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Abstract. Disturbance is a dominant factor in many ecosystems, and the disturbance
regime is likely to change over the next decades in response to land-use changes and global
warming. We assume that predictions of vegetation dynamics can be made on the basis of
a set of life-history traits that characterize the response of a species to disturbance. For
crown-fire ecosystems, the main plant traits related to postfire persistence are the ability
to resprout (persistence of individuals) and the ability to retain a persistent seed bank
(persistence of populations). In this context, we asked (1) to what extent do different life-
history traits co-occur with the ability to resprout and/or the ability to retain a persistent
seed bank among differing ecosystems and (2) to what extent do combinations of fire-
related traits (fire syndromes) change in a fire regime gradient? We explored these questions
by reviewing the literature and analyzing databases compiled from different crown-fire
ecosystems (mainly eastern Australia, California, and the Mediterranean basin). The review
suggests that the pattern of correlation between the two basic postfire persistent traits and
other plant traits varies between continents and ecosystems. From these results we predict,
for instance, that not all resprouters respond in a similar way everywhere because the
associated plant traits of resprouter species vary in different places. Thus, attempts to
generalize predictions on the basis of the resprouting capacity may have limited power at
a global scale. An example is presented for Australian heathlands. Considering the com-
bination of persistence at individual (resprouting) and at population (seed bank) level, the
predictive power at local scale was significantly increased.

Key words: fire-prone ecosystems; forest fires; Mediterranean-type ecosystems; plant functional
types; plant traits; regeneration; resprouting seeding; wildfires.

INTRODUCTION

Fire regimes are expected to change over the next
century in response to land-use change and global
warming (e.g., Piñol et al. 1998, Flannigan et al. 2000,
Houghton et al. 2001, Pausas 2004). Understanding
how vegetation responds to fire is important for pre-
dicting the properties and the distributions of many
ecosystems (Smith et al. 1997, Lavorel and Cramer
1999). In this paper we start with the premise that pre-
dicting vegetation change can be accomplished with
the use of plant functional types (McIntyre et al. 1995,
Woodward and Cramer 1996, Smith et al. 1997, Lavorel
and Cramer 1999, Pausas et al. 2003b). This allows us
to reduce the overall range of possible combinations
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of life-history traits and species into a set of functional
groups that best represent the range of strategies pre-
sent in fire-prone ecosystems. By simplifying the great
diversity of plant species into a smaller number of func-
tional types, large-scale modeling, and hence predict-
ability, become much more feasible (Botkin et al. 1972,
Noble and Slatyer 1980, Loehle 2000), although group-
ing species may reduced accuracy. The general goal of
the present paper is to examine the utility of plant func-
tional traits for global prediction in crown-fire ecosys-
tems. The existence of functional types suggests the
existence of certain underlying constraints or tradeoffs
(e.g., vegetative vs. sexual regeneration; Carpenter and
Recher 1979, Keeley 1986) that limit the possible com-
binations of life-history traits (Pausas and Lavorel
2003). Fire may act as an evolutionary filter against
certain traits (Herrera 1992, Keddy 1992, Dı́az et al.
1998), and therefore we expect different combinations
of traits in systems with different fire history (Keeley
and Zedler 1998).

It is often considered that predictions of vegetation
dynamics in fire-prone ecosystems can be made on the
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basis of the ability of a species to resprout (or the
degree of resprouting) (Bellingham and Sparrow 2000,
Bond and Midgley 2001). For example, resprouting has
been equated to persistence or domination under high
frequency of disturbance in many ecosystems (e.g.,
Keeley and Zedler 1978, Kruger and Bigalke 1984,
Trabaud 1991). However, the role of fire as a selective
agent in the evolution of resprouting is by no means
certain (Wells 1969, Yih et al. 1991, Lloret et al. 1999,
Bond and Midgely 2001), nor is there universal agree-
ment that species with resprouting ability will persist
and dominate only at the high frequency end of a dis-
turbance gradient (e.g., Bellingham and Sparrow 2000).

If a species is unable to resprout after fire, the re-
generation of that species will depend on a range of
associated traits dealing with seed banks (i.e., obligate
seeders: non-resprouter species that rely only on re-
generation from seeds for postfire recovery). In general
and at local scale, the persistence of seeder species on
a site depends on: (1) the ability to produce seeds dur-
ing the inter-fire period, (2) the seed survival during
fires, and (3) the degree to which recruitment of new
individuals is enhanced by the fire. Different processes
related to recruitment (flowering, seed dispersal, ger-
mination) may be stimulated by some fire-related fac-
tors (e.g., heat, charred wood, and smoke; Trabaud and
Oustric 1989, Keeley 1991, Roy and Sonié 1992, Than-
os and Rundel 1995; see the recent review by Keeley
and Fotheringham 2000). Whether all seeds germinate
or a portion of the seed bank remains dormant would
contribute to the fate of the population after recurrent
disturbances. In some cases, species only regenerate
shortly after fire (and not during the inter-fire period),
as in species in which seed release is strongly fire de-
pendent (Lamont et al. 1991).

The inclusion of the seed bank, along with resprout-
ing, in schemes for predicting vegetation dynamics in
relation to fire is well accepted (e.g., Keeley and Zedler
1978, Noble and Slayter 1980, Gill 1981, Rowe 1983,
Bond and van Wilgen 1996). Thus, it is predicted that
different combinations (or different degrees) of these
main traits (i.e., different plant strategies or syndromes)
can lead to differential success under different fire re-
gimes. Seed bank and resprouting characteristics co-
occur with other traits that are less directly related to
postfire persistence but are relevant for longer term
dynamics (e.g., growth, dispersal). Different co-occur-
rence of traits may have important implications for
long-term dynamics and thus determine the success of
the different postfire syndromes under different fire re-
gimes (Pausas 2001). The ability of these general traits
to predict vegetation dynamics in different ecosystems
remains to be tested. In this context, we address the
following questions:

(1) To what extent do different life-history traits rel-
evant to vegetation dynamics co-occur with the ability
to resprout and/or the ability to retain a persistent seed
bank among differing ecosystems? We explored this

question by analyzing trait databases from different
ecosystems as well as from bibliographic references.

(2) To what extent do combinations of fire-related
traits change in a fire regime gradient? We addressed
this question using information from Australian heath-
lands, which span a range of localities and environ-
ments for which a reasonable range of data were avail-
able.

APPROACH: POSTFIRE PERSISTERS

Our analysis is restricted to traits related to the effect
of a single fire event or the effects of recurrent fires
(fire frequency); traits related to fire season, intensity,
and extent are not considered. Because adaptive options
vary depending on the disturbance regime, our analysis
is also restricted to stand-replacement (crown) fires.
Our emphasis is on woody species. The persistence of
trees in areas with a surface fire regime (e.g., western
USA forests, savanna ecosystems) is based on a very
different set of plant traits (e.g., bark thickness, height,
self-pruning) than the persistence of plants that are typ-
ically fully scorched by fire (e.g., resprouting, seed
bank) (Zedler 1995, Gignoux et al. 1997, Pausas 1997,
Keeley and Zedler 1998, Schwilk and Ackerly 2001).

Based on the postfire persistence of individual plants
and populations, we adopted the following approach
and nomenclature.

Resprouters (R1)

These are species in which individuals are able to
resprout after 100% scorch by fire (Gill 1981) from any
plant structure (e.g., rhizomes, root buds, stem buds,
lignotuber, etc.). Resprouters persist at individual level
as a vegetative form.

Non-resprouters (R2)

Non-resprouters are species without the capacity to
resprout after 100% scorch by fire (Gill 1981). Indi-
viduals are killed and do not persist after a fire.

Propagule-persisters (P1)

Propagule-persisters are species in which the popu-
lation locally persists in propagule form (seed, fruit)
after 100% scorch by fire. Seeds resist (or are protected
from) fire; they often have a persistent seed bank, and
the recruitment of new individuals is often enhanced by
fire (e.g., by breaking seed dormancy, by stimulating
seed release). Species that have exclusive pyrogenic
flowering are also considered in this category because
this strategy is functionally similar to a canopy seed bank
(i.e., they lack persistent seeds, but establish transient
seed banks after fire through flowering). Thus, there are
three types of propagule-persisters: species with soil
seed bank, serotinous species (i.e., with canopy seed
bank), and species with pyrogenic flowering.

Propagule-non-persisters (P2)

These are species in which the propagule (seed, fruit)
does not persist after fire. After fire, propagules may
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FIG. 1. Hierarchical classification of the four basic fire-
response functional groups (the hierarchical RP persistence
scheme). Abbreviations are: R1, resprouters; R2, non-re-
sprouters; P1 propagule persisters; and P2, propagule-non-
persisters. The two dichotomies are: first, whether the indi-
viduals persist after fire (by resprouting) and, second, whether
the species population persists after fire (as propagules). The
four groups are: R1P1 (facultative species), R1P2 (obligate
resprouters; seeds do not resist fire, and recruitment is during
inter-fire period), R2P1 (obligate seeders; these only persist
at species level by seeds; thus they are specialized in postfire
recruitment), and R2P2 (species that do not persist after fire).

only occur by dispersal from the neighborhood (off-
site establishment).

From the combination of these parameters, we obtain
four basic fire-response groups (Bond and van Wilgen
1996, Pausas 1999a) that can be hierarchically clas-
sified (the hierarchical RP persistence scheme, Fig. 1).
Pausas (1999a) provides some initial hypotheses on
trait co-occurrence and population dynamics for the
four types, and Pausas and Lavorel (2003) expand this
approach to other scales and disturbances. The first
dichotomy refers to the individual level (whether the
individuals persist after fire), and the second to the
population level (whether the population persists after
fire). This simple classification does not consider other
important traits such as those related to dispersal or to
the competitive ability (Pausas and Lavorel 2003). Fur-
thermore, such a binary classification is an obvious
simplification of a wider range of possibilities. That is,
embedded within this scheme is substantial variation
with respect to resprouting capacity and propagule per-
sistence (e.g., variations within and between species in
propagule longevity). Also, fire intensities are not con-
sidered, and they may vary greatly (within and between
fires) and can determine the success or failure of re-
sprouting (e.g., Morrison and Renwick 2000, Pausas et
al. 2003a) and the degree of fire-stimulated germination
and seed mortality (e.g., Moreno and Oechel 1994,
Bradstock and Auld 1995).

Although all four plant types appear in most fire-
prone ecosystems, the relative proportions of each type
may differ between ecosystems (Table 1). The propor-
tion of resprouters and non-resprouters (first-level di-
chotomy, Fig. 1) in Australian heatlands is relatively

even compared with other fire-prone ecosystems (Table
1). However, postfire obligate resprouters (R1P2) are
almost absent in the Australian heathlands (although
they may appear in some parts of the landscape, e.g.,
rainforest gullies). Most resprouters in the Mediterra-
nean basin are R1P2 (i.e., R1P1 are rare), while in
California, resprouters are evenly segregated among
the two types (R1P1, R1P2), at least for the shrubs.
R2P2 are rare in most fire-prone shrublands.

OBJECTIVE 1: TRAIT CO-OCCURRENCE: MULTIPLE

TRAITS IN FIRE-RESPONSE GROUPS

We developed six hypotheses on the co-occurrence
of traits related to plant dynamics and tested them using
several data sets (Table 2 and Appendix A) and by
reviewing the literature. Hypotheses are tested for the
two well-known fire syndromes (R1 vs. R2), and,
where data are available, for the four syndromes pro-
posed above (R 3 P, Fig. 1). Resprouting and seed
persistence are traits related to the postfire persistence
at individual and population level, and the hypotheses
tested refer to the relation of these fire traits with other
traits relevant for the dynamics at population, com-
munity, and landscape scale (e.g., growth, mature age,
height, longevity, stress tolerance, dispersal). Although
it is beyond the scope of this paper to rigorously test
the phylogenic effect, when possible, we consider the
taxonomic relatedness (as a surrogate of phylogeny)
together with the traits tested. The taxonomic level test-
ed depends on the data set (see Appendix A). Statistical
analysis for quantitative traits is based on ANOVA with
two factors, postfire-response type (R or R 3 P) and
taxonomic level; for the BANKSIA data set, intra-ge-
nus taxonomic level was evaluated with a nested design
(subgenera, section nested in subgenera, and series
nested in section). For qualitative traits the chi-square
test was used.

Hypothesis 1: Juveniles of non-resprouters allocate
resources to shoot growth, whereas juveniles of
resprouters must also allocate resources to storage
tissues; consequently, juveniles of resprouter species
are slower-growing than those of non-resprouter
species

Different allocation patterns have been found be-
tween resprouting and non-resprouting Erica species
in the Cape region (Bell and Ojeda 1999, Verdaguer
and Ojeda 2002), and between resprouting and non-
resprouting populations of Ceanothus in California
(Schwilk 2002); in all cases, seedlings of resprouters
allocate more starch to roots than seedlings of non-
resprouters. Epacridaceae and Restionaceae species
also showed higher allocation to roots (e.g., root/shoot
and starch concentration) for resprouters than for seed-
ers (Pate et al. 1991, Bell and Pate 1996, Bell et al.
1996). Data from heathlands in southwestern Australia
show that juveniles of resprouter species grow signif-
icantly slower than those of non-resprouter species
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TABLE 1. Percentage of species in each of the two (R1 vs. R2) and four (R 3 P) fire response functional types (first and
second level dichotomy in Fig. 1) in different areas (see Appendix A for details on the data sets).

Database Source† n

First level (%)

R1 R2

Second level (R 3 P) (%)

R1P1 R1P2 R2P1 R2P2 P

Australia
OZSE (all species)
OZSE (woody)

1
1

1173
864

52
47

48
53

44
43

8
4

45
51

3
2

****
***

Mediterranean basin
EIBER (woody)
GARRAF (woody)

2
3

67
60

78
65

22
35

16
13

62
52

19
33

3
2

***
****

California
CALIF (woody)
CALIF (shrubs)
CALIF (trees)

4
4
4

86
72
14

86
89
71

14
11
28

35
40

7

51
49
64

12
10
21

2
1
7

**
ns
*

South Africa
Swartboskloof (all species)
Swartboskloof (woody)

5
5

210
54

79
59

21
41

64
52

15
7

13
22

7
19

*
**

Notes: Abbreviations are: CALIF, trees/shrubs of the chaparral, sedge scrub, and woodlands of California, USA; EIBER,
common species from the eastern Iberian Peninsula, including southern Mediterranean France; OZSE, southeastern Australian
species; and GARRAF, Garraf National Park, Spain. Significance of the x2 test for the R 3 P contingence table (test of
independence) is also shown (ns, P . 0.05; * P , 0.05; ** P , 0.01; *** P , 0.001; **** P , 0.0001).

† Data sources (see Appendix A for more details): (1) Bradstock and Kenny (2003); (2) J. G. Pausas, L. Trabaud, and F.
Lloret (unpublished data); (3) F. Lloret (unpublished data); (4) Californian crown-fire ecosystems compiled by J. E. Keeley
(unpublished data); and (5) van Wilgen and Forsyth (1992).

TABLE 2. Databases compiled for this review.

Abbreviation Life forms
No.

species Study area Vegetation type

BANKSIA shrubs and trees 77 Australia Banksia species, mainly in heathlands
CALIF shrubs and trees 91 California chaparral, sage scrub, and woodlands under

crown-fire
EIBER shrubs and trees 67 Eastern Iberian Peninsula Mediterranean shrublands and woodlands
EUCS trees 62 Australia Eucalyptus species
JUVWA shrubs (juvenile) 32 Western Australia mainly in heathlands
OZSE shrubs and trees 1338 SE Australia heathlands and sclerophyllus forests
PROSYD shrubs 134 Sydney region, Australia Proteaceae species, mainly in heathlands

Note: See Appendix A for more details.

(JUVWA data set, Table 3; the taxonomy level did not
have a significant effect), and allocate higher biomass
to roots than do seeders (Pate et al. 1990). A congeneric
contrast between a resprouter (R1P1) and a non-
resprouter (R2P1) in legumes of southwestern Aus-
tralia also showed lower growth in the juveniles (,6
years old) of the resprouter species (Hansen et al.
1991). Yates et al. (2003) followed postfire regenera-
tion for 12 years in Western Australia and showed that
seedlings of resprouters grow slower than seedlings of
non-resprouters, but resprouts grow faster than any
seedling (Fig. 2). In conclusion, although few growth
rate data are available, there is evidence in support of
this hypothesis.

Hypothesis 2: Resprouters are slower maturing and
longer lived species than non-resprouters

Based on Loehle’s (1988) analysis, Clark (1991) sug-
gested that, assuming the same fire recurrence and in-
ter-fire mortality, resprouters should mature later than
non-resprouters. The available data for Proteaceae

shrub species in the Sydney region suggest that res-
prouters (R1P1) need more time (ca. double) to start
producing flowers than non-resprouters (Tables 3 and
4). A similar pattern was found for a range of Australian
species (OZSE, Table 3), and for shrubs in the Eastern
Iberian Peninsula (Table 3). A review for Epacridaceae
in southwestern Australia (Bell and Pate 1996) sug-
gested that non-resprouters flowered at three years of
age or earlier, whereas some resprouters first flowered
at seven years of age, and most were not yet flowering
after 10 years of study. Similar results were observed
in the African fynbos (Le Maitre 1992). Data from
Californian species do not show any clear tendency
between age to maturity and fire response, and a strong
taxonomic relation is observed (Tables 3 and 4). How-
ever, intraspecies comparison (Ceanothus tomentosus)
shows that three-year-old seedlings of non-resprouting
populations flowered more than those of resprouting
populations (Schwilk 2002).

R1 and R2 comparisons of the first reproduction
from seedlings may be relevant, for instance, in the
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FIG. 2. Postfire height growth of resprouts (rR1, solid symbols), seedlings of the same resprouter species (sR1, gray
symbols), and seedlings of non-resprouter species (sR2, open symbols), in Western Australia. Species are Eucalyptus caesia
ssp. magna (Ec), Eucalyptus petraea (Ep), Allocasuarina huegeliana (Ah), and Hakea petiolaris ssp. trichophylla (Hp). The
figure is elaborated from data in Yate et al. (2003).

restoration context, where seeds or seedlings of both
R1 and R2 may be considered for plantations in fire-
degraded ecosystems (Pausas et al., in press). However,
in natural conditions, R1P2 do not recruit seedlings
immediately after fire, and thus, from the dynamic point
of view, it may be relevant to compare the reproductive
age of non-resprouter seedlings with the reproductive
age of resprouts. In this sense, the time in which re-
sprouting species produce flowers after a fire (mean 5
1.9 years for OZSE shrubs) may be similar or even
shorter than the values for non-resprouters (mean 5
3.6 years for OZSE, significantly different at P , 0.02;
Table 3).

Data on lifespan for woody species is difficult to
obtain, especially for resprouter species. Sydney Pro-
teaceae resprouters have a longer lifespan than species
unable to resprout (Tables 3 and 4). Furthermore, some
resprouter species have a very long and indefinite life-
span that was not considered in the statistical analysis,
and so, the mean life-span of resprouters is underes-
timated.

In conclusion, most data provide evidence for this
hypothesis. These results together with the previous
hypothesis suggest that juveniles of non-resprouter spe-
cies grow faster and flower earlier than juveniles of
resprouters (because the latter must allocate resources
to storage tissues); however, resprouts (from estab-

lished plants) may grow the fastest and flower the ear-
liest (Figs. 2 and 3).

Hypothesis 3: Resprouters are shorter in height than
non-resprouters; resprouters form communities with
shorter average height than non-resprouters

This hypothesis is based on the assumption that re-
sprouters allocate more resources to basal and stem
buds whereas non-resprouters maximize vertical
growth.

Looking at maximum height values for individual
species, Proteaceae shrubs from the Sydney region
(PROSYD database) show that resprouters are shorter
than non-resprouters (Table 3), although taxonomic ef-
fects (i.e., the differences among genus) were also sig-
nificant (Table 3, Fig. 3a). Proteaceae shrubs within the
genus Banksia from across Australia do not show a
significant difference in height. However, there is a
clear tendency for serotinous Banksia species to be
shorter than non-serotinous species (see hypothesis 4).
Eucalypt trees in SE Australia (EUCS) show a signif-
icant tendency for non-resprouters to be taller than re-
sprouters (Table 3), although the number of non-re-
sprouter eucalypts in the data set is low and there are
significant differences between the two main subgenera
(see also Noble 1989 and Austin et al. 1996 for Eu-
calyptus subgenus differences).
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TABLE 3. Mean values of various plant traits for resprouters (R1) and non-resprouters (R2) and the significance of two-
way ANOVA (R1 vs. R2, and taxonomic relatedness [Tax.]).

Trait

R1

Mean SD n

R2

Mean SD n

ANOVA

R Tax. R 3 Tax.

Growth rate (gm/yr)
JUVWA 1.5 1.3 14 4.5 4.3 18 * ns ns

Plant height (m)
BANKSIA
CALIF

CALIF trees
CALIF shrubs

EIBER
EUCS
PROSYD

6.0
6.4

23.3
3.7
8.0

22.4
2.5

5.5
9.1

15.5
3.1
7.5

12.0
2.0

29
74
10
64
34
55
31

4.3
11.5
26.3

4.1
10.5
42.1

3.4

4.0
13.1

3.8
1.8

12.7
12.2

2.7

42
12

4
8
9
7

54

ns
*†
ns
ns
ns
**

***

ns
****
···‡
***
**
**

****

ns
*
···
ns
ns
ns
ns

Age at maturity (yr)
CALIF

CALIF trees
CALIF shrubs

EIBER
EIBER shrubs

8.0
14.1

7
9.5
9.1

5.0
7.8
3.7
4.1
3.6

74
10
64
11

8

10.6
11.3
10

6.2
3.8

2.1
2.5
2.0
4.1
0.3

12
4
8
7
5

*†
ns
*
ns
*

****
···‡

****
ns
ns

ns
···
ns
ns
ns

OZSE§
OZSE shrubs
OZSE trees

PROSYD

5.8
5.4

10.1
10.2

6.2
6.1
5.6
8.1

121
103

8
5

3.8
3.6
6.1
5.1

2.1
1.9
3.7
1.8

190
160

14
16

****†
****

*
*

****
****

ns
ns

ns
ns
ns
ns

Plant longevity (yr)
OZSE

OZSE shrubs
OZSE trees

PROSYD

86.2
49.1

134.2
59.09

73.2
39.6
85
22.4

231
121

90
11

27.9
21.9
63.6
25.38

34.4
14.6
81.7
23.4

1174
141

22
13

****†
****

***
**

****
****

ns
ns

ns
ns
ns
ns

Diaspore mass (mg)
CALIF

CALIF trees
CALIF shrubs

EIBER
OZSE
PROSYD

1604.2
7235.0

724.6
1058.6

259.8
233.1

4392.7
10 385
1064.0
1736.4

547.2
542.9

74
10
64
24
24
14

1049.9
92.1

1528.7
121.7
154.5
123.4

2845.3
160.9

3453.2
263.4
373.0
313.2

12
4
8
6

23
17

ns†
**
ns
**
ns
ns

****
···‡

****
*
ns

****

ns
···
···
ns
ns
ns

Notes: See Table 2 for abbreviations. Only woody species are considered. Ellipses (···) indicate that there were not enough
data for testing.

* P , 0.05; ** P , 0.01; *** P , 0.001; **** P , 0.0001; ns, P . 0.05.
† The factor life form (shrub/tree) was significant (P , 0.001).
‡ All R2 trees are conifers.
§ Age at first flowering.

Californian plants (CALIF) and Eastern Iberian
plants (EIBER) did not show height differences with
regeneration strategy; and height differences are main-
ly related to the taxonomy. By looking at some closely
related taxa, the pattern becomes more clear. For ex-
ample: Arctostaphylos peninsularis has two related
subspecies in California (Keeley et al. 1992), the short
and burl-forming (strong resprouter; ssp. peninsularis)
and the taller non-resprouting (ssp. jaurenzenss). In
South African fynbos, congeneric comparisons also
suggested that in many cases (genera Widdringtonia,
Podocarpus, Faurea, Olea, and Euphorbia), resprou-
ters are shorter than non-resprouters (Midgley 1996).

At the community level, an analysis of the data from
Kruger et al. (1997) in Cape forests (South Africa)
showed that the number and proportion of non-re-
sprouter species increase with forest canopy height,
while the total number of species is not related to canopy
height (Fig. 3b). Thus, these data suggest that, in the

Cape forest, resprouters form shorter communities and
non-resprouters taller ones, although it would be inter-
esting to study the pattern of serotiny in this data set
and the possible interaction with the moisture gradient.

In conclusion, species maximum height values are
not always higher for seeders than for resprouters, and
some phylogenic effect is observed for this trait. The
patterns are clearer when part of the variance is ex-
plained by taxonomic level or when congeneric com-
parisons are performed. Information from the com-
munity level approach (i.e., using site data rather than
maximum values from flora) in systems with diverse
phylogeny seems to support the hypothesis (Cape for-
est), although some confounding effect with serotinous
taxa (see hypothesis 4) needs to be considered.

Hypothesis 4: Serotiny is associated with low-growing
habitat

Cowling and Lamont (1985) suggested that serotiny
is associated with short communities in Western Aus-
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TABLE 4. Mean values of various plant traits for the four functional types (Fig. 1) and two-
way ANOVA (R1 vs. R2, and taxonomic relatedness [Tax.]).

Trait

Groups

R1P1 R1P2 R2P1 R2P2

ANOVA

RP Tax. RP 3 Tax

Plant height (m)
CALIF

CALIF trees
CALIF shrubs

PROSYD

3.7
6
3.59
2.7

8.2
25.2

3.82
1.3

9.6
21.7

4.43
3.1

21.0
40

2
···

****
···
ns
ns

****
···
***
ns

****
···
ns
ns

Age at maturity (yr)
CALIF

CALIF trees
CALIF shrubs

EIBER
EIBER shrubs

7.1
8
7.1
5.2
5.2

8.5
14.8

6.9
11.2
11.5

10.5
10.0
10.7

6.2
3.8

11.5
15.0

8
···
···

*
···
ns
*

***

****
···†

****
ns
**

*
···
ns
ns
*

OZSE
OZSE shrubs
OZSE trees

PROSYD

6.9
6.44

14.3
11.5

4.95
4.94
5

···

3.9
3.8
5.2
5.3

2
2
···
···

****
****

**
*

****
****

ns
ns

ns
ns
ns
···

Plant longevity (yr)
OZSE

OZSE shrubs
OZSE trees

PROSYD

80.7
52.9

140.8
59.0

78.9
52.1

115.0
60.0

26.6
22.75
56.5
26.8

20.5
20.5

···
···

****
****

*
*

****
****

*
ns

ns
ns
*
ns

Diaspore mass (mg)
CALIF (mg, log)

CALIF trees
CALIF shrubs

EIBER
OZSE
PROSYD

520.1
28.6

537.0
398.4
288
226

2343.3
8035.7

879.6
1278.7

···
···

1208.3
11.3

1721.2
14.5

176.5
138

257.6
33.3

181.8
657.7

0.29
···

ns
···
ns

****
ns
ns

****
···†

****
****

ns
****

ns
···
ns

****
ns
ns

Notes: See Table 2 for abbreviations. Only woody species are considered. Ellipses (· · ·)
indicate that there were not enough data for testing.

* P , 0.05; ** P , 0.01; *** P , 0.001; **** P , 0.0001; ns, P , 0.05.
† All R2 trees are conifers.

tralia because the cones of tall species rarely come into
contact with flames, and thus we should not expect high
degrees of serotiny in these tall species. On the other
hand, limited height increases the probability that
ground fires will carry up into the canopies resulting in
recurrent intense canopy fires, in which serotiny may be
an evolutionary advantage. However, many short com-
munities grow in dry areas (they are short due the limited
water availability) and have higher fire recurrence than
taller communities in moister conditions. Thus, the re-
lation between serotiny and height could be mediated
by fire recurrence, because serotiny is disfavoured at
low fire recurrence (Enright et al. 1998a, b).

The analysis of Sydney Proeteaceae does not support
this hypothesis and both height and serotiny show to
be strongly associated with taxonomy (genus, P ,
0.00001); that is, serotiny is found in most Banksia,
Hakea, and Petrophile of the Sydney area, and absent
in Conospermum, Greville, Lomatia, and Persoonia.
The genus Banksia has a range of both serotinous and
non-serotinous species in Australia, permitting a deep-
er analysis of this genus for the whole continent. In
this case, height is strongly associated with serotiny
(and not with the taxonomy within the genus), with the
serotinous species being significantly (P , 0.0001)

shorter (mean 5 3.4 m) than the non-serotinous species
(mean 5 13.9 m). Cowling and Lamont (1985) also
found that the degree of serotiny (as a proportion of
folicles remaining closed since the last fire) in three
Banksia species increased with decreasing plant height
and water availability. Serotinous conifers of California
(CALIF) are also significantly shorter (mean 5 28.8
m) than non-serotinous ones (mean 5 55.7 m).

Our results suggest that in many cases the hypothesis
is not supported because of the strong taxonomic (phy-
logenetic) effects. When a specific taxonomic level is
studied (Banksia, conifers), the pattern becomes ap-
parent.

Hypothesis 5: Resprouters have bigger and heavier
dispersal units, are mostly dispersed by vertebrates,
and produce fewer seeds per season, in comparison
with non-resprouters, which have the opposite
attributes (small, dry, wind-dispersed seeds)

Herrera (1992) detected two plant syndromes in the
Mediterranean basin: (1) sclerophyllous species, with
evergreen leaves, small, unisexual greenish or brown-
ish flowers with a reduced perianth, and large seeds
dispersed by vertebrates; and (2) non-sclerophyllous
species with the complementary traits. Verdú (2000)
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FIG. 3. Plant height and resprouting capacity. (a) Congeneric comparison of maximum height values for Proteaceae species
of the Sydney area (PROSYD). (b) Relationship between number of species and canopy height in Cape forests (elaborated
from data in Kruger et al. 1997). Total species (open circles, no significant fit) and non-resprouters (solid circles and fitted
line). The line depicts the GLM fitted values (assuming the average number of plots, i.e., 3.4, in the data set); percentage
of the explained deviance (Exp. dev.) is also shown (total, F 5 2.56, P 5 0.13; R2, F 5 54.73, P , 0.0001).

noted that the first syndrome is significantly related to
resprouter species, and the second to non-resprouters.
The link between Herrera’s syndromes and the re-
sprouting pattern may be due to the fact that vertebrate-
dispersed seeds may not survive high temperatures
(fleshy coat as opposed to hard-coated seeds; Keeley
1991); vertebrate-dispersed plants living in a fire-prone
environment should regenerate vegetatively to main-
tain the populations.

Dispersal mode.—The EIBER data support the re-
lation between dispersal system (vertebrates vs. others)
and regeneration pattern (R1 vs. R2) (x2 5 8.55, df
5 1, P 5 0.02) for a Euro-Mediterranean ecosystem;
60% of the species were vertebrate-dispersed resprou-
ters, and only 9% of the non-resprouters had vertebrates
as a dispersal vector; 52% of the total species were
vertebrate-dispersed and R1P2. In a similar way, di-
aspore type (fleshy vs. dry) and resprouting pattern
were not independent (x2 5 13.40, df 5 1, P 5 0.0003,
n 5 60), i.e., most resprouters had fleshy fruits. Typical
examples of resprouting species that do not have fleshy
or vertebrate-dispersed seeds are some Erica species
(e.g., Lloret and López-Soria 1993).

Similar results to those in the Mediterranean basin
are found for Californian plants (CALIF). Both the
dispersal mode (vertebrates, wind, others) and the di-
aspore type (fleshy vs. dry) are related to regeneration
pattern (R1 vs. R2) (diaspore mode: x2 5 9.084, df
5 2, P 5 0.011, n 5 95; diaspore type: x2 5 6.333,
df 5 1, P 5 0.012) in the way that most resprouters

are vertebrate-dispersed and produce fleshy fruits. Ex-
amples of resprouting species that are vertebrate-dis-
persed but do not have fleshy fruits are the oaks (Quer-
cus) in both California and the Mediterranean basin.

There is no significant relation between diaspore type
(fleshy vs. dry) and resprouting pattern for Sydney Pro-
teaceae species (PROSYD, x2 5 1.92, df 5 1, P 5
0.17, n 5 113). For example (from PROSYD), of the
species of the Persoonia genus with fleshy fruits dis-
persed by vertebrates, 26% resprout, while 74% do not
resprout. Most other Proteaceae species do not have
fleshy fruits, but rather dry fruits or seeds (often
winged) dispersed by gravity, ants or wind. Banksia
species have winged dry seeds and about 42% of the
Banksia species do resprout. For Australian species
(PROSYD, BANKSIA), diaspore type and size are
more related to the taxonomy group than to the regen-
eration pattern. These results agree with those from
French and Westoby (1996) in similar Australian com-
munities, that is, many vertebrate-dispersed species are
capable of vegetative regeneration, but there is not a
significant dependence between the two factors.

Diaspore mass.—In most of the data sets considered,
the mean values of diaspore mass were higher in R1
than in R2; however, due to the large variation, the
means were not statistically significant in most cases
(Table 3). Part of the variation in diaspore mass can
be explained by the taxonomic relatedness. For EIBER
and CALIF trees, diaspore mass was significantly high-
er for R1 (and especially for R1P2) than for the other
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FIG. 4. Stored seed per plant (mean 1 1 SD) in different congeneric serotinous species in western Australia (Bellairis
and Bell 1990). Species are (from left to right): Allocasuarina campestris (Ac), A. acutivalvis (Aa), Melaleuca scabra (Ms),
M. tuberculata (Mt), M. scabra (Ms), M. tuberculata (Mt), Dryandra sessilis (Ds), D. lindleyana (Dl), Banksia hookeriana
(Bh), B. attenuata (Ba), B. hookeriana (Bh), B. attenuata (Ba), Hakea erinacea (He), H. cristata (Hc), H. oblique (Ho), and
H. corymbosa (Hco). When the same species name is used twice, it refers to different samplings.

types. Neither Australian data sets (PROSYD and
OZSE) shows a significant trend (Tables 3 and 4), al-
though within Hakea species, seeds are significantly
bigger in resprouter species than in non-resprouters
(Lamont and Groom 1998).

Seed production.—Congener contrasts among re-
sprouters and non-resprouters in Australia (Fig. 4) have
shown that resprouters typically produce fewer seeds
and seedlings after fire (during inter-fire periods) than
non-resprouters in serotinous species (Enright and La-
mont 1989, Bellaris and Bell 1990, Lamont and Groom
1998, Lamont et al. 1998, Groom et al. 2001). Seed
production varies largely in relation to the age and size
of the plants and to the time since fire (e.g., Bradstock
and O’Connell 1988, Bradstock 1990). The number of
viable seeds in different serotinous Banksia species 14–
16 years after the last fire shows higher values in non-
resprouter species than in resprouter ones (Lamont and
Groom 1998). However, this trend is not always true
(Lamont 1985).

Keeley (1977) also showed no clear tendency in seed
production among resprouters and non-resprouters for
P1 non-serotinous species in the Californian chaparral

(i.e., Ceanothus resprouters produced fewer seeds than
the congeneric non-resprouters, but the opposite was
found for Arctostaphylos). Some other studies show
that resprouters recruit poorly after fire in South Africa
(Le Maitre 1992, Le Maitre and Midgley 1992) and in
tropical forests (Bellingham et al. 1994).

In conclusion, this hypothesis cannot be generalized.
It seems to apply in the Mediterranean basin and Cal-
ifornia when comparing R1P2 vs. R2P1 (obligate
resprouters vs. obligate seeders), but it may not be true
when comparing R1P1 vs. R2P1 (facultative vs. ob-
ligate seeders) in Australia. In the Mediterranean basin,
the first set (R1P2 and R2P1) is the most abundant,
while in the Australian heathlands, the second one
(R1P1 and R2P1) is dominant. In many cases, these
traits show a strong taxonomic (phylogenetic) effect
(e.g., Jordano 1995).

Hypothesis 6: Non-resprouters tolerate water stress
better than resprouters

Specht (1981) suggested that in Australian shrub-
lands the abundance of non-resprouters was inversely
proportional to precipitation, while the abundance of
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resprouters was directly related to this parameter. At a
similar geographical scale, Ojeda (1998) suggested that
the distribution of resprouters and non-resprouters of
Erica species in the Cape Floristic Region was related
to summer water availability. This trend of increasing
resprouters along a precipitation gradient could be
more related to different fire recurrences along the pre-
cipitation gradient than to the direct effect of water
availability. Thus, more in-depth studies are needed to
segregate the effect of water availability from the effect
of fire regime.

At the local scale, Keeley (1986) and Meentemeyer
et al. (2001) found more non-resprouters in the drier
parts of the landscape (equator-facing slopes, shallow
soils) and more resprouters on the moister sites (pole-
facing slopes, deep or fissured soils) in the Californian
chaparral. Similar observations have been made for
eastern Australia (Keith 1991, Benwell 1998, Clarke
and Knox 2002) and for the Mediterranean basin (Pau-
sas et al. 1999). All these observations suggest that
ecophysiological and/or morphological parameters af-
fecting growth could differ between resprouters and
non-resprouters (Miller 1981, Keeley 1986).

At the physiological level, in the Mediterranean ba-
sin, resprouters (e.g., Quercus, Pistacea lentiscus) are
often considered more drought-tolerant species because
they show later stomata closure and higher carbon as-
similation at low water potentials than non-resprouter
species such as Pinus and Cistus, which are considered
drought avoiders (Damesin and Rambal 1995, Schwanz
et al. 1996, Grammatikopoulos 1999, Martı́nez-Ferri et
al. 2000, Calamassi et al. 2001, Vilagrosa et al. 2003).
However, Californian non-resprouter species have
greater resistance to water stress-induced embolism and
later stomata closure than resprouters (Davis et al.
1998, 1999), suggesting that non-resprouters are more
drought-tolerant than resprouters. In this ecosystem,
vulnerability to xylem embolism was positively related
to postfire seedling mortality and resprouting success
(Davis et al. 1998). Smith et al. (1992) did not find a
consistent pattern between regeneration strategy and
physiological parameters in the South African fynbos.
More congeneric comparisons, and in different eco-
systems, of physiological traits between resprouters
and non-resprouters are needed before we can gener-
alize the link between physiological mechanisms and
regeneration patterns.

At the morphological level, many resprouters avoid
higher water stress with a higher root/shoot ratio or a
deeper (extended) root system (Pate et al. 1990, Bell
et al. 1996, Keeley 1998, Davis et al. 1999), while non-
resprouters are exposed to higher water stress. Leaf size
is also a morphological trait often associated with per-
sistence in dry conditions; in Australia, Banksia leaves
are significantly smaller in non-resprouting than in re-
sprouting species (BANKSIA data set, F1,72 5 5.4, P
5 0.02), and the significance increases when consid-
ering the intra-genus taxonomy (nested ANOVA with

resprouting [P , 0.001], subgenera [not significant],
section nested in subgenera [P , 0.0001], and series
nested in section [P , 0.001]).

Species may coexist in a dry environment by having
different strategies to cope with low water availability
(e.g., Lo Gullo and Salleo 1988), i.e., physiological
drought-tolerance and drought-avoidance mechanisms
(Levitt 1980) and different morphological drought-
avoidance traits (e.g., extended or deep root system,
small and hairy or rolling leaves). For example, Davis
and collaborators (Davis et al. 1998, 1999) suggested
that the coexistence of resprouters and non-resprouters
in southern California is due to the deeper root system
of resprouters (e.g., .13 m for Rhus laurina) and to
the higher xylem resistance to cavitation and embolism
of non-resprouters (e.g., Ceanothus megacarpus).

In conclusion, at the landscape scale there is some
tendency for non-resprouters to survive best on drier
sites. Because morphological drought-avoiding traits
(e.g, higher root:shoot) are more common in resprou-
ters, non-resprouters should be physiologically more
drought-tolerant to survive on drier sites; however,
deeper physiological analysis is still needed to link field
observations with physiological mechanisms.

OBJECTIVE 2: THE PREDICTIVE VALUE OF THE

FIRE-RESPONSE GROUPS

If different plant traits lead to differential success
under a disturbance regime, then, for a given region,
we should observe different trait sets under distinct fire
regimes. In this context, Keeley and Zedler (1998)
showed clear differences in plant traits associated with
diverse fire histories for Pinus species growing in North
America. We approached the question of the effects of
fire regime on plant traits by studying different com-
munities with the same structure (heathlands) and dif-
ferent short-term fire histories; they are separated in
space to ensure that the medium- to long-term fire his-
tory is also different. An associated problem is that
sites may have different climatic conditions, which is
unavoidable due to the strong link between long-term
fire regimes and climate. However, to consider this
problem, heathland type was also tested to study to
what extent differences among heathlands are related
to fire history or/and heathland type (environment).

We used a modified version of the data sets compiled
by Keith et al. (2002) of different heathlands across
Australia (Appendix B). This data includes heathlands
under stand replacement crown fires only, and so our
analysis is restricted to a relatively small range of fire
histories. We used 18 of their sites in which fire history
for the last few decades (;20–35 years) was available.
For each site, fire history was obtained from various
fire databases and fire reports relevant to each example.
Sites were clumped as average fire intervals of ,15
years, 15–30 years, and .30 years. Although this clas-
sification of fire intervals is mainly based on the ob-
servation of a few decades only, it is possible, at some



April 2004 1095PLANT FUNCTIONAL TRAITS AND FIRE

FIG. 5. (a) Proportion of species for different fire-response groups in relation to fire interval in the Australian heathlands.
(b) Proportion of species with canopy seed bank (all species and R1 and R2 separately) in relation to fire interval. Vertical
lines are standard deviations. Significance among fire regimes (,15 yr, 15–30 yr, .30 yr) is shown for each fire response
group (ns, P . 0.05; *P , 0.05; **P , 0.01; ***P , 0.001). See Fig. 1 for abbreviations.

earlier stage in the past, that differing fire frequencies
may have occurred at some of the studied sites. How-
ever, attempts to quantify such variations would be
speculative. Sites were also classified according to
heath type (tropical, alpine, montane, coastal, or tem-
perate heath). Fire regime and heath type were not sig-
nificantly related (x2 5 10.85, P 5 0.23; Appendix B).
For each site, the proportion of species having a specific
trait or set of traits was computed from the total number
of species. Differences were analyzed by fire history
and heath type, and the interaction was also tested.
Because data were proportions, logit analysis of de-
viance (Generalized Linear Modeling, GLM) assuming
quasi-binomial error distribution for overdispersed data
was used to evaluate the significance (McCullagh and
Nelder 1989).

Fire regime gradient in Australian heathlands

Many studies in fire-prone ecosystems have sug-
gested that resprouters should do better at extremes of
the fire recurrence gradient than non-resprouters (Kee-
ley and Zedler 1978, Kruger and Bigalke 1984, Keeley
1986, Hilbert 1987, Pausas 1999b). However, the op-
posite has also been proposed (Bellingham and Spar-
row 2000). In the Australian heathlands, the proportion
of resprouting species (R1 vs. R2) did not show a
relationship with fire regime (fire history, heath type,
and interaction were all not significant [ns]; Fig. 5a
left). On average, ;67% (1 SD 5 12.7) of the species
are able to resprout after fire. Thus, the pattern of re-
sprouting in relation to fire regime cannot be gener-
alized (Pausas 2001).

However, when considering traits related to seed
bank, some significant patterns do emerge in relation
to fire history (Fig. 5a): There is an increase in both
resprouting and non-resprouting propagule-persisters
(R1P1 and R2P1) with decreasing fire interval (for
R1P1, fire history, P , 0.001; heath type, ns; inter-
action, ns; and for R2P1, fire history, P , 0.05; heath
type, ns; interaction, ns). Obligate resprouters (R1P2)
show a significant trend with heath type, but not with
fire (fire history, ns; heath type, P , 0.01; interaction,
ns). Species without any persistence mechanism
(R2P2) decrease with decreasing fire interval, al-
though some variability is also explained by heath type
(fire history, P , 0.05; heath type, P , 0.05; interaction
ns).

The maximum proportion of species with canopy
seed bank is observed at intermediate-to-short fire in-
tervals, and there is a significant decrease in serotinous
species in the long fire-interval class (Fig. 5b). For non-
resprouters, the intermediate pattern is also evident
(Fig. 5b, R2; fire history, P , 0.01; heath type, ns;
interaction, ns). The interaction between fire history
and heath type was significant for resprouting species
(fire history, P , 0.01; heath type, ns; interaction, P
, 0.05), suggesting that the abundance of serotinous
species was highest in montane heathlands and lowest
in alpine heathlands. This significant interaction re-
flected the fact that alpine and semiarid heathlands only
occurred in the low fire recurrence class in the data set
(Appendix B). Our results support the idea that serotiny
should be a disadvantage where fire frequency is low
(i.e., no evolutionary pressure should favor serotiny in
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low fire frequency environments). Furthermore, very
short fire intervals may not allow serotinous species to
refill the seed bank. Thus, the canopy seed bank should
be more important at intermediate fire recurrences (En-
right et al. 1998a, b).

A similar pattern was also found for the proportion
of species showing enhanced postfire flowering, which
enhances postfire recruitment (fire history, P , 0.001;
heath type, ns; interaction, ns). The proportion of spe-
cies with soil seed banks was unrelated to fire history
and heath type.

DISCUSSION

The basic fire-response traits (i.e., resprouting ability
and propagule persistence) were found to correlate to
some other traits when examined either alone (Table
3, resprouting ability only) or in combination (Table
4). In general, most resprouters are longer lived and
slower maturing than non-resprouters and allocate
more resources to basal buds and storage tissues. In
some examples, they also tend to produce fewer seeds,
to be shorter, and to have heavier diaspore units, al-
though these traits show high taxonomic relatedness,
which makes appropriate unambiguous comparisons
difficult (Felsenstein 1985, Harvey 1996). And, there
is no relation between dispersal mode and postfire re-
sponse when considering different ecosystems. Thus,
while the global scope of the data used to explore such
correlations was limited, there was an indication that
the pattern of correlations between the two basic fire
traits and other traits relevant to vegetation dynamics
varied between data sets from differing continents/eco-
systems (Tables 3 and 4).

Assuming that correlations between the basic fire
response and other traits will affect the performance
of either the individual species or functional groupings,
the finding that such correlations may be heterogeneous
between samples is important. As a result, we may
expect that the nature of predictions made on the basis
of basic fire-response traits (R1 vs. R2) will vary from
place to place according to the inherent characteristics
of the differing floras. We emphasize that this does not
mean that the basic traits have limited predictive power.
It does mean, however, that pathways of change may
differ between floras and that the ability to predict on
the basis of basic fire-response traits may be high lo-
cally but low globally. For example, while most res-
prouters in Australian heathlands also produce per-
manent seed banks (Table 1), in the Mediterranean ba-
sin most resprouters do not store seeds in a bank. An-
other clear example is that most resprouters in
California and the Mediterranean basin are dispersed
by vertebrates, but this is not true in Australian heath-
lands. These differences have implications in the dy-
namics of the ecosystems and in the regeneration pro-
cesses at community and landscape levels after recur-
rent fires. They also have implications in the conser-
vation and management of plants, because the rates of

specialization and extinction are different. That is, not
all resprouters are threatened to the same degree by
fire regime or climate changes because their regener-
ation strategies (e.g., seed bank) and interactions (e.g.,
for seed dispersion) are different, and thus, this has
implication for global vegetation modeling. The dif-
ferent trait co-occurrences in different ecosystems help
to explore why some general questions worldwide (e.g.,
Midgley 1996, Bellingham and Sparrow 2000) may
need different answers for different ecosystems/con-
tinents (e.g., Pausas 2001).

Within the context of Australian heathlands, no pat-
terns among sites with differing fire regimes could be
discriminated on the basis of resprouting capacity
alone. We conclude that, at least within this general
flora, it is not possible to predict pathways of vegetation
dynamics on the basis of this trait. We do not rule out
the possibility that this conclusion may differ in other
ecosystems and/or localities, given that resprouters or
non-resprouters may have differing trait co-occurrence
elsewhere. The Australian heathland example did in-
dicate, however, that inclusion of a persistent seed bank
in addition to resprouting produced patterns in relation
to differing regimes. We conclude that the hierarchical
RP persistence scheme (Fig. 1) may include the min-
imum trait set that can be used to indicate general pat-
terns of fire-related vegetation dynamics in this broad
vegetation type. Furthermore, including the nature of
persistent seed banks (i.e., canopy vs. soil) offers im-
proved prediction (Fig. 5).

Implications for a changing world

Fire regimes are far from constant. Currently, some
areas show a general increase in annual burnt surface
attributed to changes in land use and climate (in Euro-
Mediterranean ecosystems; Piñol et al. 1998, Pausas and
Vallejo 1999, Pausas 2004), or to increased logging and
drought (in rainforests; Stanford et al. 1985, Cochrane
2001, Laurance and Williamson 2001). On the other
hand, recent fire suppression policies in many ecosys-
tems are also changing natural fire regimes (e.g., Parsons
and DeBenedetti 1979, Bergeron and Dansereau 1993,
Stephenson 1999, Beaty and Taylor 2001). Furthermore,
future predictions suggest a tendency to increasing tem-
peratures and evapotranspiration (Houghton et al. 2001),
lightning (Prince and Rind 1994), and urban–forest in-
terface (Terradas et al. 1998) in large parts of the planet.
All this suggests that fire regimes will change in the
future.

At the global scale, our ability to predict changes in
vegetation due to changes in climatic conditions has
improved thanks to the global climatic-based function-
al types (see papers in Woodward and Cramer 1996
and Smith et al. 1997, Foley et al. 1998). However, the
ability to predict vegetation changes due to changes in
disturbance regimes at this scale is still poor (Fosberg
et al. 1999, and papers in Lavorel and Cramer 1999
and Pausas et al. 2003b), and this is one of the most
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important limitations of the current global vegetation
dynamic models. In fact, in fire-prone ecosystems, the
changes in fire regime may be more important than the
direct changes in climatic conditions (e.g., Flannigan
et al. 2000). Recognizing the extent to which trait co-
occurrence is similar for different ecosystems has
strong implications for the predictive value of plant
functional types at global scale, and provides insights
for the elaboration of global vegetation dynamic mod-
els. The hierarchical RP persistence approach provides
an initial scheme from which to build up a more elab-
orate one that considers other disturbances and eco-
systems (e.g., understory fires, boreal ecosystems) and
other scales (e.g., Pausas and Lavorel 2003). This is a
new challenge, but it will need to be accompanied by
the development of high-quality trait databases in order
to be tested accurately.
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APPENDIX A

Descriptions of the databases and species used in this study are available in ESA’s Electronic Data Archive: Ecological
Archives E085-029-A1.

APPENDIX B

The location, heath type, and assigned fire regimes for the heath studies in the fire regime gradient are available in ESA’s
Electronic Data Archive: Ecological Archives E085-029-A2.
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Appendix A. Descriptions of the databases and species used in this study.

For the present study, several databases of species by traits have been used. Here we provide a short
description of each database, including the source (compilers or reference), total number of species and
the main traits. Note that in any database there may be empty cells (species × traits), and so, the total
number of species may not be the same as the sampling size (n) used in specific statistical analysis for a
specific trait (Tables  3 and 4). Data sets have a bias towards Australian ecosystems, which may reflect
the large fire-prone areas of this continent and the long and deep tradition on fire ecology.

It is out of the scope of this review to test rigorously the phylogenetic effect on plant traits. However,
when possible, we have tried to detect strong taxonomic effects that may be related to the phylogeny. For
this reason, we also indicate the taxonomic level used for the taxonomic relatedness (e.g., Tables 3 and 4).
We do not know to what extent the taxonomic structure is related to the phylogenetic tree, but we assume
that there must be some correlation, and so, taxonomy is used here as a surrogate of phylogeny.

BANKSIA Australian Banksia species.
Source: from George (1996)
Number of species: 77
Main traits: resprouting capacity, height, serotiny, mean leaf longitude, mean leaf width, mean leaf area.

CALIF trees and shrubs of the chaparral, sedge scrub and woodlands of California (USA). Trees growing
mainly under surface fire regime are not included.
Source: compiled by J. E. Keeley based on field observations and bibliographic references.
Number of species: 91 woody species
Main traits: resprouting capacity, height, serotiny, propagule type and mass, maturity age.
Taxonomic effect: Cronquist Superorder

EIBER Common species from the Eastern Iberian Peninsula, including southern Mediterranean France. 
Source: compiled by J. G. Pausas with inputs from L. Trabaud and F. Lloret, based on field observations
and bibliographic references. 
Number of species: 67 Mediterranean species. 
Main traits: life form, resprouting capacity, maturity age, shade tolerance, dispersal mode, propagule
mass. 
Taxonomic effect: Cronquist Superorder.

EUCS Eucaliptus species of Australia
Source: Boland et al. (1992).
Number of species: 62
Traits: resprouting capacity and height.
Taxonomic effect: subgenera (Monocalyptus and Symphomyrtus).

JUVWA Juvenile shrubs of Western Australia
Source: Pate et al. (1990)
Number of species: 32 
Main traits: growth, resprouting capacity.
Taxonomic effect: families (Legumes, Porteaceae, Myrtaceae)
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OZSE South Eastern Australian (i.e., mainly New South Wales) species.
Source: compiled by R. Bradstock and B. Kenny (see Bradstock and Kenny 2003)
Number of species: 1338 woody species
Main traits: resprouting capacity, age at maturity, longevity, diaspore mass, seed bank.
Taxonomic effect: family

Gill and Bradstock (1992), Keith 
(1996), Benson and McDougall (1993-2000), and others.

PROSYD Proteaceae shrubs species of the Sydney region (Australia). 
Source: Benson and McDougall (2000)
Number of species: 134
Main traits: longevity, height, resprouting capacity, seed bank, fruit type, diaspore mass.
Taxonomic effect: genus
Comments: This family is chosen because it accounts for a high proportion of the woody species in the
Australian heathlands, it has a range of fire responses (reprouters and non-resprouters, serotinous and
non-serotinous species), and it is relatively well known (e.g., Benson and McDougall 2000, Myerscough 
et al. 2000). 
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Appendix B. Location, heath type, and assigned fire regimes (FI) for the heaths studied in the fire regime
gradient. 

Location, state Heath type FI References
    
Arnhem escarpment, 
NT Tropical <15 Russell-Smith et al. (1998)

Brisbane Water, NSW Coastal <15 Bradstock et al. (1997)
Broadwater, NSW Coastal <15 Benwell (1998)

Temperate <15

Gibraltar Range, NSW Montane 15–30Williams (1995), Williams & Clarke
(1997)

Temperate 15–30
Gippsland High Plains, 
VIC Temperate >30 Wahren & Williams (unpubl.), Wahren et

al 1999
Leura (Blue Mtns), 
NSW Temperate 15–30 Holland et al. (1992)

Melaleuca, TAS Temperate <15 Keith (1995) + Keith (unpubl.)
Myall Lakes, NSW Coastal <15 Myersough et al. (1995)

Temperate <15
O'Hares Ck, NSW Coastal 15–30 Keith (unpubl.), Keith et al. (2002)

Coastal 15–30
Temperate 15–30

South Olary Plains, SA Semi-arid >30 Morelli & Forward (1996)
Tasmanian Alps, TAS Alpine >30 Kirkpatrick & Dickinson (1984)
Victorian Alps, VIC Alpine >30 Muller & Williams (unpubl.)
Wadbilliga, NSW Montane <15 Mackenzie et al. (1998)

   Notes: Fire regime and heath type are not significantly related (Chi-squared = 10.85, P = 0.227, Monte
Carlo estimation of P value with 2000 permutations). Full heath type names are: tropical heath, east coast
dry heath, temperate wet heath, eastern montane heath, and alpine heath. See Keith et al. (2002) for more
details. 
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