve. Because

the direct fire impact is often detrimental to animals, developing or enhancing behaviors to

rapidly detect fires (e.g., from the smoke or sound) and escape from them could be adaptive

in recurrently burned ecosystems. However, it is not always easy to discern the role of fire

from the role of predators in shaping those behaviors. Examples of fire-related behavior

include the evidence that some bats and possums can detect smoke even when in torpor,

and thus they arouse and move to a safe site (Scesny and Robbins 2006; Nowack et al.

2016). Behaviours that allow detection and avoidance of fire are especially important in

less-mobile animals (Whelan 1995); for instance, some frogs appears to recognize the

sound of fire and quickly move to less flammable habitats (Grafe et al. 2002). Newts have

been observed rapidly crossing fire fronts to move to unburnt refuges; apparently, their skin

secretion facilitates their survival (Stromberg 1997). Terrestrial tortoises are abundant in

some fire-prone ecosystems (Ernst et al. 1995; Sanz-Aguilar et al. 2011); yet, little is

known about their ability to detect fire and move to refuges (ground holes, bare patched),

or to what extent recurrent fire may have selected for some morphological traits to

increased protection. Some Australian lizards make use of holes in the soil for shelter in

frequently burnt habitats but do not use them in habitats that experience lower fire fre-

quencies (Braithwaite 1987). Many non-flying invertebrates (e.g. ants, stick insects,

wingless nymphs of grasshoppers, spiders) appear to be able to detect fires well in advance

of the front, presumably from smoke or sound; they attempt to shelter from fires by either

moving into the soil, or by climbing to the tops of trees (Sensenig et al. 2017; Dell et al.

2017). Some animals in fire-prone ecosystems do not appear to show stressed behaviour in

the presence of fire, but move calmly and search for a safe site or for a low flammability

patch (Whelan 1995). Outstanding examples are the case of primates, including chim-

panzees (Pan troglodytes), which through a complex suite of behaviours to avoid fire,

including observing and predicting fire behavior, communicate to each other about the

fire’s occurrence, and move accordingly without showing sings of stress (Pruetz and

LaDuke 2010). And after fire, they expand their home range to the burned area for food

gathering, including eating ‘‘cooked’’ fruits (Herzog et al. 2014). Another putative

behavioral adaptation is the case of those animals that evade the fire by actively excluding

it, as some ants or the Australian lyrebird that, by consuming or moving litter, they inhibit

surface fires around their nests (Carvalho et al. 2012; Nugent et al. 2014). Some species can

enter torpor as food availability decreases and the exposure to predators increases postfire;

this may also provide benefits in postfire conditions where resources are low. This is the
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case of some small mammals that do not leave their home range after fire but remain

hidden and reduce their activity by lowering their body temperature and increasing multi-

day torpor (Stawski et al. 2015).

To what extent fire has contributed to shaping all these escape-avoiding behaviors in

animals is unclear because most studies have not been framed in terms of fitness benefits

(Tables 1, 3). It is likely that fire acts as a selection pressure in many of these animal

behaviors, in a similar way to other changes in enemy pressure. For example, animals

living on islands are less wary than those on the mainland, presumably because of the lack

of predators (Cooper et al. 2014). Even over a short time scale, many animals modify their

behavior in response to recent changes in predators (e.g., Samia et al. 2015; Geffroy et al.

2015; Mikolajewski et al. 2016; Dröge et al. 2017). Despite animal behavior being the

product of multiple selective pressure (as many other traits), species living under long

contact with fires may have evolved particular behaviours to increase fire survival

(Table 3). The search for mechanisms driving putative fire adaptations in the animal

kingdom is an open research area (Tables 1, 3).

Table 3 Examples of traits that may be adaptive for animals living in fire-prone ecosystems, and thus they
are candidate traits that could be modified by natural selection (i.e., fine-tuned by fire) or could be over-
represented, in fire-prone ecosystems

Trait Type Examples [references]

Ability to make a hole for
protection

Behavioral Small mammals, large arthropods

Ability to use a shelter for
protection

Behavioral Reptiles [1]

Ability to modify fuel
continuity

Behavioral Ground-dwelling birds [29, 30]

Burrowing live Behavioral Arthropods [28], reptiles

Non-panicked response Behavioral Primates [5], other mammals

Nesting deeper in the soil Behavioral Arthropods [28], reptiles

Ability to move long-distance Behavioral Mammalian predators [6]

Fire detection Behavioral/
Morphological

Vertebrates [2–4]

Fire detectors Morphological Arthropods: beetles [7–13], ants [31]

Protective cover to body Morphological Tortoises [14–17], snails [25], newts [18]

Dark (cryptic) colour Morphological Lizards [19], mammals [20, 21], arthropods
[22–24], birds (eggs)

Ability to enter in torpor Physiological Mammals [4, 26]

Thermophilia Physiological Ants [27]

Most traits confer survival during fire, except the last three traits that confer survival in postfire conditions.
Examples of animal groups in which these traits could appear are also given. These traits and species groups
require further research in an evolutionary context (Table 1)

References [1] Braithwaite (1987), [2] Grafe et al. (2002), [3] Scesny and Robbins (2006), [4] Nowack et al.
(2016), [5] Pruetz and LaDuke (2010), [6] Lillywhite et al. (1977), [7] Álvarez et al. (2015), [8] Evans
(1966), [9] Evans (2010), [10] Klocke et al. (2011), [11] Milberg et al. (2015), [12] Schmitz and Trenner
(2003), [13] Suckling et al. (2001), [14] Ernst et al. (1995), [15] Platt et al. (2010), [16] Sanz-Aguilar et al.
(2011), [17] Rodrı́guez-Caro et al. (2013), [18] Stromberg (1997), [19] Lillywhite et al. (1977), [20] Guthrie
[(1967), [21] Kiltie (1989), [22] Forsman et al. (2011), [23] Karlsson et al. (2008), [24] Karpestam et al.
(2012), [25] Kiss and Magnin (2006), [26] Stawski et al. (2015), [27] Christian and Morton (1992), [28]
Thom et al. (2015), [29] Nugent et al. (2014), [30] Smith et al. (2017), [31] Sensenig et al. (2017)
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Adapting to survive and exploit postfire environments

There are some cases in which we find evidence of specific adaptations to survive the new

environment or to exploit the newly available resources, and in this includes some mor-

phological adaptations (Table 3). Perhaps the best-documented adaptation to fire in the

animal kingdom is the presence of fire detectors in a number of insect species (Schutz et al.

1999; Evans 1966, 2010). This is not an adaptation to avoid fires but rather enables them to

locate them and make use of new resources in the postfire environment. These pyrophilic

insects are attracted to the flames of fires, often mate close to the fire (fire as a meeting

point), lay eggs in killed or weakened trees, and their larvae feed on burned wood

(specifically, fungi in burned logs) or on the phloem of weakened trees. The classical

examples are the pyrophilous beetles of the genus Melanophila (Buprestidae, Coleoptera)

that have infrared receptors (e.g., Schutz et al. 1999) and those of the Cerambycidae family

(Coleoptera) that have smoke receptors (Table 2), although there are many other insects

with a pyrophilous behavior from a range of taxonomic groups (Table 2). There are also

some insects that remain dormant for several years in the soil as larvae, and when a fire

occurs, it stimulates a synchronized emergence (Jacobs et al. 2011); to what extent this

synchronization has been selected by fire remains unexplored, but it could be adaptive in

fire-prone environments.

After a fire, in addition to changes in vegetation structure, the colour of the habitat alters

dramatically too. Thus, another common adaptation of animals living in fire prone

ecosystems, and especially animals that use recently burnt environments, is the develop-

ment of cryptic colouration that provides camouflage in the new environment (Table 3).

Dark colouration confers a selective benefit mediated by enhanced camouflage in recently

burned areas (Forsman et al. 2011). For instance, the flightless Greater rhea (Rhea

americana) that lives in the South American savannas (cerrado) subject to very frequent

fires (i.e., several fires per decade), has a long neck with a black base; when it sits on the

ground, it cannot be differentiated from a burnt stem. Similarly, in Africa there are several

bird species that use recently burned ground for breeding (e.g. coursers, plovers, larks and

night-jars): eggs are dark coloured and chicks possess heavily pigmented down, providing

camouflage in postfire conditions (de Ronde et al. 2004). The Californian lizard (Scelo-

porus occidentalis) is also cryptically coloured matching the black stalks on burned shrubs

(Lillywhite et al. 1977), and the abundance of melanic squirrels in North America is

positively correlated with the fire frequency (fire melanism; Guthrie 1967; Kiltie 1989).

Invertebrates too show colour modifications to increase fitness postfire; for example, the

frequency of melanistic individuals of the pygmy grasshopper (Tetrix subulata) is higher

after fire (predation is reduced) than in unburned areas (where they are more conspicuous).

In this case, and given that grasshoppers complete their life cycle within a year, the

proportion of melanistic individuals declines as vegetation recovers and ground cover

changes; thus, under frequent fires, they show fluctuating selection associated to the fire

(Forsman et al. 2011).

Concluding remarks

Plants have been the main focus for research on the evolution of fire-prone ecosystems,

however, there remain great challenges and opportunities for studying the relation between

fire and fauna in an evolutionary framework. Many animal species show a preference,
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sometimes strongly, for habitats generated by fire (fire-dependent fauna), but few of them

show specific adaptations facilitating fire or postfire survival (fire-adapted fauna). In part

this may simply reflect the low number of studies that have attempted to look for adap-

tations. There remains significant scope for research on fire adaptations in animals, and

especially in relation to the rich behavioral traits that allow persistence in fire-prone

ecosystems (Tables 1, 3). These traits are poorly explored under the framework of the

evolutionary fire ecology but may provide a rich source of fire adaptations. Discerning

adaptations to fire survival from those adaptations to fire-generated habitats may provide

clues on the mechanism generating biodiversity, and keys for land management. There is

much to be done to unambiguously disentangle the evolutionary role of fire in animals—

we are hopeful this paper will stimulate future research.
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Stawski C, Körtner G, Nowack J, Geiser F (2015) The importance of mammalian torpor for survival in a
post-fire landscape. Biol Lett 11:20150134

Stromberg M (1997) Taricha torosa (California newt) response to fire. Herpetol Rev 28:82–84
Suckling DM, Gibb AR, Daly JM, Chen X, Brockerhoff EG (2001) Behavioral and electrophysiological

responses of Arhopalus tristis to burnt pine and other stimuli. J Chem Ecol 27:1091–1104
Swengel A (2001) A literature review of insect responses to fire, compared to other conservation man-

agements of open habitat. Biodivers Conserv 10:1141–1169
Thom MD, Daniels JC, Kobziar LN, Colburn JR (2015) Can butterflies evade fire? Pupa location and heat

tolerance in fire prone habitats of Florida. PLoS ONE 10:e0126755
van Langevelde F, Van de Vijver CADM, Kumar L, van de Koppel J, Ridder N, van Andel J, Skidmore AK,

Hearne JW, Stroosnijder L, Bond WJ, Prins HHT, Rietkerk M (2003) Effects of fire and herbivory on
the stability of savanna ecosystems. Ecology 84:337–350

van Mantgem EF, Keeley JE, Witter M (2015) Faunal responses to fire in chaparral and sage scrub in
California, USA. Fire Ecol 11:128–148

Whelan RJ (1995) The ecology of fire. Cambridge University Press, Cambridge
Whelan R, Rodgerson L, Dickman CR, Sutherland EF (2002) Critical life cycles of plants and animals:

developing a process-based understanding of population changes in fire-prone landscapes. In: Brad-
stock RA, Williams JE, Gill AM (eds) Flammable Australia: the fire regimes and biodiversity of a
continent, pp 94–124

Wikars L-O (2002) Dependence on fire in wood-living insects: an experiment with burned and unburned
spruce and birch logs. J Insect Conserv 6:1–12

Evol Ecol (2018) 32:113–125 125

123


	Towards an understanding of the evolutionary role of fire in animals
	Abstract
	Introduction
	Fauna adapted to fire-prone habitats
	On the search for fire adaptations in animals
	Dealing with fire: fire survival adaptations
	Adapting to survive and exploit postfire environments

	Concluding remarks
	Acknowledgements
	References




