The role of the perch effect on the nucleation process in Mediterranean semi-arid oldfields

Juli G. Pausas, Andreu Bonet, Fernando T. Maestre, Anna Climent

CEAM Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM), C/ Charles Darwin 14, 46980 Paterna, Spain
Departament d’Ecologia, Universitat d’Alacant, Apartat de Correus 99, 03080 Alacant, Spain

ARTICLE INFO
Article history:
Received 7 June 2005
Accepted 14 December 2005
Available online 15 February 2006

Keywords:
Succession
Vegetation dynamics
Fleshy-fruited species
Facilitation
Abandonment
Carob tree
Ceratonia siliqua
Rhamnus lycioides
Recruitment

ABSTRACT
Oldfield succession in Mediterranean ecosystems has been studied extensively in mesic conditions. However, this phenomenon is still poorly understood in semi-arid Mediterranean areas, where reduced plant cover, the importance of facilitation processes and the role of abiotic factors make these environments distinct. We first test whether the carob tree (Ceratonia siliqua) generates nucleation patterns in semi-arid oldfields, and to what extent such patterns change with abandonment age. Then we test to what extent nucleation can be explained by the perch effect. And finally, we test whether the nucleated pattern around carob trees is a source of diversity in the oldfields studied. To answer these questions we located oldfields abandoned 25 and 50 years ago (20 in each case) in the Alicante Province (SE Spain, Iberian Peninsula) on the basis of aerial photographs and personal interviews with local landowners and managers. In each oldfield woody plant density and richness were sampled on two microsites: under the carob tree and in the open field. Analysis was performed on all woody plants and by separating the species in two functional groups: fleshy-fruited (with fleshy mesocarp) and non-fleshy-fruited species. The results suggest that woody vegetation colonising abandoned C. siliqua fields in SE Spain is not randomly distributed but follows a nucleation pattern with higher plant density under the trees. However, the nucleation pattern is only significant for fleshy-fruited species, suggesting that facilitative interactions alone cannot explain the nucleation pattern and that the perch effect plays an important role. The results also show that the nucleation pattern (total plant density and density of non-fleshy-fruited plants) did not increase with abandonment age, while the perch effect (density of fleshy-fruited plants) did increase significantly. Furthermore, the results also show that the nucleation pattern is not only a loci of high plant density but also a loci of high species richness. Thus we can conclude that the nucleation pattern found in oldfield succession is best explained by the perch effect, while facilitation has a secondary importance. This emphasises the key role that dispersal mode has on the dynamics of vegetation recovery in formerly cropped areas.

© 2006 Elsevier SAS. All rights reserved.
1. Introduction

Given its importance as a global change driver (Houghton et al., 2001), land use change and its ecological aspects are receiving increased interest. In the Mediterranean Basin, the socio-economic changes taking place during the last half of the XX century promoted a dramatic rural exodus, with the consequent abandonment of large cultivated areas (Lepart and Debussche, 1992). As a result, these former cultivated areas are now being colonised by early and late-successional vegetation, a process that has important implications for processes such as water balances (Bellot et al., 2001), wildfire regimes (Pausas, 2004) and carbon sequestration (DeGryze et al., 2004).

Oldfield succession in Mediterranean ecosystems has been studied extensively in mesic conditions (Houssard et al., 1980; Escarré et al., 1983; Peco et al., 1991; Lavorel et al., 1994; Tatoni and Roche, 1994; Tatoni et al., 1994; Montalvo et al., 1995; Debussche et al., 1996; Ne’eman and Izhaki, 1996). However, this phenomenon is still poorly understood in semi-arid Mediterranean areas (e.g. Noy-Meir, 1973; Martínez-Fernández et al., 1995; Margaris et al., 1996; Bonet, 2004; Bonet and Pausas, 2004). Vegetation dynamics after land abandonment under semi-arid conditions differ from that observed in more mesic areas due to the reduced plant cover that characterises the former (Whitford, 2002), the differences in the relative importance of interspecific interactions such as facilitation and competition (Bertness and Callaway, 1994), and the overwhelming role that abiotic factors play on the dynamics of plant populations (Escudero et al., 1999).

Successional processes in formerly cultivated areas are strongly influenced by the nature of the crop that dominated them. In areas formerly planted with tree crops (fruit orchards), it has been suggested that oldfield vegetation is spatially aggregated around the original crop tree (Debussche and Isenmann, 1994). This process has been named ‘nucleation’ (Yarranton and Morrison, 1974) by analogy with other physical processes, or ‘recruitment foci’ (McDonnell and Stiles, 1983). This nucleation pattern can be generated by, at least, two different ecological processes: the perch effect and/or the facilitation effect through microenvironmental and resource improvement (Gill and Marks, 1991; Verdú and García-Fayos, 1996).

The perch effect refers to the process in which trees remaining from the orchards are used as perches by frugivorous birds (Debussche et al., 1982). These birds swallow fruits from the different shrubs and trees in remnant vegetation patches around the oldfields and defecate and/or regurgitate the seeds while perching in the old crop tree. Thus, seed rain and the resulting seedling recruitment and sapling spatial pattern should be highly patchy and largely restricted to microhabitats beneath trees (Izhaki et al., 1991; Debussche and Lepart, 1992; Herrera et al., 1994; Debussche and Isenmann, 1994; Alcántara et al., 2000). However, high post-dispersal seed predation beneath the woody vegetation (Kollmann, 1995; Hulme, 1998; Rey and Alcántara, 2000) could overwhelm the increased seed rain from the perch effect and have no consequences in the processes leading to final recruitment.

An alternative process for explaining the nucleation pattern is the facilitation effect (sensu Connell and Slatyer, 1977). Many studies have reported improvements in soil structure, increases on soil nutrients and microbial activity, and amelioration of harsh microclimatic conditions under woody plants in semi-arid environments, leading to the formation of “resource islands” under the canopy of these plants (Jake and Coughenour, 1990; Verdú and García-Fayos, 1996; Moro et al., 1997; Reynolds et al., 1999). These resource islands are points of high biological activity where facilitative interactions among plant species are dominant (Callaway, 1995; Aguiar and Sala, 1999). Recent studies have emphasised the importance of these interactions in driving plant community structure and dynamics in semi-arid environments (Pugnaire and Luque, 2001; Tewksbury and Lloyd, 2001; Maestre et al., 2003a).

In semi-arid oldfields changes in soil and microclimate as described above are also likely to occur around the crop trees, and thus may be responsible for generating the patchy pattern of nucleation.

To our knowledge, none of the studies conducted so far has evaluated the relative importance of the perch and facilitation effects as drivers of vegetation dynamics in formerly cultivated semi-arid areas. In the present paper we first test whether carob trees (Ceratonia siliqua, Fabaceae subfamily Caesalpinioideae) generate nucleation patterns in semi-arid oldfields, and to what extent such patterns change with abandonment age. Then we test to what extent nucleation can be explained by the perch effect. If nucleation is observed in fleshy-fruited species only, then it should be caused by the perch effect; otherwise (i.e. if nucleation is observed in both fleshy and non-fleshy-fruited), facilitation (mediated by the improvement in soil conditions and the amelioration of harsh climatic conditions) could be the main driving force in the nucleation. Note that C. siliqua does not produce fleshy-fruited bird-dispersed fruits and thus there is no possible confounding between the pure perch effect and the visit of birds attracted by fruits (reward). Furthermore, we studied to what extent the nucleated pattern around C. siliqua trees is not only a loci of high plant density but also a source of diversity (diversity loci).

To answer these questions we sampled woody plant density (for both fleshy-fruited and non-fleshy-fruited species) beneath and outside C. siliqua trees in semi-arid oldfields abandoned 25 and 50 years ago in the south-eastern Iberian Peninsula. Special emphasis was given to Rhamnus lycioides (Rhamnaceae), the most abundant fleshy-fruited species in the study area and common in other Mediterranean semi-arid environments (Tutin et al., 1964–1980). This species is also being increasingly used in the restoration of degraded ecosystems in semi-arid Mediterranean areas (Bonet, 2004; Cortina et al., 2004; Caravaca et al., 2003; Maestre et al., 2003b).

2. Methods

2.1. Study area

The study was conducted at the Ventós-Agost Catchment Experimental Station (University of Alacant), in the Municipality of Agost, Alacant Province, SE Spain (38°28’N, 0°37’W, 10–840 m a.s.l.). The catchment area (approx. 1537 ha) is charac-
terised by a semi-arid Mediterranean climate, with a very high interannual variability. Mean annual temperature is 18.2 °C and annual rainfall is 302 mm (Agost Meteorological Station, 1961–1990 period). Soils have developed over marls and calcareous bedrock, and slopes, which are mainly south-facing, vary between 25% and 30%. Natural vegetation is formed by a mosaic of Stipa tenacissima steppes, Brachypodium retusum grasslands with dwarf shrubs, and shrublands dominated by Quercus coccifera and Erica multiflora (Bonet et al., 2004). These formations are mixed with Pinus halepensis plantations and dry woody crops like almond tree (Prunus dulcis), olive tree (Olea europaea) and C. siliqua. Recently, set-aside processes in the region have extended, and field abandonment ranges from 1 to 60 years following the last cultivation, with the main set-aside process taking place from 1946 to 1956 (Bonet et al., 2004).

2.2. Sampling

In 1999 we located all the oldfields containing a C. siliqua tree in our study area using available digital cartography (Bonet et al., 2004). Most fields in the area were relatively small and had one or very few C. siliqua trees, sometimes in combination with cereal crops. We first preselected the fields that had a single tree (Plate 1). From all these sites, we randomly selected oldfields that had been abandoned 25 and 50 years ago (20 oldfields in each case), on the basis of aerial photographs and personal interviews with local landowners and managers (Bonet and Pausas, 2004). Abandonment is defined here as the cessation of ploughing and sowing.

The selected oldfields were sampled during the springs of 1999 and 2000. The area of each oldfield and the projected canopy area of each associated C. siliqua tree was measured. All the woody species present underneath the canopy of the C. siliqua trees (hereafter named Tree microsite) and outside this canopy (hereafter named Field microsite) were counted. Species were divided in two types: fleshy-fruited (with fleshy mesocarp) and non-fleshy-fruited. From these data, we obtained plant density data by dividing the total number of individuals by the projected area of the C. siliqua tree (Tree microsite) and by the area of the oldfield (Field microsite). Species richness and species density (number of species per area) were also obtained for both microsites.

2.3. Data analysis

The effect of microsite and abandonment age on plant density, species richness and species density were tested by two-way ANOVA. Prior to these analyses, the plant density data were root-transformed, and the species density data were log-transformed. For species richness, the Poisson error distribution was assumed in a GLM model (Margules et al., 1987; Pausas, 1994; Pausas et al., 2003). Separate analyses were conducted for all the species pooled, for fleshy-fruited species, for non-fleshy-fruited species and for R. lycioides.

3. Results

A total of 31 woody species were found in the 40 oldfields studied; nine of them were fleshy-fruited (Table 1). Woody plant density (individuals·m⁻²) was significantly higher in the Tree than in the Field microsite (3.26 ± 1.6 vs. 1.93 ± 1.3 individuals·m⁻², respectively), but the effect of abandonment age and the interaction were not significant (Table 2). However, if only the fleshy-fruited species are considered, the significance and the explained variance increased (Table 2). Fleshy-fruited species density was substantially higher (ca. 25 times) in the Tree than in the Field microsite (1.183 ± 0.89 vs. 0.046 ± 0.03), and these differences were especially pronounced in the 50-year oldfields (both the abandonment age and the interaction were significant, Table 2 and Fig. 1). The same pattern was observed for the density of R. lycioides (Tables 1 and 2). The density of non-fleshy-fruited woody species was similar in the two microsites (ca. 1.98 ± 1.4 individuals·m⁻²), but decreased with abandonment age (P < 0.025, Table 2).

Total woody species richness was higher in the Field than in the Tree microsite (Table 3), but this difference was likely due to the fact that the field area (163 ± 197 m²) is much higher (on average ca. seven times) than the area under the tree (24.4 ± 11.8 m²). Despite these large differences in area size between microsites, the number of fleshy-fruited species was significantly higher in the Tree microsite compared to the Field. For all species groups (total, fleshy and non-fleshy), species density (number of species m⁻²) was significantly higher in the Tree microsite (Table 3). Non-fleshy-fruited species richness tended to decrease with abandonment age, while fleshy-fruited species increased or remained constant with age (Table 3).

4. Discussion

In the oldfields studied, woody species density was substantially higher beneath C. siliqua trees than in the open field; that is, woody species colonisation of abandoned C. siliqua

Plate 1 -- Oldfields with single carob trees (C. siliqua) abandoned 25 years ago in the study area (Alacant, SE Spain).
Species such as served for other fleshy-fruited Mediterranean nucleation patterns around orchard trees have been ob-
erved for other species of the same genus, such as R. lycioides (Gulias et al., 2004). Furthermore, in the case of
R. lycioides, a bird-dispersed species (Jordano and Herrera, 1981; Jordano, 1987), showed a clear nucleation pattern (Table 3). Similar patterns have found for other species of the same genus, such as R. alaternus (Gulias et al., 2004) and R. ludovici-salvatoris (Traveset et al., 2003), in Mediterranean shrublands. Likewise, nucleation patterns around orchard trees have been ob-
erved for other fleshy-fruited bird-dispersed Mediterranean species such as Pistacia lenticus and Daphne gnidium in areas formerly cropped with C. siligua and O. europaea, respectively (Verdú and García-Fayos, 1996, 1998). To what extent, the nu-
cleation pattern in each of the above cases is due to the perch effect or to facilitation mediated by improved environmental conditions under the canopy of shrubs and/or trees is difficult to know, and perhaps both processes may be rele-
vant in the recruitment of Mediterranean fleshy-fruited spe-
cies (Gulias et al., 2004). Furthermore, in the case of O. europaea, bird perching may be due to the vertical structure but also to the attraction by the fleshy fruits of this species. Our results suggest that the perch effect may be more rele-
vant than the facilitation effect in driving the dynamics of oldfield vegetation in semi-arid environments, at least dur-
ing the time frame evaluated here. This does not minimise the importance of facilitation as a driver of vegetation dy-
namics in these and other environments, but rather empha-
sises the overwhelming role that dispersal mode has on the

Table 1 – List of woody species observed in the oldfields studied (fleshy-fruited and non-fleshy-fruited species) with their abundance (mean number of individuals) in each microsite (N = 20): outside the canopy in the field terrace (Field) and beneath the carob tree canopy (Tree), for both the 25 and 50 years old oldfields

<table>
<thead>
<tr>
<th>Species name (Family)</th>
<th>Field</th>
<th>Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fleshy-fruited species</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. lycioides (Rhamnaceae)</td>
<td>20.4</td>
<td>14.1</td>
</tr>
<tr>
<td>Asparagus horridus (Liliaceae)</td>
<td>1.2</td>
<td>0.8</td>
</tr>
<tr>
<td>Juniperus oxycedrus (Cupressaceae)</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Euphorbia fragilis (Euphorbiaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Osyris lanceolata (Santalaceae)</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>P. lentiscus (Anacardiaceae)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O. europaea var. sylvestris (Oleaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Arbatus unedo (Ericaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Rhamnus alaternus (Rhamnaceae)</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>Non-fleshy-fruited species</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bupleurum fruticosum (Apiaceae)</td>
<td>0.6</td>
<td>0.15</td>
</tr>
<tr>
<td>Cheirolophus intybaceus (Rutaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Cistus ladaniferus (Lamiaceae)</td>
<td>8.3</td>
<td>3.0</td>
</tr>
<tr>
<td>Daphne gnidium (Ericaceae)</td>
<td>0.15</td>
<td>0.65</td>
</tr>
<tr>
<td>E. multiflora (Ericaceae)</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>F. thymifolia (Lamiaceae)</td>
<td>8.3</td>
<td>3.0</td>
</tr>
<tr>
<td>Gentiana lutea (Asteraceae)</td>
<td>0.15</td>
<td>0.65</td>
</tr>
<tr>
<td>Globularia alypum (Cistaceae)</td>
<td>40.2</td>
<td>36.1</td>
</tr>
<tr>
<td>Helichrysum stoechas (Asteraceae)</td>
<td>0.35</td>
<td>0.05</td>
</tr>
<tr>
<td>Helianthemum microphyllum (Cistaceae)</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Helianthemum syriacum (Cistaceae)</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Haplopappus linifolium ssp. rosmarinifolium (Rutaceae)</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>Hippophae rhamnoides (Rutaceae)</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Justicia sepium (Acanthaceae)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lycium barbarum (Solanaceae)</td>
<td>0.15</td>
<td>0.65</td>
</tr>
<tr>
<td>Latronia hebes (Santalaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>O. europaea var. sylvestris (Oleaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>O. ilicifolia (Oleaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>O. sylvestris (Oleaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Ostrya carpinifolia (Fagaceae)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Papaver rhoeas (Oxalidaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Phlomis tuberosa (Lamiaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Plantago major (Plantaginaceae)</td>
<td>0.35</td>
<td>1</td>
</tr>
<tr>
<td>P. rupestre (Plantaginaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Pyrus communis (Rosaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Quercus ilex (Fagaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Rhamnus alaternus (Rhamnaceae)</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>Sideritis leucantha (Lamiaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>S. rosea (Lamiaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Styrax officinalis (Styracaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Thymelaea hirsuta (Thymelaeaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Thymus vulgaris (Lamiaceae)</td>
<td>8.3</td>
<td>3.0</td>
</tr>
<tr>
<td>T. sylvestris (Lamiaceae)</td>
<td>8.3</td>
<td>3.0</td>
</tr>
<tr>
<td>T. vulgaris subsp. alpina (Lamiaceae)</td>
<td>8.3</td>
<td>3.0</td>
</tr>
<tr>
<td>Ulex europaeus (Fabaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Weigela florida (Caprifoliaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Willkommia myrtifolia (Plantaginaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Xerophyta chrysanthemifolia (Lamiaceae)</td>
<td>0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Species are sorted by their mean abundance. Nomenclature following Mateo and Crespo (2001) for species, and The Angiosperm Phylogeny Group (Bremer et al., 1998) for family names. Some closely related species were aggregated to avoid some uncertainties in the plots that the individuals were poorly developed.

Table 2 – Mean density of woody plants (individuals·m⁻²) and two-way ANOVA for total, fleshy-fruited and non-fleshy-fruited species and for R. lycioides in relation with the different microsite (Tree vs. Field, M) and abandonment age (25 vs. 50 years, A)

<table>
<thead>
<tr>
<th>Plant density (individuals m⁻²)</th>
<th>Field</th>
<th>Tree</th>
<th>Microsite (M)</th>
<th>Abandonment age (A)</th>
<th>M × A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total species</td>
<td>2.10</td>
<td>1.75</td>
<td>3.12</td>
<td>3.40</td>
<td>19.4</td>
</tr>
<tr>
<td>Fleshy-fruited species</td>
<td>0.045</td>
<td>0.048</td>
<td>0.56</td>
<td>1.80</td>
<td>200.4</td>
</tr>
<tr>
<td>Non-fleshy-fruited species</td>
<td>2.06</td>
<td>1.71</td>
<td>2.56</td>
<td>1.60</td>
<td>0.01</td>
</tr>
<tr>
<td>R. lycioides</td>
<td>0.010</td>
<td>0.012</td>
<td>0.456</td>
<td>1.485</td>
<td>217.6</td>
</tr>
</tbody>
</table>

Fields in semi-arid conditions was not randomly distributed but instead followed a nucleation pattern. The fact that this pattern was highly significant for fleshy-fruited species alone, and not for the remaining species (Table 2), suggests that facilitative interactions only cannot explain it, and that increased seed rain due to the perch effect should be in-
voked. For instance, the density of R. lycioides, a bird-dispersed species (Jordan and Herrera, 1981; Jordan, 1987), showed a clear nucleation pattern (Table 3). Similar patterns have found for other species of the same genus, such as R. alaternus (Gulias et al., 2004) and R. ludovici-salvatoris (Traveset et al., 2003), in Mediterranean shrublands. Likewise, nucleation patterns around orchard trees have been ob-
erved for other fleshy-fruited bird-dispersed Mediterranean species such as Pistacia lenticus and Daphne gnidium in areas formerly cropped with C. siligua and O. europaea, respectively (Verdú and García-Fayos, 1996, 1998). To what extent, the nu-
would be needed for a better quantification of the role of seed dispersal.

It is interesting to mention that the nucleation pattern (total plant density and non-fleshy-fruited plant density) did not increase with abandonment age, while the perch effect (fleshy-fruited plant density) did (Table 2). Both fleshy-fruited plant density and *R. lycioides* density were higher underneath *C. siliqua* trees than in the field, and the magnitude of these differences were larger in 50-year-old fields than in 25-year-old fields (significant interactions in Table 2). This result suggests that the perch effect increases in importance along succession. This trend can be explained by the higher seed rain due to the longer time since abandonment (Debussche and Isenmann, 1994). Furthermore, there may also be a positive feedback in which fleshy-fruited species establish and produce fruits below the perch tree, and these additional fruits attract more birds (Sargent, 1990), further increasing the seed rain under the *C. siliqua* tree canopy.

The microsite underneath the *C. siliqua* tree represents a “diversity loci” in semi-arid oldfields, as described for other woody species in desert shrublands (Tewksbury and Lloyd, 2001) and semi-arid steppes (Maestre and Cortina, 2005). That is, in our conditions, bird-mediated seed rain of fleshy-fruited species generates a high spatial variability in both plant density and diversity, and this variability is dependent on the vertical vegetation structures remaining from the abandoned orchard. In fact, it has been recognised that after tree crop abandonment in Mediterranean landscapes, vegetation does not follow the traditional path from “early-successional” species to “late-successional” species; rather, the so-called “late-successional” species may appear early after abandonment (Ne’eman and Izhaki, 1996; Bonet, 2004; Bonet and Pausas, 2004). This early appearance of “late-successional” species is due to the perch effect.

These results may have important implications in the management of semi-arid Mediterranean ecosystems. The long-time human pressure (e.g. grazing, wood harvesting, massive cultivation and terracing and then massive abandonment) in these systems has degraded many of the semi-arid landscapes of the Mediterranean Basin (Jauffret and Lavorel, 2003; Maestre and Cortina, 2004a; Bonet et al., in press). Currently, there is strong social pressure to restore or accel-
ering natural processes of regeneration in these landscapes (Pausas et al., 2004; Vallejo et al., 2006). The limited success of conventional restoration activities in semi-arid Mediterranean areas (see Maestre and Cortina, 2004b for a discussion), emphasises the need of incorporating ecosystems-specific structural and functional processes into their active management. The fact that the perch effect provides important seed rain for regeneration and for increasing diversity in a variety of environments opens up the possibility of using artificial perching sites for accelerating landscape regeneration. This technique has been applied mainly under tropical conditions (McDonnell, 1986; Holl, 1998) and, to our knowledge, has not been experimentally tested under semi-arid conditions. Further experimental studies are thus needed to evaluate the suitability of this technique for Mediterranean semi-arid landscapes.

Acknowledgements

This research was funded by Ministerio de Educación y Ciencia (CICYT project CGL2004-03627). F.T.M. was supported by a Spanish Ministry of Education and Science Fulbright fellowship (FU2003-0398). CEAM is funded by the “Generalitat Valenciana” and “Bancaixa”.

REFERENCES

