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Abstract. In the framework of land use changes in the Medi-
terranean area, I asked to what extent different landscape
structures might determine long-term dynamics in Mediterra-
nean ecosystems. To answer this question, a spatially explicit
model was developed (the MELcAa model), incorporating two
functional types of woody species dominant in Mediterranean
ecosystems: a resprouter (R) and a non-resprouter fire-re-
cruiter (seeders, S). The model was used as a tool for generat-
ing hypotheses on the possible consequences of different
landscape scenarios. Thus, five different hierarchically struc-
tured random landscapes were generated, all having the same
cover for the two functional types but different landscape
structure (ranging from highly heterogeneous to homogene-
ous landscapes). After a 100-yr simulation, plant cover and
spatial pattern had changed and the changes were different for
the different initial spatial configurations, suggesting that
long-term vegetation dynamics is spatially dependent (the
resultant dynamics are sensitive to the initial spatial structure).
In the landscapes where R-type species had a low number of
large patches and S-species had a large number of small
patches, the number of R-patches increased and their size
decreased, while the number of S-patches decreased. In these
cases, the final cover of the two types changed little from the
initial cover. Landscapes with a large number of small R-
patches interspersed with S-patches had a decrease in the
number of R-patches, an increase in the number of S-patches
and a decrease in the size of S-patches. In these landscapes,
final cover was significantly changed, increasing in R-type
and decreasing in S-type species. These results suggest that
low spatial autocorrelation (low aggregation) favours R-type
species. Implications for land management are also discussed.

Keywords: Autocorrelation; Cellular automata; Resprouter;
Seeder; Spatial dynamics; Spatial model.

Introduction

Current land use changes in the northern Mediterra-
nean basin are having a large impact on the landscapes,
changing their spatial structure and heterogeneity. There
is a clear change from highly heterogeneous landscapes
(maintained by different land uses) to more homogene-
ous landscapes after land abandonment (Baudry & Bunce
1991). This change is due to a reduction of human

pressures on the landscape, i.e. depopulation processes
in rural areas, decrease in grazing pressure and reduc-
tions in the use of the forest (Anon. 1989; Paniagua
1992; Pausas in press). Currently in the Mediterranean
area there is a variety of landscape structures with
different degrees of spatial heterogeneity but with simi-
lar plant composition. In the present paper I ask to what
extent these different landscape structures might deter-
mine the long-term dynamics.

The effect of spatial heterogeneity on ecological
processes at broad spatial scales has generated increas-
ing interest in ecological research in recent decades (e.g.
Turner 1989; Turner et al. 1989; Wiens et al. 1993;
Dunning et al. 1995; Kareiva & Wennergren 1995;
Lavorel & Chesson 1995; Hanski 1999; Gardner 1998;
Vos et al. 2001). Several experiments (van Andel &
Dueck 1982; Thorhallsdéttir 1990) indicate that the
spatial arrangement of competing species can affect
their performance. However, the consequences of this at
community level have not been fully addressed (de
Blois et al. 2002), and a general theory to predict the
effects of spatial heterogeneity on vegetation dynamics
has not yet emerged.

This paper presents a study of the effects of spatial
heterogeneity on vegetation dynamics in Mediterranean
fire prone ecosystems. I used a simulation model to test
the possible long-term consequences of both landscape
pattern and disturbance processes. The model was used
as a tool for generating hypotheses on the possible
consequences of different landscape scenarios in a fire
prone system, and for suggesting management options.
The modelling framework employed includes several
components: (1) a landscape generator; (2) a distur-
bance generator (fire); (3) a spatially explicit dynamic
model and (4) a set of quantitative landscape indices.

Landscape generator

This was used for creating non-random landscapes
where the spatial arrangement of the vegetation types
could be varied independently of the amount of each
vegetation type. I applied the percolation theory, as used
by Lavorel et al. (1993, 1994), to generate different
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hierarchically structured landscapes with the same
proportion of cover for each type, but with different
spatial structures (i.e. different landscape scenarios).
This method allowed generation of landscapes with
different degrees of patchiness.

Disturbance generator (fire)

Mediterranean landscapes cannot be understood with-
out considering fire. Fire is a disturbance process that
propagates within the same cover type as well as be-
tween different cover types (Turner et al. 1989). The rate
of fire spread depends on the fuel characteristics of the
cover types. Fire may also play an important role in
changing landscape heterogeneity and connectivity
(Miller & Urban 2000). In the present work, I used two
different cover types with contrasting fuel characteris-
tics. Consequently, the disturbance rate depends on the
connectivity of these cover types (i.e. on the vegetation
spatial pattern). For simulating fire spread, instead of a
fine-scale thermodynamic approach (e.g. Rothermel-
based fire behaviour models, Rothermel 1972),1 used a
probability approach because it is often suggested as a
simple and appropriate way to simulate fire effects at
broad spatial scales (Gardner et al. 1999; Hargrove et al.
2000).

Spatially explicit vegetation model

This model is based on the traits of two contrasting
fire based plant functional types, i.e. functional types
based on different regeneration strategies after fire (and
their associated traits; Keeley 1998; Pausas 1999a,2001):
aresprouter and a fire recruiter (seeder). The functional
type approach is considered an appropriate and effective
way to simulate vegetation dynamics in disturbed eco-
systems (Noble & Slatyer 1980; Moore & Noble 1990;
Noble & Gitay 1996; Pausas 1999b). Models for Medi-
terranean fire-prone ecosystems are just starting to be
developed. Rego et al. (1993) developed a non-spatial
transition matrix model for garrigue ecosystems. Their
model assumed constant transition probabilities. Pausas
(1999b) developed a non-spatial gap type (individual
based) model for Mediterranean ecosystems (BRoOLLA);
the main difference between this and other gap models
was that resprouting and fire stimulation of germination
were considered. Recently, two models with more em-
phasis on plant physiology (and less on population
dynamics) have been developed for Mediterranean eco-
systems. The Osborne et al. (2000) model is very de-
tailed in the physiology and phenology of the species,
but does not consider disturbance. Mouillot et al. (2001)
developed another model that considers both plant physi-
ology and disturbance. The model used in this paper
(MELcA) does not consider physiological processes but
has a strong emphasis on landscape pattern and fire

interactions. This model requires very few parameters
and was not built to be very precise, but rather to be
useful for developing alternative hypotheses.

Quantitative landscape indices

Finally, a set of quantitative indices (O’Neill et al.
1988; Gustafson 1998) were needed to compare land-
scapes. These indices consider both the abundance of
plants (e.g. cover) and their spatial distribution (e.g.
number and size of the patches, autocorrelation).

The approach used in the present work aims to study
to what extent vegetation dynamics is spatially depend-
ent, and to develop a hypothesis on the effect of spatial
patterns on the long-term dynamics of Mediterranean
landscapes. Spatial pattern here means the distribution
and arrangement of plant patches in the landscape. Im-
plications for land managers are also discussed.

Methods

Model description

To explore the relationships between landscape pat-
tern and vegetation dynamics I have built a model called
MELca (available upon request), which is a (grid-cell)
raster based stochastic model, designed to simulate the
spatio-temporal dynamics in fire prone ecosystems.

In MELcA, each cell has five possible states: Empty,
Seedbank (cells with seeds of different species), Imma-
ture, Mature and Burnt (just after fire). Each cell may
contain one established plant (or group of plants that
behave in the same way and are of the same functional
type and cohort) or one or more seeds in the seedbank
(of the same or different species). That is, seeds of
several species may be in a cell (seedbank), but only one
species survives within one cell. In this case, survival
depends on the competitive hierarchy, which is based on
the species shade tolerance.

For each functional type, a set of specific parameters
(life traits) are needed (see below; Tables 1 and 2) for
simulating the different dynamic processes (germina-
tion, growth, resprouting, mortality, dispersal). Param-
eters are chosen to be simple, often qualitative, to be
able to simulate poorly known ecosystems.

MELca enables different spatial configurations to be
created by using a landscape generator. With this mod-
ule a variety of artificial landscapes can be generated;
such as random, single and multiple-scale checkerboard
patterns and hierarchical multi-scale patterns (curdled);
(Meisel & Turner 1998; Lavorel et al. 1993, 1994). All
MELcA processes assume the 8-cell Moore neighbour-
hood (Hogeweg 1988). Thus, for spreading algorithms
and spatial pattern indices, diagonal cells are considered
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to be connected.

Mortality. IN MELCA, there are three mortality causes:
age dependent mortality (Table 1, Eq. 1), fire mortality
(non-resprouting species after fire) and resprouting fail-
ure (for weak resprouters after fire; Table 1, Eq. 5).
Seeds in the seed bank may also die (e.g. due to loss of
germination capacity) when approaching their maximum
seed life span (age dependent seed mortality; see germi-
nation below).

Growth. After germination, plants are immature and the
annual probability to mature is a function of the species
maturity age (Table 1, Eq. 2). Species with rhizomes
may also have lateral growth; in these cases I assume
that plants that are at ca. 80% (default) of their maximum
age will invade one of the adjacent (randomly chosen)
empty cells.

Seed dispersal. To provide a flexible way to character-
ize dispersal by different dispersal strategies, this pa-
rameter is classified in three categories: short distance
dispersal (dispersal to the eight neighbouring cells),
medium distance dispersal (< 100 m; Table 1,Eq.3) and
long distance dispersal (> 100 m; anywhere in the land-
scape). Short dispersal may reflect the dispersal of large
seeds not dispersed by vertebrates (barochory), while
long dispersal may represent wind dispersal of very
small seeds (anemochory) or endozoochory. Both long
and short distance dispersal are computed as uniform
random dispersal. Medium distance dispersal is com-
puted using a decay function (Table 1) and may repre-
sent wind or animal dispersal. For all the simulations
considered in this paper dispersal is equally likely to
occur in all directions (i.e. factors such as wind are not

Table 1. Probability functions (rules) to estimate different
plant processes in the MELca model. Variables are: Dist =
distance from the source plant to the cell (chosen randomly
between the cell size and 100 m); nBurnts = number of times
that the cell has burnt; SeedAge = age of the seed. Variables
with the subscript s refer to specific parameters of functional
types (see Table 2): k,, k,, k;, k,, k5 are constant shape param-
eters with default values set equal to 0.01, 0.01, 2, 2.3, 0.1,
respectively.

Process Equation No.
Age dependent mortality P, =1—exp(In(k,) / MaxAge) 1
Maturation P, =1—exp(In(k,) / MatureAge,) 2
Dispersal 3

short distance P, =SDC

medium distance P,.=MDC_* exp(—k; * Dist / 100)

long distance P, =LDC,
Germination Pg =exp(SeedAge * (—k,/ SeedLong)) 4
Resprouting P, =P, * exp(—ks * nBurnts) 5

considered). Seeds may fall in an empty cell or a cell
with other seeds (independent of the species). Seeds
landing in a cell with immature or mature plants or
beyond the limits of the grid are lost (i.e. the boundary of
the map is assumed to be absorbing and all processes
stop at the boundary, Green 1989), increasing the prob-
ability of local extinction on very small landscapes.

Germination. For fire recruiter species (FireEst = yes)
after fire, all burnt cells which had mature fire recruiter
plants germinate. In the case that a cell contains seeds of
several fire recruiter species, one species is randomly
chosen. For non fire recruiters (FireEst,=no), or in non-
fire years, the probability of germination is a function of
species-specific parameters (shade tolerance and seed
longevity) and seed age (time in the seed bank, SeedAge;
Table 1,Eq.4).In these cases, if seeds of two species are
in the same cell, germination is decided by considering
the shade-tolerance hierarchy to mimic within-cell com-
petition.

Resprouting. Functional types able to resprout can have
aweak, medium, high or very high resprouting capacity.
The initial probability of resprouting (P,) in weak,
moderate, high and very high resprouters is set at 0.25,
0.50, 0.75 and 1.00 respectively. However, fire recur-
rence reduces these initial probabilities by mimicking
resprouting depletion (Canadell & Lépez-Soria 1998)
(Table 1, Eq.5).

Fire. Fire modelling is divided into two components,
ignition and spread; ignition is also subdivided in time
and space. MELca allows several options for each com-
ponent, depending on the objective of the simulation.
For the current work, fires start randomly in space and
time, and only one fire is lit in each fire year. Fire only
spreads if it ignites on cells containing fuel (i.e.
burnability is a function of plant fuel). Burnable cells
are those with mature or immature plants. Fire may
propagate to the next cell by chance, and on the basis of
the combustibility index of the plant, the probability of
burning can be estimated (Hargrove et al. 2000). Fire
spread is driven by the fuel in each cell, and fire is
restricted to a contiguous cluster of burnable cells. Each
species has a given combustibility index for a popula-
tion of mature individuals (Comb ), which ranges from
1 (very low) to 9 (very high). The model assumes that
the combustibility index for mature plants is equal to the
species combustibility, but is one unit lower for imma-
ture plants (lower biomass). Climatic conditions are not
considered. The effect of the combustibility index is that
lower values produce more unburned patches than higher
values. This fire module is not intended to be realistic,
but rather to facilitate creating differences in post-fire
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heterogeneity depending on the vegetation fuel type.

There is no explicit fire extinction (burn-out) proce-
dure. Fire may be extinguished if fuel values are low, if
fuel bed (vegetation) is discontinuous or when all the
landscape is burnt. Patches of unburned vegetation are
possible due to fuel bed heterogeneity and to the
stochasticity of the process.

Plant functional types

Two sets of traits are used for defining two different
fire functional types of woody plants (R and S; Table 2),
i.e. functional types with contrasted fire response (Pausas
1999a, b, 2001). R represents long-lived evergreen
resprouting species. S corresponds to species that are
not able to resprout after fire but produce seed banks
with seeds that not only survive fire but whose germina-
tion is stimulated by fire (often called fire recruiters,
seeders or propagule persisters). Seeds of S are small,
refractory and long-slasting in the soil, while seeds of R
are fire sensitive, vertebrate dispersed and short-lived.
Combustibility is higher in S than in R. These two
functional types are common in vegetation of the Medi-
terranean basin (Trabaud 1987, 1991; Pausas 1999a;
Pausas et al. 1999) and in California (Keeley 1991,
1998). Examples of R-type species growing in the Medi-
terranean basin are Quercus spp. (shrub and trees
species), Rhamnus spp., Phyllerea spp. and Pistacea
spp. S-type species include pines (e.g. Pinus halepensis),
but also many shrub such as many Cistus spp. or Ulex
parviflorus.

Simulation experiments

All simulations begin with a square artificial land-
scape containing 10 000 square cells (100 x 100 grid
cell), each side of which is 10 m long. Five different

Table 2. Plant traits used in the simulations for the two
functional types (R and S).

Plant traits Notation Unit Type R Type S
Maximum age MaxAge, yr 200 30
Mature age MatureAge yr 10 5
Seed longevity SeedLong, yr 2 20
Dispersal capacity

short-distance dispersal SDC 0-3! low high

medium-distance dispersal MDC| 0-3 low med

long-distance dispersal LDC 0-3 none low
Shade tolerance ShTol, 1-3 high low
Resprouting capacity Resp, 0-3 high no
Establishment stimulated FireEst, y/n no yes
Rhizome Rhizome, y/n yes no
Combustibility index

(mature plants) Comb, 0-9 3 6

IDispersal capacity corresponds to probability values of 0,0.25,0.50,0.75
for none (0), low (1), medium (2) and high (3) in SDC and MDC,and 0,
0.03,0.06,0.10 for LDC_ (see Table 1).

landscape structures were selected by generating five
hierarchically structured random landscapes, following
Lavorel et al. (1993). In brief, three-level hierarchical
landscapes were recursively generated by creating a
matrix of (m,; X m,) elements and randomly setting the
elements to 1 with a probability of p,. If the element was
setto 1 then this element was subdivided into a (m, X m,)
matrix and elements at this finer scale were randomly
set to 1 with a probability of p,. The process was
repeated a third time by subdividing those elements
equal to 1 into an (m; X m;) matrix and randomly
labelling elements at this finest resolution with a prob-
ability of p; (see Lavorel et al. 1993 for more details).
The elements set to 1 at the finest scale (cells) were
assigned to be filled by R plants and the others by S
plants. Different combinations of m, and p; values were
chosen to provide five different landscape structures
with different degrees of patchiness (L1 to L5, Table 3)
but with the same number of cells (cover values) for
each functional type (R, S) in all landscapes. The chosen
patchiness (Table 3) may resemble the patchiness of
land abandonment in eastern Spain because most (85%)
agricultural patches are smaller than 5 ha (Anon. 1991).
Because of the stochastic nature of the landscape gen-
eration process, five initial maps (replicates) were cre-
ated with every combination of the landscape generator
parameters (m,, p;) but with different seeds for the ran-
dom generator.

Simulations of vegetation dynamics were performed
starting from the initial landscapes (L1i — L5i) and
simulating 100 years. Fire was simulated as a back-
ground disturbance for all landscapes with an annual
probability of 0.025, which may be a reasonable fire
regime for landscapes in the Mediterranean basin.

Spatial analysis

The spatial indices used, at class (functional type)
level, were: number of patches, mean patch size (in
number of cells), coefficient of variation for patch size
(%) and mean shape index (= 1). At landscape level, the

Table 3. Input values for the landscape generator to set the
initial distributions of the R species (hierarchical structure
random landscapes). m; values indicate the subdivisions of the
landscape in the three hierarchical levels, and p; values the
probability of occupying a site within the cell at hierarchical
level i.

my m, my 141 P p3
L1 2 2 25 1.0 0.50 0.90
L2 2 5 10 1.0 0.50 0.90
L3 10 5 2 1.0 0.50 0.90
L4 2 10 5 1.0 0.90 0.50
L5 10 10 1 1.0 1.00 045
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spatial indices considered were: number of patches, size
of the largest patch (%), edge length (number of cells),
contagion (%, O’Neill et al. 1988; Li & Reynolds 1993),
autocorrelation (Moran) index, and landscape shape
index (= 1). Both contagion and autocorrelation refer to
the tendency of patch types to be spatially aggregated
(i.e. to occur in large, aggregated distributions), al-
though the computation methods are very different and
may not always be correlated (O’Neill et al. 1988).
Spatial analysis of both initial (L1i — L5i) and final (L1f
— L5f) landscapes was performed with the FRAGSTATS
software, and detailed formulation is given in McGarigal
& Marks (1994). Comparisons of mean spatial indices
for the five replicated landscapes were performed by
ANOVA.

Results

Analyses of the initial landscapes (L1i to L51, Table
4, Fig. 1) showed that although the cover was similar in
all of them, for R-type species the number of patches
and the coefficient of variation for patch size increased
from L1i to L5i while the mean patch size and shape
index decreased. The opposite trend was observed for S-
type species. The largest patch size did not change
significantly from L1i to L5i for either of the two
functional types (ca. 40-50%). These trends produced,

at landscape level (Table 5, Fig. 2), a gradient from L1i
to L5i of decreasing autocorrelation, increasing conta-
gion index and increasing edge length between R and S.
These trends indicate that the landscape structure ranges
from a few large, continuous patches (L1i) to many
small, interspersed patches (L5i). The input values of
the landscape generator reproduced a gradient of differ-
ent landscape structures that keep the cover values con-
stant.

Table 4. Spatial indices for the two functional types (class
indices) in the initial landscapes (L1i—L5i). Values are means
of five replicates. ANOVA results are significant (p < 0.001)
for all variables in the two functional types, except for Cover.

L1i L2i L3i L4i L5i

Cover (%)
R 46.1 447 452 454 452
S 539 553 54.8 54.6 54.8
N patches
R 1.6 3.6 364 55.6 91.6
S 2994 2638 470 39.0 19.6
Mean Patch Size (cells)
R 3562 13.61 1294 083 0.49
S 0.18 0.21 1.20 142 295
Patch Size CV (%)
R 2439 1357 5167 7024  853.1
S 1360.3 13248 6507 6043 4240
Mean Shape Index
R 7.29 4.40 1.95 1.82 1.71
S 1.12 1.10 1.49 1.94 292
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tions. Values are means and s.d. (some very small) of the five
replicates.

During the simulations all landscapes were burned
several times, and the area burned in each landscape was
similar, with the exception of L1 which had a lower
cumulative proportion of burnt area (Table 6). After 100
yr simulations (Table 7, 8), plant cover and spatial
patterns had both changed, the changes differ between

Table 5. Spatial indices for the whole landscape (landscape
indices) in the initial configurations. Values are means of five
replicates. ANOVA are significant (p < 0.001) for all variables.

L1i L2i L3i L4i L5i

N patches 301.0 2674 834 94.6 1112
Largest patch (%) 472 453 529 53.7 543
Edge (cells) 21488 2538.6 57764 91084 9807.2
Contagion (%) 25.57 22.92 6.94 0.82 0.66

Landscape shape index 6.37 7.35 15.44 23.77 25.52
Autocorrelation (Moran) ~ 0.771 0.712 0.326 0.067 0.000

Table 6. Simple fire statistics of the simulations. Values are
mean for each landscape structure (L1 to LS). Variables are the
number of fires, the proportion of the landscape burned in each
fire (%), and the cumulative proportion of area burned (%).

No. fires Burned % Cumulative %
L1 20 18.6 37.1
L2 3.0 322 96.6
L3 34 22.7 77.1
L4 2.8 26.6 749
L5 4.1 225 1034

the different initial landscape patterns. Although the
initial cover of each functional type was the same for all
landscapes, the final cover of R-type species was similar
(for L1 and L2), and higher (for L3, L4 and L5) than the
initial cover. The final cover of S-type species was
lower than the initial cover in all landscape scenarios
(Fig. 3). The final cover of R-type species was always
greater than the cover of S-type species, this difference
increased from L1 to LS5 (Fig. 3).

In the landscapes where R-type species had a low
number of large patches and S species had a large
number of small patches (L1i, L2i), the number of R-
patches increased and their size decreased, while the
number of S-patches decreased (Fig. 1). In these condi-
tions, edge length and contagion did not change, but
autocorrelation decreased (Fig. 2). Landscapes with a
large number of small R-patches and few large S-patches
(L3i — L5i) showed a decrease in the number of R-
patches, an increase in the number of S-patches and an
decrease in the size of S-patches. For these conditions,
the largest patch index increased for R and decreased for
S (not shown); the edge length decreased and the conta-
gion increased (Fig. 2).

Table 7. Spatial indices for the two functional types (class
indices) for the final landscapes (L1f to L5f). Values are
means of five replicates. ANOVA are significant (p<0.001)
for all variables in the two functional types.

Lif L2f L3f L4f L5f

Cover (%)
R 4228 4625 6090 6137 62.09
S 35.63 2995 9.64 8.30 6.16
N patches
R 67.6 78.8 13.8 142 11.6
S 952 142 2742 239 227.6
Mean Patch Size (cells)
R 0.63 0.59 5208 5.14 5592
S 0384 021 0.036 0.032 0.028
Patch Size CV (%)
R 720.18 790.23 34844 35291 32247
S 525.12 455.10 13594 169.79 10293
Mean Shape Index
R 1.51 1.54 341 333 352
S 1.36 144 1.28 1.27 1.22
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Table 8. Spatial indices for the whole landscape (landscape
indices) in the final configurations. Values are means of five
replicates. ANOVA results are significant (p < 0.001) for all
variables.

L1f L2f L3f L4f L5f

N patches 1575 209.0 2738 271.6 236.3
Largest patch (%) 457 538 80.3 86.5 90.6
Edge (cells) 130325 19534 15536 14798 110783
Contagion (%) 2579 1951 41.78 4741 57.82

Landscape shape index ~ 22.77 2543 28.61 28.84 29.15
Autocorrelation (Moran) 0.328  0.246 0.079 0.08 0.061

Discussion

The initial spatial patterns generated by MEeLca (L1i-
L5i) created a gradient from strongly structured (high
autocorrelation and contagion, i.e. coarse patchiness)
landscapes (e.g. L1i) to homogeneous (low auto-
correlation and contagion, fine patchiness) landscapes
(e.g. L5i). Consequently, the R-S edge increased from
L1i to L5i. The main threshold of change from aggre-
gated to homogeneous landscapes was observed be-
tween L2i and L3i (Fig. 1 and 2). These two landscape
scenarios were generated by the same probability values
(p;» Table 3) but different subdivision sizes (m,, m;);
these coefficients determined the aggregation pattern
(patchiness).

After 100 yr simulations, autocorrelation tended to
decrease (Fig. 2) in all landscape scenarios except in
those with already very low values (homogeneous land-
scapes) where autocorrelation either did not change
(L4) or increased very slightly (L5). However, the change
in structure, from higher autocorrelation to lower
autocorrelation, was still apparent (L1f-L5f; Fig. 2).
Moreover, the contagion index changed from decreas-
ing (L1i-L5i) to increasing (L1f-L5f), suggesting that
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Fig. 3. Initial cover (%) for all landscape scenarios and final
cover for each landscape scenario (L1 to LS).

the increase in R cover (Fig. 3) increased dominance
and consequently created large continuous patches (high
contagion). The contagion index seems to be sensitive
to cover (class abundance), and it is not directly corre-
lated to autocorrelation (O’Neill et al. 1988).

This tendency towards decreasing aggregation and
increasing homogenization with time (e.g. succession),
as measured by the autocorrelation index (Fig. 2; bot-
tom), is similar to what is currently occurring in many
Mediterranean landscapes with the reduction in the use of
agricultural land (e.g. land abandonment and reduction in
grazing pressure; Pausas & Vallejo 1999; Pausas in press).
Highly structured (aggregated) landscapes (e.g. L1, L2)
are mainly the result of (and are maintained by) different
land uses; reducing human pressure increases landscape
homogeneity.

After the simulations, the differences in plant cover
between R and S plants of the final landscapes in rela-
tion to the initial ones were larger as the autocorrelation
decreased (from 7% in L1f to 56% in L5f; Fig. 3),
suggesting that homogeneous landscapes with low spa-
tial autocorrelation (e.g. L5i) favour R-type species
(Fig. 3). This is probably due to the large edge length,
i.e. to the large interaction between the two functional
types. A large edge length implies that when a plant dies
there is a high chance that the cell will be filled by seeds
of both types, and the established plant will be the most
competitive. R-type species are competitively superior
to S-species because of their higher shade tolerance (late
successional) and their strong resprouting capacity. Thus,
despite the fact that S-type species have a much better
dispersal system, in the long-term, large edge length
favours R-type species. In highly structured landscapes,
with a small R-S edge, there are fewer R-S interactions
than in low structured (well interspersed) landscapes. In
other words, the increase in late successional (R-type)
species was faster when plants were not aggregated, i.e.
aggregation provided refuge for poor competitors (i.e.
spatial dependent co-existence). The fact that aggrega-
tion could reduce the rate at which stronger competitors
are able to exclude weaker ones has been suggested in
different analytical models (Shmida & Ellner 1984; Ives
1988).

The most aggregated landscapes (with the highest
autocorrelation) (LL1) had the least fires and the lowest
cumulative proportion of area burned; the most homo-
geneous (least aggregated, lowest autocorrelation) land-
scapes (L5) had the most fires and cumulative area
burned (Table 6). However, this tendency was unclear
when analysing the intermediate degrees of aggregation
(L2, L3, L4). This tendency is in agreement with the
idea that changing vegetation patterns, via abiotic, bi-
otic or anthropogenic processes (e.g. land use changes),
have the potential to alter a fire regime, even if the
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drivers of that disturbance regime (e.g. climate, fire
ignitions) remain constant (Peterson 2002). However,
the degree to which a fire regime changes in response to
landscape modifications or to interactions with changes
in other drivers (e.g. climate change, plant invasions;
e.g.D’Antonio & Vitousek 1992) needs further research
using a more detailed vegetation model than the one
used in the present work.

From the results, we can hypothesize that long-term
vegetation dynamics in Mediterranean ecosystems are
spatially dependent, i.e. the resultant dynamic process is
sensitive to the initial spatial structure, and that low
autocorrelation (fine patchiness) favours R-type species
and high autocorrelation (coarse patchiness) permits the
maintenance of S-type species. Although long-term field
data are needed to validate this hypothesis, these results
provide evidence of the relationship between patterns
(e.g. patchiness) and population processes (Kareiva &
Wennergren 1995; Turner et al. 2001) and are supported
by different theoretical studies (e.g. Shmida & Ellner
1984; Ives 1988). The results also highlight the short-
comings of non-spatial models (e.g. Rupp et al. 2000),
i.e. given a set of species and their abundance, a spatial
model would predict different results depending on the
initial spatial pattern of the plants, while a non-spatial
model would produce one outcome only. For example,
in the context of habitat destruction, the non-spatial
model by Nee & May (1992) predicts that co-existence
is dependent on the proportion of sites that are inhabit-
able, while spatial models predict that the spatial ar-
rangement of the patches is an important factor influ-
encing colonization, persistence and co-existence
(Dytham 1995; Huxel & Hastings 1998). Some studies
with non-spatial models have already showed the differ-
ent results obtained when considering different values
of spatial dependent parameters (e.g. dispersal in Pausas
1999b).

The model results also emphasize that differences in
basic traits are very important and have long-term con-
sequences. Midgley (1996) asked why the world’s veg-
etation is not totally dominated by resprouting plants.
He suggested that this is because resprouters are shorter
and so are less competitive (and so overshadowed) in
low disturbance forest ecosystems (Kruger et al. 1997).
The analysis presented here for Mediterranean basin
functional types suggests that the spatial pattern should
also be considered, and that seeders may be maintained
by spatial heterogeneity. That is, in heterogeneous land-
scapes where R-type species are clumped (high auto-
correlation), S-type species are maintained because of
their better dispersal system and high recruitment in
open spaces, especially after fire. In homogeneous land-
scapes where R- and S-species types are well inter-
spersed, the R-type tends to dominate.

Application to land management

In the Mediterranean basin, the recent increase in
fire frequency and size (Pausas & Vallejo 1999) has led
to a re-thinking of reforestation and restoration tech-
niques (Vallejo et al. in press). In Spain, traditional
forestry recommended reforesting large burnt areas with
Pinus species (S-type species), because they grow much
faster and regenerate (re-green) the landscape more
quickly than the corresponding R-type tree species of
the area (Quercus). Modern forestry is suggesting that
despite the slow growth rate, R-type species should also
be considered because of their high capacity to regener-
ate after recurrent fires (Trabaud 1991; Canadell et al.
1991; Pausas 1997). In this sense, a mix of both R- and
S-type plants would benefit from both strategies, i.e. the
fast growth of S-species and the high resilience of R
species. In using this modelling approach, I have been
able to hypothesize that landscape structure has an im-
portant role in vegetation dynamics. If the ultimate
target is to achieve late successional high resilience
plant communities, the simulation results presented here
suggest that the most efficient way to reach that target is
to plant a given amount of R- and S-type plants in a well
interspersed design. Including R-type species in refor-
estation actions would increase the diversity and resil-
ience of the system although the consequences of the
different reforestation design in the long-term fire re-
gime need further research.

The analysis provided here suggests the importance
of incorporating landscape pattern not only for fauna
conservation (e.g. Arnold 1995) but also for plant con-
servation and restoration programs.
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