
Introduction

Functional traits are the main ecological attributes by
which different species and their communities influence eco-
system processes (de Bello et al. 2010). Therefore, measures
of functional diversity tend to correlate more strongly than
those of traditional species-diversity with ecosystem func-
tions (Petchey and Gaston 2006). The observed trait-envi-
ronment relationships raise the question of how to measure
functional diversity in biologically and statistically meaning-
ful ways (Lavorel et al. 2008, Villéger et al. 2008, Ricotta and
Moretti 2011). 

According to classical diversity theory, different diver-
sity indices measure different aspects of the partition of
abundance between species (Magurran 1988). For this rea-
son, Whittaker (1965) considers that the partition of abun-
dance cannot be adequately summarized by one statistic
only, but should be characterized by both species richness
and the community ‘dominance concentration’. Peet (1974)
distinguished two groups of diversity indices: Type I meas-
ures, which are most affected by species richness, and Type

II measures, which are most sensitive to changes in the abun-
dance of the dominant species. Likewise, a number of
authors have introduced several measures that summarize the
degree to which abundances are evenly divided among the
species of a given community, and called them ‘evenness’
(see Taillie 1979, Smith and Wilson 1996, Ricotta 2003,
Tuomisto 2012, for review). 

Although the concept of functional evenness appeared
much earlier (e.g., Troussellier and Legendre 1981), Mason
et al. (2005) were the first who popularized the distinction of
the primary components of functional diversity: functional
richness, functional evenness and functional divergence.
Functional richness was defined as the amount of niche space
filled by the species in the community, functional evenness
as the equitability of the distribution of abundance in trait
space, whereas functional divergence as deviation in the
abundance of the species from the center of gravity in trait
space (Mason et al. 2005, Villéger et al. 2008). According to
Cornwell et al. (2006) and Villéger et al. (2008), functional
richness is estimated as the multidimensional convex hull
volume of trait space occupied by the community (but see
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Podani 2009, for criticism), functional evenness index is
based on the minimum spanning tree, which links all the spe-
cies in the multidimensional functional space, while func-
tional divergence is defined as the ‘species deviance from the
mean distance to the center of gravity weighted by relative
abundance’ (see Mouchet et al. 2010). Ricotta and Moretti
(2011) proposed to adopt the ‘community-weighted mean
trait value’ and the Rao coefficient to describe two complemen-
tary aspects of community structure, like the mean and the dis-
persion of functional traits within a given species assemblage.

When dealing with the measurement of functional diver-
sity, the issue of data type becomes a major factor. There are
two choices to be made: 1) The data type by which species
performance within the assemblage is expressed (presence-
absence, abundance-dominance on the ordinal scale, and
abundance on the ratio scale) and 2) the data type by which
functional traits are measured (nominal with two states, mul-
tistate nominal, ordinal, ratio-scale, and mixed, see Podani
and Schmera 2006). Most studies derive the traits of species
from external databases (e.g. Kattge et al. 2011, Pavoine et
al. 2013), whereas others quantify traits using the collected
individuals (e.g., Mouillot et al. 2008).

It is often assumed that the combination of functional
traits matters in most cases (Ackerly 2004, McGill et al.
2006, Gross et al. 2007, Kühner and Kleyer 2008, Roscher et
al. 2012). These statements are made without incorporating
any direct study of trait combinations, however. The only ex-
ception according to our knowledge is the field of aquatic
ecology. Heino (2005) calculated the functional richness
(number of the combinations of multistate nominal vari-
ables), functional diversity (Shannon diversity of the combi-
nations of multistate nominal variables) and functional even-
ness (Shannon evenness of the combinations of multistate
nominal variables), whereas others only counted the combi-
nation of unique traits (Poff et al. 2006, Erős et al. 2009,
Schmera et al. 2009) for quantifying functional diversity. In
addition, evaluating the multiple, rather than pairwise asso-
ciation among the traits is another possibility not yet ex-
hausted in ecology. 

In the present paper, indices of functional diversity
which rely upon the frequency distribution of trait combina-
tions and measure association of traits and their heterogene-
ity are introduced. The ideas behind the presented methodol-
ogy date back to the early 1980’s when P. Juhász-Nagy
developed his information theoretical models to evaluate
scale dependence of plant pattern in a multivariate context.
First, the fundamental concepts are summarized, and equa-
tions are presented. We shall focus on the simplest situation
when each trait can have two states, noting that the essence
of the approach can be extended to multistate nominal func-
tional characters as well. The methodology is illustrated by
two actual examples, the first demonstrating how the fre-
quency of fires affects trait combinations in Mediterranean
woody plant communities. The other study reveals relation-
ships between the functional traits of invertebrate assem-
blages and two major habitat features in rivers and streams. 

Definitions

Let s be the number of species in the assemblage, and let
t denote the number of traits. Every trait is a nominal variable
with two states, coded by 0 and 1. For example, 0 may refer
to a C3 plant while 1 to a C4 plant. Thus, the assemblage is
described by the trait data matrix X containing t rows and s
columns such that xij is the value of trait i for species j. It is
important that none of the traits can be a direct mathematical
derivative of other traits presented in the same matrix. That
is, we cannot use a trait expressing whether a species is of the
C3 type or not (1 versus 0), and another trait to refer to the
C4 type in a similar way, because these two states are com-
plements of each other. Of course, we cannot exclude corre-
lated traits because, in general, correlations are natural phe-
nomena of biological collections. The marginal total for row
i is denoted by xi. (= the number of 1s), so that the number of
zeros in the same row is s – xi.. Constant traits, i.e., those with
the same value for all species are ignored, because these do
not influence diversity measurement anyway.

Between-trait relationships in X can be summarized us-
ing a 2  2  … 2 contingency table of dimensionality t. The
number of non-empty cells in this table gives the number of
manifested combinations of t traits, to which we shall refer
as combinatorial functional richness (CFR), in accordance
with Mason et al.’s (2005) definitions. We should note that
the same concept is also termed as the number of unique trait
combinations (Erős et al. 2009, Schmera et al. 2009). How-
ever, we can extract much more than this simple richness sta-
tistic from the contingency table. First of all, we can measure
how heterogeneous is the assemblage for each trait and for
all traits taken as a whole. The corresponding statistic will be
called the functional heterogeneity (FH). Furthermore, CFR
obviously neglects the frequency distribution of combina-
tions, i.e., how often each trait combination occurs in the
community. Combinatorial functional diversity (CFD), as
defined here, will be based on this distribution. Last but not
least, the contingency table is a good starting point to evalu-
ate the multiple association among traits as well (functional
associatum, FA). We shall use the information theory meth-
ods of Juhász-Nagy (1984,1993, see also Juhász-Nagy and
Podani 1983) to derive combinatorial functional diversity,
which results from a simple mathematical relationship be-
tween the other two quantities according to:

CFD = FH – FA (1)

Functional heterogeneity – FH

The overall heterogeneity of a community in functional
traits is illustrated by the following data on a hypothetical
species assemblage with 8 species as described by three traits

Trait 1: 1 0 0 0 0 0 0 0
Trait 2: 1 0 1 0 0 1 1 0
Trait 3: 1 1 1 1 1 0 1 1
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Trait 1 is fairly homogeneous because it has score 1 only for
one species. The situation is similar for trait 3 whose 0 state
appears only in one species. These two traits must contribute
to overall trait heterogeneity with the same value, because
coding is immaterial, i.e., there is an obvious symmetry be-
tween trait states 0 and 1. Trait 2 exhibits maximum ‘vari-
ation’ because half the species take state 0, the others take 1.
The information theoretical expression summarizing trait
heterogeneity in the above matrix is as follows:

 (2)

a quantity called „information content” by Sneath and Sokal
(1973) and used infrequently as a clustering criterion in hier-
archical classifications of s objects (see also Orlóci 1969).
Mathematically, formula (2) is the pooled entropy of t vari-
ables in matrix X. In the present context, we shall refer to it
as functional heterogeneity. Since each trait has two states,
the most appropriate base of logarithm is 2 as used in this
paper without further notice. As seen, formula (2) is calcu-
lated from the marginal row totals of X, which are at the same
time marginal totals in the 222 t-way contingency table
as well. For the above example, we have FH = 3×log 8 – [2×7
log 7 + 2×4 log 4]/8 = 2.09. The contributions of individual
traits to heterogeneity are 0.2, 1, and 0.2, respectively. Note
the far analogy of FH to the pooled variance of t variables
measured on the continuous scale. FH takes the value of zero
if all variables are constant (zero heterogeneity) and is the
maximum (t) when all traits have maximum entropy, i.e., xi.
= s – xi. for all i.

To our knowledge, formula 2 has only been used in the
context of functional diversity by Trousselier and Legendre
(1981) to express ‘total information’ in tests by strains data
matrices in microbial ecology. Those authors did not use it
directly, but suggested to divide FH by the maximum possi-
ble value to obtain their ‘functional evenness index’. They
argued that whenever ‘all the strains in the sample are de-
scribed by different combinations of the characters…’ the
value of their formula ‘should be close to maximum’. How-
ever, as we show below, the situation is not that simple be-
cause, being a pooled measure, FH is absolutely insensitive
to the relationships among the t traits – which will not be so
with the following two quantities.

Combinatorial functional diversity – CFD

The intuitive meaning of combinatorial functional diver-
sity is best understood based on the following two examples.
Assume that we have three binary traits for eight species in a
hypothetical community A and for 8 other species in commu-
nity B, as summarized by the data matrices given below:

Community A

Trait 1: 1 0 1 0 1 1 0 0
Trait 2: 1 0 1 0 1 1 1 1
Trait 3: 1 1 1 1 0 0 1 1

Community B

Trait 1: 1 0 1 0 0 0 0 0
Trait 2: 1 0 1 1 1 1 1 1
Trait 3: 1 1 0 1 1 1 1 1

These assemblages have identical CFR because the same
four combinations of traits appear in both. However, in Com-
munity A all realized combinations occur twice, while com-
munity B is dominated by combination {0,1,1} appearing
five times (i.e., five species are identical in all traits), while
the other combinations appear only once. Thus, Community
A is more diverse than community B in a sense that the real-
ized combinations are dispersed more evenly among species.
This can be measured by the well-known entropy function as
suggested by Juhász-Nagy (1984) in which the  values refer
to estimated probabilities of trait combinations rather than of
single traits:

CFD = – , (3)

where is the relative frequency of trait combination k in
the data matrix and w is the number of all possible combina-
tions of t binary traits, i.e., w = 2t. In terms of frequencies, fk,
we can also write that 

, (4)

which is called the joint entropy in the t-way contingency ta-
ble (Juhász-Nagy 1984). The advantage of formula (4) is that
it uses frequencies of trait combinations (fk) so that there is
no need to calculate relative frequencies (estimated prob-
abilities in eq. 3). The minimum of CFD is 0, when all species
have the same trait combination, while the maximum is log s
obtained in the case with fk = 1 for all realized combinations.
While CFD may be used as a measure of uncertainty in the
assemblage, it is not comparable over different communities
due to its obvious dependence on species richness. There-
fore, one may wish to remove the effect of s, that is, the
number of species detected in the community. Division of
CFD by its potential maximum will lead to combinatorial
functional evenness

CFE = CFD / log s (5)

whose range is [0,1], 0 reflecting presence of a single realized
combination and 1 corresponding to the situation when all
realized combinations are different.

For the two assemblages above, we have the following
results: CFD = log 8 – 4(2 log 2)/8 = 2 for A and log 8 – (5
log 5)/8 = 1.55 for B, while CFE = 2/log 8 = 0.66 for A and
1.45/log 8 = 0.48 for B.

Functional associatum – FA

Consider the following two assemblages of eight species
described in terms of 2 traits:
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Community C

Trait 1: 1 1 1 1 0 0 0 0 
Trait 2: 0 0 0 0 1 1 1 1 

Community D

Trait 1: 1 1 1 1 0 0 0 0
Trait 2: 1 1 0 0 1 1 0 0 

These two assemblages have the same FH and yet different
CFD, the latter coming from the fact that the two traits are
completely associated in Community C (trait 1 is completely
predictable by knowing trait 2, and vice versa) and entirely
independent in Community D. Association among binary
variables is quantified in information theory as the difference
between pooled entropy and joint entropy, giving the (mu-
tual) information between variables. Thus, functional asso-
ciatum is derived from FH and CFD after rearrangement of
equation (1):

 

  (6)

This is mathematically the contingency information in the
22 …2 t-way contingency table and measures overall as-
sociation of functional traits. 

Computer program

The calculations were made by the modified INPRO pro-
gram (Podani 1993) developed originally for Juhász-Nagy’s
models. The application and a short user’s guide can be
downloaded from http://ramet.elte.hu/~podani. 

Actual examples

1. Mediterranean communities affected by different fire
regimes

The data include two sets of Mediterranean woody plant
assemblages in the eastern Iberian Peninsula (from Verdú

and Pausas 2007, Pausas and Verdú 2008). The first set cor-
responds to communities living in environments with high
fire frequency (H: stands H1 to H5), and the other to commu-
nities living in environments under low fire frequency (L:
stands L1 to L4). All these communities were well separated
from each other (independent) and their size varied largely
(from 900 to 70,000 ha); only the most representative woody
species (chamaephytes and phanerophytes) of the shrublands
and woodlands were considered. The species presence/ab-
sence was obtained from local botanical studies (see location
map and details in Verdú and Pausas 2007). The number of
functional traits is 11, describing the species that vary greatly
in number in the stands (from 33 to 81, Table 1). The ques-
tion is whether functional diversity differs with stands and if
there is a global difference between the two sets of assem-
blages defined by different fire regimes. The traits are as fol-
lows: eight traits are two state nominal [spinescence (yes vs
no), leaf type (sclerophyllous vs other), leaf habit (deciduous
vs evergreen), flower sexuality (hermaphroditic vs unisex-
ual), perianth color (colored vs brownish-greenish), perianth
reduction (complete vs reduced), pollinator type (insect vs
wind) and seed dispersal mode (endozochorous vs other)]
and three quantitative traits are binarized: plant height (= 0
below 1 m, = 1 otherwise), flower size (0 if perianth depth ´
width < 25 mm, 1 otherwise) and seed mass (= 0 below 2 mg,
1 otherwise). Combinatorial functional diversity indices
were calculated for each stand. The resulting scores were
subjected to standardized (i.e., correlation-based) Principal
Components Analysis (Podani 2001) to illuminate relation-
ships within the group of diversity measures. We are aware,
of course, that these functions are inter-dependent mathe-
matically (two values in Eq. 1 determine the third), therefore
PCA is considered as a visualization tool, rather than a statis-
tical technique of any sort.

Results. It is apparent from the results without any testing
(Table 1) that there is no perfect distinction between H and L
for all but one measures of functional diversity. Functional
evenness, CFE, is the only function consistently higher in
low fire frequency sites than in the high fire frequency
stands. A potential reason is that while most trait states ap-
pear in both H and L communities, the frequency of different
trait states differs between H and L. That is, in H stands spe-
cies with large, hermaphrodite and colored flowers are more

Table 1. Species richness, combinatorial functional diversity
and related functions as measured in Mediterranean vegetation
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common, while small unisexual and brownish or greenish
flowers dominate in L plots, but the two types of species oc-
cur in both environments (H and L). The fact that CFE is
lower in high fire frequency environments suggests that fire
breaks the balance of trait combinations in the community:
some combinations tolerate fire better than others. If fire is
less frequent, then the community develops various combi-
nations more evenly. As a result, volume in the trait hyper-
space is also affected as shown by correlation analysis.
Pausas and Verdú (2008) studied the same communities and
computed the hyper-volume in the trait space of each com-
munity using the convex hull approach. Their standardized
volume for each community (called the occupation index) is
significantly and positively correlated with CFE  (r = 0.813,
p = 0.007). That is, low CFE is associated to a reduced trait
volume (phenotypic clustering, in H) and high CFE to an ex-
panded trait volume (phenotypic overdispersion, in L). It is
also interesting to examine the most frequently detected trait
combinations. There are only two different combinations in
this list (Table 1), differing only in traits 3 and 11 (leaf habit
and seed mass) which vary in the H communities. Consider-
ing these most common combinations, traits 1, 2, 6, 7, 8, 9,
10 take always the value of 0, whereas traits 4, 5, 6 always
have 1. Thus, fire frequency seems to have little influence on
which combination appears most often in the sites.

The Euclidean biplot of PCA (Figure 1) reveals relation-
ships between the six variables considered, including the
number of species. Three positive eigenvalues resulted, ex-
plaining 67%, 27% and 6% of variation on the first three
components and suggesting that a two-dimensional scatter
diagram sufficiently demonstrates data structure. The two
groups of sites separate the best along the arrow pointing to
CFE, which is most positively correlated with functional het-
erogeneity (FH) and less so with functional associatum (FA,
Table 2). Component 1 is largely the contrast between these
three functions and another group (CFD, CFR, s) within
which correlations are very high. Notable is the high negative

correlation between s and CFE, and the high positive corre-
lation between s and CFR.

2. Invertebrates in running waters

In 2004, the ‘Ecological Survey of Surface Waters’ pro-
gram (ECOSURV) was established in Hungary, with the aim
to monitor and assess the ecological status of surface waters
based on biological (algae, macrophytes, aquatic inverte-
brates and fish) and hydromorphological and physico-chemi-
cal quality descriptors. The aquatic invertebrate data from the
ECOSURV project were used in this article. We decided to
use presence/absence data, and considered only running-
water sites and taxa identified to species level. Records with
missing data were omitted. A total of 317 sites with pres-
ence–absence data from 444 species fulfilled these criteria
(see further details in Schmera and Baur 2011). Sites featur-
ing less than 10 species were omitted from the analysis be-
cause these were considered to give insufficient information
on the frequency of trait combinations. Finally, 286 sites
were retained with the number of species ranging from 10 to
62. The fauna in each site was described in terms of a traits-
by-species presence-absence matrix. For all species, we used
the following five traits (or, more precisely, feeding groups):
shredders, grazers, collectors, predators and others. Trait
definitions followed Moog (1995, see Electronic Appendix
1). Note that a given species can be characterized by the pres-
ence of several traits simultaneously. Each site was described
in terms of two environmental variables: stream/river width
(W) and the degree of human impact (I) on stream morphol-
ogy. This second environmental variable expresses the
number of different types of human influence (e.g., bed fixa-
tion, bank fixation, stagnation, torrent modification) visually
assessed at the sampling sites. Combinatorial functional di-
versity indices were calculated for the species assemblages
of all study sites. The resulting scores, together with the en-
vironmental descriptors were subjected to standardized (i.e.,
correlation-based) Principal Components Analysis to reveal

Figure 1. Euclidean biplot from a
standardized PCA of 9 vegetation
stands from eastern Spain charac-
terized by species richness (s) and
various indices of combinatorial
functional diversity (FH, FA, CFD,
CFR, and CFE) using 11 binary func-
tional characters. Convex hulls indi-
cate groups of low fire frequency
(L1-L4) and high fire frequency (H1-
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relationships within the group of diversity measures (as in the
previous case study) and between these and the two habitat
descriptors.

Results. The correlation matrix between the 8 variables is
given in Table 2. The Euclidean PCA biplot (Fig. 2) shows
the arrangement of the 286 sites for dimensions 1 vs 2 (the
associated percentages are 32% and 27%, while the third axis
explained 16%), with variable positions overlaid and empha-
sized by arrows. Since the number of points is relatively high
and the number of variables is also larger than in the previous
case, the total variance explained on the plane of components
1-2 is ‘only’ 59%. The sites form a fairly homogeneous clus-
ter, without any observable structure. On the basis of this
large set of sites, the interrelationships between functional di-
versity measures differ from those revealed for the much
smaller set of vegetation stands. Whereas FA was highly
negatively correlated with s for the vegetation stands, their
correlation is now positive. On the other hand, the high nega-
tive correlation between s and CFE, and the high positive
correlation between s and CFR are apparent in both case
studies. Of the habitat descriptors, the degree of human im-
pact (I) is negatively correlated with CFE (human impact de-
creases the number of realized combinations) and positively
with FA (human impact increases trait associations, thereby
increasing predictability of trait pattern), while W has the
highest negative correlation with CFR. It may be somewhat

surprising that in general wider streams support fewer com-
binations than narrower ones. CFE and W are apparently or-
thogonal, suggesting that combinatorial functional evenness
is not influenced by the width of streams. 

Discussion

This paper presents a new conceptual and methodologi-
cal scheme for the analysis of functional diversity in commu-
nities. It is entirely different from existing procedures in that
the pooled entropy, mutual information (associatum) and
joint entropy are used to express several aspects of diversity
simultaneously. In essence, the approach is the extension of
the florula diversity concept developed by Juhász-Nagy in
the 1970’s for analyzing species presence-absence commu-
nity data. There is also an evident relationship to the taxon-
free character-based sequential scheme as described by Or-
lóci (1991, see also Pillar and Orlóci 2004). The method is
applicable to two-state nominal functional characters and ex-
amines the number and frequency distribution of character
combinations realized in the sample. In this way, we obtain
estimates on the multiple association among the variables
and on the diversity and evenness of character combinations.
The main difference between Juhász-Nagy’s original ap-
proach and ours is that for presence-absence species data the
effects of spatial scale were evaluated (by calculating differ-

Table 2. Correlation matrix between species richness, combinatorial functional diversity measures and two habitat decriptors used in
the second illustrative study. Lower semimatrix: Mediterranean plant communities, upper semimatrix: invertebrate stream communi-
ties. See text, for abbreviations.

Figure 2. Euclidean biplot from
standardized PCA of 286 running
water sites from Hungary charac-
terized by species richness (s) and
various indices of combinatorial func-
tional diversity (FH, FA, CFD, CFR,
and CFE) using 5 binary functional
characters and two habitat descriptors
(W–stream width, I–degree of human
impact). 
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ent functions for a series of plot sizes), while in the present
case external environmental information is contrasted with
the results. 

Two actual case studies illustrated these contrasts. In
Mediterranean woody communities from eastern Spain, we
found that the effect of fire frequency is manifested most
clearly in functional combinatorial evenness: assemblages
prone to high fire frequency exhibited consistently lower
functional evenness, and thus lower functional diversity,
than assemblages less frequently affected by fire. This obser-
vation correlates with other findings derived from convex
hull analyses of functional diversity (Pausas and Verdú
2008). Thus, fire seems to have an equalizing effect on func-
tional combinations. In case of the aquatic invertebrates ex-
ample, combinatorial functional evenness was shown to be
correlated mostly with the degree of human impact, ex-
pressed in terms of the number of artificial hydromechanical
constructs present in a given site. The correlation was nega-
tive, showing clearly that habitat destruction equalizes the
frequencies of functional combinations. On the other hand,
this external variable was uncorrelated to the number of
manifested functional combinations showing that habitat
changes do not simply eliminate certain combinations. CFR
was, however, negatively correlated to the width of streams,
perhaps an unexpected result suggesting that narrower
streams are often richer in functional combinations than wide
ones. Overall these two examples show that disturbances
(wildfire in plant communties, human impact on streams) re-
duce the possible combinations of functional traits, and point
out the filtering effect of disturbance in the community as-
sembly.

The interrelationships among the diversity functions
used here are best revealed by standardized principal compo-
nents analysis. Such a comparative study was made with suc-
cess by Mouchet et al. (2010) on a different group of meas-
ures which did not consider trait combinations. The two PCA
results we obtained differ from each other in several respects,
probably because of the difference in the sample size (9 plots
in the vegetation example and 286 plots in the stream exam-
ple) and in the number of traits (11 and 5 for the vegetation
and the stream examples, respectively). Nevertheless, there
are agreements as well. We observed already that species
richness, s, and CFR are strongly positively correlated in
both situations. This may appear obvious: the more species
are present the higher number of functional combinations
may develop in the community. Increases in the number of
species lead to lower functional evenness, however, as seen
from the high negative correlations between s and CFE in
both assemblage types examined. Thus, fewer species are
more likely to produce an even distribution of functional
combinations than many species. This observation is in con-
trast with the findings of Mouchet et al. (2010) who con-
cluded from simulated experiments that their FD indices
were strongly or weakly positively correlated with s, while
some others were uncorrelated with species richness. No
negative relationship was found under any model. 

To explain our observations regarding the negative spe-
cies richness-combinatorial functional evenness relationship,
we can put forward the following hypothesis. High evenness
means that the points in the abstract functional space are
regularly spaced, which is explained by limiting (niche) simi-
larity as the primary driving force in community assembly.
That is, biotic interactions dominate in niche differentiation,
leading to a community whose constituting elements differ in
at least one functional trait. Lower evenness implies that
points are more aggregated in the conceptual space, because
certain combinations are more frequently represented than
others. This result is often attributed to habitat filtering ef-
fects which are known to increase clustering of trait values
by forcing ecologically similar species to co-occur (Pausas
and Verdú 2010). From these findings and our observations
it logically follows that the relative importance of limiting
similarity and habitat filtering may be decisive not only at the
level of species abundances (e.g., Maire et al. 2012), but for
species presence-absences as well. Namely, species rich
vegetation stands are more the result of habitat filtering ef-
fects produced by recurrent fires while the dominant assem-
bly process in species poor stands was the limiting similarity.
In case of the stream/river invertebrates, human impact is the
filtering factor that decreases functional evenness while in-
creasing species richness, and limiting similarity predomi-
nates in species poorer but intact stream sites. We admit,
however, that the above hypothesis and interpretation require
confirmation by involving more case studies of combinato-
rial functional evenness.

The discrepancy between the two case studies is most ap-
parent for the multiple association among traits, i.e., func-
tional associatum. For the relatively few sites in the woody
vegetation, FA was in an inverse relationship to species rich-
ness suggesting that functional traits become less inter-de-
pendent when species richness increases. It has to do prob-
ably with the relatively high number of traits. In the streams
and rivers example FA is positively correlated with species
richness, potentially explained by the fewer number of traits.
We must conclude that, in general, results are case-dependent
and note that the biological differences in study objects and
traits used may also contribute to the discrepancies. 

The relative magnitude of the number of species and the
number of traits is crucial in the present approach. In the for-
est example, the s/t ratio at each site ranged from 3 to 7.5
whereas in the case of invertebrates varied from 2 to 12. We
feel that sites with a lower ratio are less reliable for measur-
ing functional diversity even at the descriptive level adopted
in this study. In the future, it is to be examined how the –
otherwise arbitrary – choice of the number of traits influ-
ences the results and conclusions in CFD analysis. Also, the
distributional properties of these functions require attention,
especially if some of them are used as estimators of commu-
nity level phenomena and are tested for significance as well.

The current analytical models are applicable to two-state
nominal traits, but extension to multistate ones is conceivable
at least for Eq. 3-5. Abundance data may also be involved in
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the calculations in such a way that the abundance data are
pooled for each functional combination, and then normalized
for the entire data set to unit sum. This produces relative fre-
quencies for species combinations which can be evaluated by
the Shannon diversity function in the traditional manner. He-
ino (2005) already used such an approach to generalize Shan-
non diversity and evenness to combinations („groups”, see
his Table 3.)

Our study demonstrated that functional diversity has
components additional to those originally suggested (rich-
ness, evenness and divergence, Mason et al. 2005). These
components involve quantification of trait combinations,
rather than distances, volumes and lengths measured in the
conceptual functional space. We introduced a new equations
termed as combinatorial functional diversity, functional het-
erogeneity and functional associatum and showed that these
equations are inter-related. Based on these, our functions
supplement already existing approaches. Moreover, as these
information theoretical equations are mathematically linked
to each other, our approach presented here provides a rather
complex framework for analyzing species by trait matrices in
communities. The presented methodology may be used in in
the future for examining the effect of trait selection before
analysis, to mention only one example. Depending on asso-
ciations, traits whose removal does not affect much the re-
sults are probably less influential in determining functional-
ity of the assemblage than those characters which cannot be
eliminated from the data without significant changes in the
results. This hypothesis may also be tested in future studies.
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The definitions of or functional feeding groups of the in-
vertebrates used in this study. The file may be downloaded
from the web site of the publisher at www.akademiai.com.
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Electronic Appendix 1. The definitions of traits of invertebrates in running waters. 

Trait Verbal definition Mathematical definition 

shredder Species feeding on fallen 
leaves, plant tissue, coarse 
particulate organic matter 
(CPOM), leaves of aquatic 
plants, algae and cells of 
aquatic plants or on woody 
debris. 

The sum of SHR, MIN and 
XYL values in Moog (1995) 
is larger than zero 

grazer Species feeding on epilithic 
algal tissues, biofilm, partially 
particulate organic matter. 

The GRA value in Moog 
(1995) is larger than zero. 

collectors Active filter feeders, passive 
filter-feeders and detritus 
feeders. 

The sum of AFIL, PFIL and 
DET values in Moog (1995) is 
larger than zero. 

predators Predators and parasites. The sum of PRE and PAR 
values in Moog (1995) is 
larger than zero. 

others Cannot be classified into the 
scheme.  

The OTH value is larger than 
zero. 
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