Chapter 3
Conceptual Modelling of Interaction

Nathalie Aquino?, Jean Vanderdonckt-2, Jos Ignacio Panach, Oscar Pastort
LCentro de Investigacbn en Métodos de Producdn de Software, Universidad
Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spai
2Université catholique de Louvain, Louvain School of Management (LSM)
Place des Doyens, 1 - B-1348, Louvain-la-Neuve, Belgium

{naquino, jpanach, opastor @pros.upv.es, jean.vanderdonckt@uclouvain.be

Abstract The conceptual model of an information system cannot beideres
to be complete after just specifying the structure and bielawf the system. It is
also necessary to specify how end-users will interact wighsystem. Even though
there are several proposals for modelling interaction.enainthem have become
widely known or widely used in academia and industry. Afterstrating the state
of the art in this field, this chapter briefly presents a pcattapproach with the
aim of showing how interaction modelling can be faced. Thespnted approach
is called OO-Method, a Model-Driven Engineering method #ibows full func-
tional systems to be generated from a conceptual model. deter explains how
0OO-Method supports the interaction modelling by meanssd®iesentation Model.
Apart from this description, the chapter comments on somédtions of the Pre-
sentation Model to satisfy end-user interaction requingieclated to preferences
and different contexts of use. This problem is faced by mhigtishing an abstract
and a concrete level for interaction modelling. The absacspective focuses on
what must be presented to end-users in order to allow thigrdaotion with an in-
formation system, and the concrete perspective focuseswriliose elements are
presented. Upon the basis of a whole interaction modelradisind concrete per-
spectives are separated. On the one hand, the OO-MethoehRrtsn Model is
shown to be an example of abstract interaction modellingtt@nother hand, an
extension based on Transformation Templates is proposeul/&r the concrete in-
teraction modelling perspective. To illustrate how botieraction modelling levels
can be used, this chapter models the interaction of a phappbgragency system.

3.1 Introduction

The idea that the conceptual model is the code is becoming arat more a reality
in software engineering and information systems desigmesexplicit statements
for this perspective can be found in the Conceptual Scheerdri€ Development
challenge [24], the Extreme Non-Programming initiativd,[25], and the set of

2 3 Conceptual Modelling of Interaction

both academic and industrial approaches and tools propeskth the frame of
Model-Driven Engineering (MDE), with the intention of pricing operative so-
lutions. Conceptually aligned with these ideas and spediificepresented in this
book under the term Conceptual Modelling Programming (seartanifesto, Chap-
ter 1), we strongly believe that conceptual modelling isgpaoming. As stated in
that manifestothe conceptual model, with which modellers program, musidoe-
plete and holisticln practice, this statement requires every necessargbgpeata
(structure), behaviour (function), and interaction (botimponent interaction and
user interaction), to be adequately included.

User interaction modelling is the issue in this chapter. \ieespecially con-
cerned with the answer to an apparently simple question:t\aiteathe most rele-
vant conceptual primitives or modelling elements that $thguide the construction
of a conceptual interaction model? This question arisesedime conceptual model
community provides widely accepted and widely used dataaisomith strong stan-
dards such as the Entity-Relationship Model [10] or UML Gl&8agrams as well
as widely accepted and widely used behaviour models (fremlidhData-Flow Dia-
grams [34] to the more recent Collaboration, Sequence avicUML Diagrams).
However, it is surprising that clear and concrete concephoaels to represent in-
teraction have not yet been provided. There are still goestabout which interac-
tion models will allow us to face conceptual modelling of usgerfaces and how
these models can be properly embedded into the whole caratepbdel, which
includes data, behaviour, and interaction. This is padity surprising since the
answer to these questions are so evident for the data andibehperspectives of
conceptual modelling, especially when considering thatgreportance of user in-
terface design in the whole process of building an infororasiystem. Everyone ac-
cepts that a final software application is much more than kaedined database and
a set of programs that incorporate the needed function#ligyconceptual model
is to be viewed as the code of the system, every essentiattasipsoftware must
be considered, and, of course, user interface plays a hasicrthis context. Go-
ing back to the Conceptual Modelling Programming manifegstonake the goal of
having a conceptual model complete and holistic a realigy,fdroper specification
of user interface conceptual models (not only user interfketches of the system)
is strictly required. Therefore, the conceptual modelbtgments behind user inter-
face specification must be defined precisely and must be lmsadorresponding
ontological agreement that fixes the concepts and theiceded representation and
notation.

To achieve these goals, this chapter explores two aspergs. & particular ex-
ample of what user interface modelling means in terms of tioderimitives and
model specification is introduced. The selected approattiei®resentation Model
of OO-Method [27]. This approach constitutes a practicakcaf how interaction
modelling from the user interface perspective is joinedatagnd behaviour mod-
elling in a unified way, and how this conceptual model inckidd the relevant
information that is needed to face the subsequent condepto@del compilation
process to obtain the corresponding software system. @tunedeprimitives are in-
troduced to show how user interface modelling can be spalijfiput in practice,

3.2 Related Work 3

bridging the gap between “conventional” (data- and behavariented) conceptual
modelling and user interface modelling. Second, an impofeature that is asso-
ciated to user interface modelling is dealt with. An inteéi@t model can fix the
presentation style, but this presentation style normadigds to be adapted to the
end-user’s tastes and wishes. Talking about the user acteiit not the same as
talking about the final data and program structure. In génemd-users want to par-
ticipate in defining the way in which the human-softwareliattion is going to be
accomplished, and this cannot be done if the user interfackehdoes not allow the
conceptual model to be adapted to their particular intemacequirements. Some
authors use the term “beautification” to refer to this sitaf31].

A common solution for solving this problem consists in egjly distinguishing
two levels in the interaction conceptual model: an abstexe and a concrete level.
This approach has been presented in several works ([9, 228189, 30], among
others), and it is currently being applied in the contextsdninterface development
according to MDE. While the abstract level focuses on thétéyel perspective of
the interaction, the concrete level identifies several ipessepresentations of the
abstract modelling primitives and gives modellers the ckdn adapt them accord-
ing to the target platform and the end-user’s preferenceis. distinction between
abstract and concrete provides a two-level approach thieesriapossible to differ-
entiate concerns that are very important within the scogatefaction modelling.
On the one hand, there are higher-level abstractions th#idixnain relevant user
interface properties (e.g., the set of interaction unié giould conform the main
menu of an application). These abstractions representval@nents are going to
be shown in each interface. On the other hand, there is a mozete level where
interfaces are specified for particular software enviromtsi€This concrete model
represents how the elements of the interface will be presefetg., the particular,
concrete, presentation style chosen for presenting th@ée menu options to the
end-users).

In accordance with these ideas, this chapter is structaréggeifollowing way: in
Section 3.2, a related work analysis is presented to uradetavhat other authors
have proposed and how the interaction modelling issue ia@oted from a concep-
tual model perspective in current MDE approaches. In Se@&i8, the Presentation
Model of OO-Method is introduced as an example of how intégwacmodelling
is properly embedded in an MDE-based software productiocgss where con-
ceptual models are the only key software artefacts. In @e@&i4, we propose an
extension to explicitly distinguish between the abstraeel and the concrete level,
indicating how to accomplish this distinction in practid&e chapter ends with
concluding remarks and the list of references used.

3.2 Related Work

Since its inception in the eighties, the domain of Human-@otar Interaction
(HCI) has undergone a dramatic increase in research andogevent, arriving

4 3 Conceptual Modelling of Interaction

to the point where it is recognized that interaction shousb de modelled just
like any other aspect of an interactive system. During mbaa ta decade, several
model-based approaches have evolved in parallel in ord=ie with the different
challenges raised by the design and development of usefaoés in continuously
evolving technological settings. We can identify varioaagrations of works in this
area [36]. The first generation of model-based approaclweséol basically on de-
riving abstractions for graphical user interfaces (seegkample, UIDE [13]). At
that time, user interface designers focused mainly on ity&mg relevant aspects for
this kind of interaction modality. Then, the approachedwainto a second gen-
eration that focused on expressing the high-level semsnfithe interaction: this
was mainly supported through the use of task models andiagsdd¢ools, which
were aimed at expressing the activities that the usersdni@raccomplish while
interacting with the application (see, for example, Ade€@][GTA [42], Concur-
TaskTrees (CTT) [29], Trident [5], Humanoid [35]). Sinces#e times, a consensus
has been reached in the community to structure interactimafelting according to
different levels of abstraction in almost the same way aghierareas (i.e. database
engineering and information systems).

In this context, one of the most recent works is the Camelezferi@nce Frame-
work [9]. Cameleon structures the development life cyde four levels of abstrac-
tion, starting from task specification to a running inteefgsee Figure 3.1):

e The Task and Concepts level: This level considers (a) thedbgctivities (tasks)
that need to be performed in order to reach the end-user$s;gared (b) the
domain objects manipulated by these tasks.

e The Abstract User Interface (AUI): This level represents tiser interface in
terms of interaction spaces (or presentation units), iaddpntly of which inter-
actors are available and even independently of the modd#iityteraction (e.g.,
graphical, vocal, haptic).

e The Concrete User Interface (CUI): This level represengsuber interface in
terms of “concrete interactors”, which depend on the typglatform and media
available and which have a number of attributes that moreretely define how
the user interface should be perceived by the end-user.

e The Final User Interface (FUI): This level consists of seucode, in any pro-
gramming or mark-up language (e.g., Java, HTML5, VoiceXMkV). It can
then be interpreted or compiled.

These levels are structured with both a relationship ofaation going from a
more abstract level to a more concrete one and a relationglapstraction going
from a more concrete level to a more abstract one. There sarbala relationship
of translation between models at the same level of abstradtiut conceived for
different contexts of use. These relationships are depiot€igure 3.1.

There are other approaches for representing the interatiised on UML
models (http://www.uml.org/). Wisdom [23] is a UML-basedftsvare engineer-
ing method that proposes an evolving use-case-based mathdnich the software
system is iteratively developed by incremental prototypes! the final product
is obtained. The UML notation has been enriched with the ssang stereotypes,

3.2 Related Work 5

S = Source context of use T = Target context of use

USER,
PLATFORM,
ENVIRONMENT

USERS PLATFORM S ENVIRONMENT S USERT

Y—/%/

PLATFORM T ENVIRONMENT T

TASK AND

DOMAIN TASK AND TASK AND
SUPPORTED
DOMAIN S DOMAIN T MODEL.
ABSTRACT UNSUPPORTED

USER ABSTRACT USER ABSTRACT USER MODEL
INTERFACE INTERFACE S INTERFACE T

Reification

WZO--4PZIOTNOZP I

> -—

CONCRETE
USER

CONCRETE USER CONCRETE USER .
INTERFACE INTERFACE S INTERFACE T H Abstraction

) Reflexion

FINAL USER
INTERFACE FINAL USER FINAL USER

INTERFACE S INTERFACE T -«—p Translation

Fig. 3.1 Relationships between components in the Cameleon Retefgamework

labelled values, and icons to allow user-centered devedopieind a detailed user
interface design. Three of its models are concerned witrdiction modelling at
different stages: the Interaction Model, at the analysigestand the Dialog and Pre-
sentation models during the design stage, as refinemerte dfteraction Model.
Another important proposal is UMLI [12], which is a set of ugsterface models
that extends UML to provide greater support for user intefdesign. UMLI intro-
duces a new diagram: the User Interface Diagram, which cant&dered to be the
first reliable proposal of UML to formally capture the useteiriace. However, the
models are so detailed that the modelling turns out to bediéfigult. Middle-sized
models are very hard to specify, which may be the reason whi.ilds not been
adopted in industrial environments.

In addition, there are several proposals that model thedaten abstractly by
means of the above-mentioned ConcurTaskTrees (CTT) ontgb]. Examples of
these types of proposals are TERESA [22] and SUIDT [4]. TEREBansforma-
tion Environment for inteRactivE Systems representAtjaas tool that supports
transformations in a top-down manner, providing the pal#silof obtaining inter-
faces for different types of devices from logical descdps. This tool starts with an
overall envisioned task model and then derives concreteffactive user interfaces
for multiple devices. SUIDT (Safe User Interface DesignIYd®a tool that auto-
matically generates interfaces using several models teaetated to each other: a
Formal Functional Core, an Abstract Task Model, and a Cdediask Model. CTT
notation is used in the Abstract Task Model and in the Corcfask Model.

We have mentioned different types of approaches for reptieggthe interaction
in an abstract manner; however, a suitable language thhtesniategration within
the development environmentis still needed. For this pseptihe notion of User In-
terface Description Language (UIDL) has emerged to ex@eg®f the aforemen-
tioned models. A UIDL is a formal language used in HCI to disca particular

6 3 Conceptual Modelling of Interaction

user interface independently of any implementation tetdgyo As such, the user
interface might involve different interaction modalitiesg., graphical, vocal, tac-
tile, haptic, multimodal), interaction techniques (edyag and drop), or interaction
styles (e.g., direct manipulation, form fillings, virtuaality). A common funda-
mental assumption of most UIDLs is that user interfaces avdetted as algebraic
or model-theoretic structures that include a collectioseats of interaction objects
together with behaviours over those sets.
The design process for a UIDL encompasses the definitioredbilowing arte-

facts:

e Semantics: This expresses the context, meaning and iomesfteach abstraction
captured by the underlying meta-models on which the UIDLaisdal.

e Abstract Syntax: This is a syntax that makes it possible fmdeiser interface
models (in accordance with the UIDL semantics) indeperigehany represen-
tation formalism.

e Concrete Syntax/es: These are (one or more) concrete egpagion formalisms
intended to syntactically express user interface models.

e Stylistics: These are graphical and textual represemiziid the UIDL abstrac-
tions that maximize their representativity and meaninuggk in order to facili-
tate understanding and communication among differentlpeop

In conclusion, there are a lot of proposals to representiteeaction abstractly,
as we have seen in this section. Each proposal is based ormificspetation, like
UML or CTTs. However, as far as we know, none of these progaagbports in-
teraction modelling together with persistence and fumetiiby. Existing proposals
can generate interfaces but not fully functional systemsrddver, all the works
mentioned in this section have seldom been used in industwé@onments. In the
next section, we present an approach that has solved boftesd timitations: the
modelling of interaction in a holistic conceptual modailiapproach and the practi-
cal applicability of interaction modelling in an indusir@ntext. Furthermore, we
show how the interaction can be represented by means of ptuad@rimitives.

3.3 The Interaction Model of OO-Method

0OO0O-Method [27] is an object-oriented method which allows #utomatic genera-
tion of software applications from conceptual models. Bhamceptual models are
structured in four system views: (1) the Object Model spesithe static properties
of the interactive application by defining the classes aei tielationships; (2) the
Dynamic Model controls the application objects by definingit life cycle and in-
teractions; (3) the Functional Model describes the serosinfiobject state changes;
and (4) the Presentation Model specifies the user interface.

0OO0O-Method is supported by a commercial software suite ha@®a@NOVA
that was developed by CARE Technologies (http://www.dazem). OlivaNOVA
edits the various models involved and applies subsequamformations until the

3.3 The Interaction Model of OO-Method 7

final code of a fully functional application (persistenamgit, and presentation) is
generated for different computing platforms: C# or ASP ingron .NET or .NET
2.0; and EJB, JSP, or JavaServer Faces running on Java.Q@ullethod defines
a holistic conceptual model which includes the interacierspective as well as the
structural and behavioural ones. Furthermore, it is ctiyd®ing used successfully
in an industrial environment.

This section presents the conceptual primitives of the O&Hdd Presentation
Model, which allow a user interface to be modeled in a corerginvay. These prim-
itives have enough expressiveness to represent any maeageformation system
interface. Furthermore, an illustrative example relatea photography agency sys-
tem is presented throughout this section and the next onis.agency manages
illustrated reports for distribution to newspaper eddtsi The agency operates with
photographers who work as independent professionals.

The OO-Method Presentation Model is structured with a séttefaction pat-
terns that were defined in [20]. These interaction pattermsalered in three levels
(see Figure 3.2):

e Level 1 - Hierarchical Action Tree (HAT): organizes the asxéo the system
functionality through a tree-shaped abstraction.

e Level 2 - Interaction Units (IUs): represent the main intéikee operations that
can be performed on the domain objects (executing a seezying the pop-
ulation of a class, and visualizing the details of a specliject).

e Level 3 - Elementary Patterns (EPs): constitute the buildilocks from which
IUs are constructed.

In the next three subsections, we provide more details ahetihteraction pat-
terns from the three levels, going from the most specific ¢onttost general ones.

3.3.1 Elementary Patterns

Elementary Patterns (EPs) constitute the primitive baoddblocks to build 1Us.
They represent specific aspects of the interaction betwdanrean and a system
and cannot be combined in an arbitrary way; on the contragh ef them are ap-
plicable in specific IUs.

In the current OO-Method Presentation Model, there areeeldsPs that can
be related to their corresponding relevant IUs (see Figw2e Fhese EPs are the
following:

e Introduction: captures the relevant aspects of data to beresh by the end-
user. Interaction aspects that can be specified includerediks and valid value
ranges.

e Defined selection: enables the definition (by enumeratiba)set of valid values
for an associated model element.

8 3 Conceptual Modelling of Interaction

Level 1 Level 2 Level 3

INTRODUCTION

1
I
|
|
|
I
I
|
|
|
I
!
|
! DEFINED
I
|
|
|
I
I
|
|
|
1
|

SELECTION
ARGUMENT
GROUPING
SERVICE
INTERACTION UNIT

DEPENDENCY

POPULATION
PRELOAD

‘
|
‘

‘

|

‘

|

‘

‘

3

H CONDITIONAL
' NAVIGATION
|

‘

‘

|

‘

|

‘

‘

|

‘

‘

|

|

FILTER

|
|
I
|
|
|
|
I
|
|
|
|
I
|
|
|
|
I
|
|
|
|
|
|
|
I
|
i
|
|
I
|
i
|
|
I
|
i
|
|
I
|
i
|
|
I
|
i
|
|
I
i
|
A ORDER CRITERION
|

i

HIERARCHICAL POPULATION
ACTION TREE INTERACTION UNIT

4

DISPLAY SET

[

ACTIONS

INSTANCE
INTERACTION UNIT

y
)

—

NAVIGATIONS

Legend

il

MASTER
INTERACTION UNIT
Auses B MASTER/DETAIL
INTERACTION UNIT BETAT
INTERACTION

|
i UNITS
i
|

Fig. 3.2 OO-Method Presentation Model

e Argumentgrouping: defines the way in which input argumenttafgiven service
are presented to the end-user allowing these input arggn@iie arranged in
groups and subgroups.

e Dependency: enables dependency relationships to de défteden the value
or state of an input argument of a service and the value cg sfabther input
argument of the same service. The definition is based on B@Asules (event,
condition, action).

e Population preload: allows the designer to specify thastiection of an object
as an input argument of a service will be carried out with dhaiit changing
the interaction context.

e Conditional navigation: allows navigation to differentd@fter the successful or
failed execution of a service. In order to specify which IUn@avigate to, it is
also necessary to establish a condition that must hold ditgeexecution of the
service.

3.3 The Interaction Model of OO-Method 9

e Filter: defines a selection condition over the populatioraaflass, which can
be used to restrict the object population of the class, byefacilitating further
object search and selection operations.

e Order criterion: defines how the population of a class is totokered. Ordering
is done on the values of one or more properties of the objeisg into account
ascending/descending options.

e Display set: determines which properties of a class are frésented to the user
and in what order.

e Actions: define the set of available services that can beopadd on the objects
of a given class.

e Navigations: determine the information set that can be ssszkvia navigation
of the structural relationships found in an initial class.

3.3.2 Interaction Units

An Interaction Unit (IU) describes a particular scenarithaf user interface through
which users are able to carry out specific tasks. In the OChbteapproach, there
are three different basic kinds of interaction scenarigscetion of a service, ma-
nipulation of one object, and manipulation of a collectidrobjects. For each one
of these basic interaction scenarios, the OO-Method apprpeoposes a specific
IU that is appropriate for handling it. A fourth U is propas® combine the other
IUs. The four IUs are the following (see Figure 3.2):

e Service IU: enables a scenario to be defined in which the uderaicts with
the system in order to execute a service. The user must grolvearguments
and launch the service. Six of the EPs can be used to compkegpecification
of a Service IU: introduction, defined selection, argumeatiging, dependency,
population preload, and conditional navigation (see FB@uR). Figure 3.3 shows
the final user interface generated from a Service IU. The inserface for this
Service U allows a photographer to fill in an applicationnfiofor working in a
photography agency. The photographer must provide peraodacontact data
as well as data related to its profesional equipment.

e Instance IU: represents a scenario in which informatioruabasingle object is
displayed, including the list of services that can be exaton it, as well as the
scenarios of related information to which the user can raeigAll this informa-
tion is structured by means of three EPs: display set, asteomd navigations (see
Figure 3.2). Figure 3.4 shows the final user interface geeéfaom an Instance
IU. The user interface for this Instance IU shows data rdl&tea photographer
of the agency.

e Population IU: represents an interaction scenario wheiépteiobjects are pre-
sented. Includes the appropriate mechanisms to do thevialip select and sort
objects, choose the information and available services &hbwn, and list other
scenarios that can be reached. All this information is stined by means of five

10 3 Conceptual Modelling of Interaction

m New Photographer, Application Form

Personal Data | Contact Data | Other Data (a)
First Mame | Teresa | Lazt Name | PFinta |
DM 563476 fge

Gender

[oK l [Cancel]

Fig. 3.3 User interface generated from a Service IU with argumentgirgs (a), and defined
selection (b)

L 4| Photographer

Fhotagrapher D

M arne Walue
Aroceptance Date a/31/2010

10 Application Form 5]

First Mame Gustavo

Last Marne Pedrera

D.MLI 452387
fige 36

Gender I ale ®)
Address M aestra Pereira 34 —— (a)
City Walencia

Country Spain

Postal Code 46022

Telephone 457633

e-mail apedrerat@griail. conm

E quipment Description Sophizticated equipment
Book Reference BOOG

C.. Reference C00E

Statuz Accepted

T

Fig. 3.4 User interface generated from an Instance 1U with displayae actions (b), and navi-
gations (c)

EPs: filter, order criteria, display set, actions, and natigmns (see Figure 3.2).
Figure 3.5 shows the final user interface generated from alRopn IU. The
user interface for this Population U shows data related tdtipie photogra-
phers of the agency at the same time.

e Master/Detail IU: presents the user with a scenario fornkeraction with multi-
ple collections of objects that belong to different intéated classes. This forms
a composite scenario in which two kinds of roles can be defiaedaster role,
which represents the main interaction scenario; and detat, which represent

3.3 The Interaction Model of OO-Method 11

%] Photographer
Fersonal Data | oy
DM | First Mame | | Last Mame i i Search ..
Order Criteria I Filter definsd - | I—> (b)
Acceptance Date | 1D First Mame. | LastMame | DM Age | Gender Address City Country | Fostal Code Td
| S@ndmo| 3\Gleind |Bsics. |TI63MF | 23 Male |Sdleed? Madid |bpain | 23551 |44 55
5/31/2010 5| Gabriel | Casacubetta 342138 | 24 Male | [|45
e D AN o O ! 398877 | 35|Femols |FelpeVeron76 |Barcelons |Spsin 57689 {1
5/31/2010 1 Pablo | Mierelles 7780550 45 Mae | MatinezCabial 45 |Walencia | Spain ARO03 | 66| (d)
5/31/2010| 4 Juana | Perez 653421 | 43 Female | | | | | 98
< [¢) >
e 616

Report Leve||—> (e)

Close

Fig. 3.5 User interface generated from a Population U with filtey ¢adler criterion (b), display
set (c), actions (d), and navigations (e)

secondary, subordinated interaction scenarios that ateskachronized with the
master role (see Figure 3.2). Figure 3.6 shows the final nserface generated
from a Master/Detail IU in which the master role correspotodsn Instance 1U,
which shows data related to a photographer of the agencyihendetail role
corresponds to a Population IU, which shows the list of reproelated to the
photographer.

The user interfaces depicted in Figure 3.3, Figure 3.4,r€i@b, and Figure 3.6
have been generated by OlivaNOVA for the desktop .NET platfo

3.3.3 Hierarchical Action Tree

Once the interaction scenarios have been described ththagtorresponding 1Us,
it is necessary to determine how these IUs are to be struitarganized, and pre-
sented to the user. This structure will characterize théeegl of the user interface,
establishing what could be described as the main menu ofpiblecation. The Hi-
erarchical Action Tree (HAT) serves this purpose.

The HAT defines an access tree that follows the principle atigal approxi-
mation to specify the manner in which the interactive useraxess system func-
tionality. This is achieved by arranging actions into greapd subgroups by using
a tree-abstraction, from the most general to the most @etalihtermediate (i.e.,
non-leaf) nodes in the tree are simply grouping labels, e&®tree leaves reference
pre-existing IUs (see Figure 3.2).

12 3 Conceptual Modelling of Interaction

s Photographer, - Reports

Photagrapher l:l
Mame Walue
Acceptance Date 543172010
1D Application Form 5]
First Name Gustavo
Last Hame Pedrera
DM 452387
Age 36
Gender I ale
Address taestio Pereira 34 - (a)
City Yalencia
Courtry Spain
Postal Code 46022
Telephone 457638
e-mail gpedrerat@gmail. com
Equiprient Description Sophisticated equipment
Book Reference BOOE
C.W. Reference Cv0o0g
Status Accepted

1D Report Mumber of photoz Price by Level Price for Editorial
140
126
28

91
84
21
43

77

Cloze

Fig. 3.6 User interface generated from an Master/Detail IU with masile (a), and detail role (b)

3.4 Explicitly Distinguishing Abstract and Concrete Interaction
Modelling in OO-Method

The OO-Method Presentation Model constitutes a unifiedracteon model in

which there is no explicit distinction between an abstracel and a concrete level.
This model can be considered a good starting point for adetyuanodelling in-

teraction since it provides a good basis to include userfate generation in the
conceptual model compilation process. However, it stilgents an important prob-
lem: the interaction style of the resultant software aian is fixed by the model
compiler, and there is no way to adapt the presentation giytlee particular needs
and individual tastes of end-users. In this section, we show to make this dis-

tinction feasible. We also extend the above approach indinection, and add a
concrete level that incorporates decisions related tdgotas and users. In partic-

3.4 Explicitly Distinguishing Abstract and Concrete Irgetion Modelling in OO-Method 13

ular, the Transformation Templates approach is preserstednaeans for concrete
interaction modelling.

3.4.1 Abstract I nteraction Modelling

As explainedin Section 3.3, the OO-Method Presentationdpibvides primitives

that allow the designer to define user interfaces in a homsmenand platform-

independent way. All of its interaction patterns, from theee levels, capture the
necessary aspects of the user interface without delvimgnmplementation issues.
In other words, the OO-Method Presentation Model focusewluet type of user

interaction is desired, and not on how this interaction wélimplemented in the
resulting software product. Therefore, the OO-Method &rtgtion Model can be
considered an abstract model from which the model compd#er automatically

generate a user interface for different interaction maiéaliand platforms.

3.4.2 Concrete I nteraction Modelling: Transformation Templates

At the abstract level, the OO-Method Presentation Modebkdus provide prim-
itives that allow the structure, layout and style of useelféces to be expressed.
These decisions are delegated to the model compiler andedtechded in it. Thus,
design knowledge and presentation guidelines are implicitfixed in the tool that
performs the model-to-code transformation and cannot litecedr customized.
Thus, even though different final user interface implemtgona are potentially valid
when moving from the abstract to the final user interface, fitdt possible to adapt
the user interface generation according to end-user remeints and preferences.
This results in the generation of predetermined user iated, all of which look
alike, and which may not always satisfy the end-user.

Because of these issues, it has been necessary to extend®tiketod Pre-
sentation Model with a new concrete level that provides dugiired expresiveness
in order to enable the customization of user interfacesrbdfteir generation. An
approach based on Transformation Templates has been difirths purpose.

A Transformation Template [3, 2] aims to specify the strueflayout and style
of a user interface according to preferences and requireneérend-users as well
as according to the different hardware and software comguuiatforms and envi-
ronments in which the user interface will be used.

A Transformation Template is composed of parameters wido@ated values
that parameterize the transformations from the OO-Metheddhtation Model to
code. Figure 3.7 illustrates the use of a Transformationplata with OO-Method.
The model compiler takes a Presentation Model and a Tramstton Template
as input. The Transformation Template provides specitioatihat determine how
to transform the Presentation Model to code. The specificatare expressed by

14 3 Conceptual Modelling of Interaction

TRANSFORMATION
TEMPLATE

parameter1: valuel, selector1

parameter2: value2, selector2
parameter3: value3, selector3

00-METHOD '
MODEL USER INTERFACE
PRESENTATION
MODEL COMPILER CODE J

Fig. 3.7 An OO-Method Presentation Model and a Transformation Tatepare inputs for the
model compiler

means of parameters with values and selectors. Selectiime tlee set of elements
of the OO-Method Presentation Model that are affected by#hge of the parame-
ter. The transformation engine follows the specificatiangenerate the code.

In this way, Transformation Templates externalizes thegieknowledge and
presentation guidelines and makes them customizablediogao the characteris-
tics of the project that is being carried out. Transformaflemplates can then be
reused in other projects with similar characteristics.

Even though the idea behind the Transformation Templateased on Cascad-
ing Style Sheets [6], there are significant differences betwthe two approaches
with the main one being that Transformation Templates apdieghto user inter-
face models and not directly on the code. Another differeatieat Transformation
Templates are supposed to be used in an MDE process for tesdadae generation
for different contexts of use, not only for web environments

The main concepts or primitives that characterize the Toamsation Templates
approach are depicted in Figure 3.8. There are conceptedetacontext, to user in-
terface models, and to the Transformation Templates tHees&\ll these concepts
are explained bellow.

3.4.2.1 Context

e Context (see Figure 3.8): refers to the context of use of taractive system.
We have defined context according to the Cameleon Refereaceeork [9],
which is widely accepted in the HCI community. Accordinghdstiramework, a
context of use is composed of the stereotype of a user whizsaut an interac-
tive task with a specific computing platform in a given sumding environment.
The purpose of conceptualizing context is that we want igtpdssible to define
different Transformation Templates for different conteat use.

3.4 Explicitly Distinguishing Abstract and Concrete Irgetion Modelling in OO-Method 15

Context ; Transformation Templates User Interface Models

I 1
{ PARAMETER USER INTERFACE
l TYPE VARSI META-ELEMENT

Parameter type definition level

Parameter definition level

TEMPLATE ELEMENT

| I SELECTOR I I

Fig. 3.8 Main concepts of the Transformation Templates approach

3 [l VALUE l
[ST MTRANSFORMATIONH S EE] IUSERINTERFACEI

3.4.2.2 User Interface Models

The Transformation Templates approach makes use of twaeptsicelated to user
interface models (see Figure 3.8):

e User Interface Meta-Element: represents, in a generic aay, of the OO-
Method interaction patterns presented in Section 3.3.

e User Interface Element: represents an element of the OMxddePresentation
Model, that is, a specific instance of any of the above meatianteraction pat-
terns.

It is important to note that even though in this chapter we @esenting the
Transformation Templates approach as an extension of Othddeit can also be
used with other MDE approaches related to user interfaceldement. In fact, the
User Interface Meta-Element is a generic representati@npfmeta-element of a
user interface meta-model just as the User Interface Eleim@ngeneric represen-
tation of any element of a user interface model.

3.4.2.3 Transformation Templates

With regard to concepts specifically related to the Trams#dion Templates ap-
proach, we distinguish two levels: one in which parametpesyare defined, and
another one in which the previously defined parameter typesatantiated as pa-
rameters in a Transformation Template.

In the parameter type definition level, there are two corségete Figure 3.8):

e Value Type: refers to a specific data type (e.g., integer, 0&bur, etc.) or to an
enumeration of the possible values that a parameter typassame.

e Parameter Type: represents a design or presentation apteted to the struc-
ture, layout, or style of the user interface. We can distisigbetween low-level

16 3 Conceptual Modelling of Interaction

and high-level parameter types. Low-level ones operatkeagttiribute level of
user interfaces; for instance, colour or font type are levwel parameter types
related to style. High-level parameter types operate attimeept level of user
interfaces and can be used to specify the structure of thentseface, the type
of components (containers, widgets) that will be used, eralignment of the
components. Defining a parameter type subsumes specifyinigst of user in-
terface meta-elements that are affected by, as well asliis tgpe. A parameter
type, with all or a set of its possible values, can be impleiegin different
contexts of use. In order to decide about these implementgtive propose that
each possible value receive an estimation of its importeevet and its develop-
ment cost for different relevant contexts of use. In this vssible values with
a high level of importance and a low development cost can Ipéeimented first
in a given context, followed by those with a high level of innfamce and a high
development cost, and so on. Possible values with a low téiglportance and
a high development cost would not have to be implementedeicthresponding
context. For each relevant context of use, usability ginéslcan be assigned to
each possible value of a parameter type. These guidelinebeip user inter-
face designers in choosing one of the possible values byaexpd under what
conditions the values should be used.

Table 3.1 shows an example of the definition of a parameter igmedyroup-
ing layout for input argumentsThis paramter type is useful for deciding how to
present the input arguments of a service that have been ggauging the Argu-
ment Grouping interaction pattern presented in Sectiorl3Table 3.1 (a) shows
that this parameter type affects two interaction pattefribeOO-Method Presen-
tation Model. It also shows that four different possiblewes have been defined.
Table 3.1 (b) shows that the parameter type has been assbtiativo contexts of
use: a desktop platform and a mobile one. For each conteseoéind each possible
value the importance level and development cost have béiemegsd. Table 3.1 (c)
presents a list of usability guidelines for the desktop ertdéind each possible value
of the parameter type. These usability guidelines have pegposed from an ex-
traction from [14].

In the parameter definition level, there are four concepts Bgure 3.8):

e Transformation Template: gathers a set of parameters fpeeif&c context of
use.

e Parameter: each parameter of a Transformation Templatespmmds to a pa-
rameter type and has both a value and a selector.

e \Value: is an instance of a value type. The value of a paranteteesponds to a
possible value of the corresponding parameter type.

e Selector: delimits the set of user interface elements tresafiected by the value
of a parameter. We have defined different types of seledatsallows the de-
signer to choose: a specific user interface element; allgBeinterface elements
of a certain type; the first or last element contained in a ifipagpe of user
interface element; other options.

3.4 Explicitly Distinguishing Abstract and Concrete Irgetion Modelling in OO-Method

17

Parameter Type
Possible values enumeration
Name Affects - —
Value Graphical description
Personal Data Contact Data
. Two patterns of |group box
GrO.Upmg layOUt the OO-Method Personal Data | Contact Data
for input ;
Presentation
arguments } ; .
Model: Service |tabbed dialog bo
Interaction Unit Personal Data Contact Data
and Argument
Groupin
T iz
Personal Data
accordion Contact Data
@)
Contexts
SW: C# on .NET - HW: laptop or PESW: iPhone OS - HW: iPhone
Possible value |Importance Development Importance Development
level cost level cost
group box high low high low
tabbed dialog boxhigh low medium medium
wizard medium medium low high
accordion low medium medium medium
(b)

Possible value
group box
tabbed dialog bo

Usability guidelines (for desktop context)
Visual distinctiveness is important. The total number aiugrs will be small.
XVisual distinctiveness is important. The total number afugs is not greate
than 10.

=

wizard The total number of groups is between 3 and 10. The complexitiye task
is significant. The task implies several critical decisiofBe cost of errors
is high. The task must be done infrequently. The user lackexperience Jt
takes to complete the task efficiently.

accordion Visual distinctiveness is important. The total number afugs is not greater

than 10.

©

Table 3.1 Parameter type: grouping layout for input arguments

Figure 3.9 represents the user interface that could berwatdor the Service IU
that was presented before, in Figure 3.3, if the paranggtemping layout for input
argumentss applied with valuavizard (see Table 3.1) and if the following three pa-
rameters are also applied: a parameter for specifying tgetio be used to display
defined selections with valuadio button a parameter for specifying the alignment
of labels with valuevertical, and a parameter for specifying the background colour.

18 3 Conceptual Modelling of Interaction

New Photographer Application Form

Personal Data

Firzt Mame Last MName
| Teresa | | Pinta |
DM Age
seat7e
Gender

() Male &) Female

et] [Cancel]

New Photographer, Application Form

Contact D ata

Address

| Marqués de Zara 46 |
City Courtry
|\-’alencia | Spain |
FPastal Code Telephaone

46022 7853354

e-mail

| tpintofEyahoo. comm

MHext][Cancel]

Mew Photographer, Application Form ._ E|fg|
Other D ata
E quipment Description
Sophisticated photographical equipment
Book Feference C.\. Reference

BO41 Cvors

[ar. l [Canicel l

Fig. 3.9 User interface that could be generated from a Service IU afiplying different parame-
ters

3.5 Conclusion 19

3.5 Conclusion

This chapter emphasizes the importance of interaction itioglen the same level
of expressiveness as any other model involved in the demeaplife cycle of an
interactive application. In the same way a conceptual mofiile domain could be
used to derive a database for a future application, a conabpiodel of the interac-
tion could be used to derive a user interface for this sambcapipn [37]. A system
with a suitable functionality and persistence may be repptly end-users if the in-
terface does not satisfy their expectations. Therefoesgésigner must be provided
with the suitable conceptual primitives to represent evekgvant characteristic of
the final interface; otherwise, a complete code generatmm & conceptual model
cannot become a reality.

Today, the community has reached a level of progress in wihishhas now
become a reality that goes beyong mere prototypes. In the pasdel-based ap-
proacheshave been exploited to capture the essence of a user irgenfiaca con-
ceptual model of this user interface that will be later usadiesign, specification,
generation, and verification. More recenthypdel-driven engineeringMIDE) ap-
proaches have been introduced in order to make the usefaicgatevelopment life
cycle more precise, rigorous, and systematic. The maierdiffce between model-
based approaches and model-driven engineering appropihetl] is that in the
former, only models are used while in the latter all modeleyotn a meta-model
that is itself defined according to a same meta-meta-modatgileBly, all operations
are captured through transformations that are themsebwapl@nt with the same
meta-model as opposed as no meta-model in the former ap@®adot all model-
based approaches for user interface development couldrsédened as compliant
with Model-Driven Architecture (MDA) [40].

Indeed, the following MDE/MDA definition was approved unaoiusly by 17
participants of the ORMSC -Object and Reference Model Soipeittee of the Ar-
chitecture Board of the Object Management Group (OMG)- gigisession meet-
ing in Montreal on 23-26 August 2004. The stated purposeisftragraph was to
provide principles to be followed in the revision of the MDAlide:

“MDA is an OMG initiative that proposes to define a set of nangpietary stan-
dards that will specify interoperable technologies withettto realize model-driven
development with automated transformations. Not all o§¢hiechnologies will di-
rectly concern the transformation involved in MDA. MDA does$ necessarily rely
on the UML, but, as a specialized kind of MDD (Model-DrivervBlepment), MDA
necessarily involves the use of model(s) in developmeithwemtails that at least
one modeling language must be used. Any modeling languagaruMDA must be
described in terms of the MOF (MetaObject Facility) langaag enable the meta-
data to be understood in a standard manner, which is a preitiomdor any activity
to perform automated transformation”.

This definition is now completely applicable to some MDE aygmhes for in-
teraction modelling, such as OO-Method and its Presemtdfiodel presented in
this chapter. Taking this Presentation Model as input, \eeghat the interaction
modelling must be divided into two views: abstract [27, 38], &1d concrete [3, 2].

20 3 Conceptual Modelling of Interaction

The abstract view representdat will be shown in each interface. This view cor-
responds to the Presentation Model of OO-Method, whichessgrts the interface
independently of the platform and the design. The conciliete kepresentaowthe
elements will be shown in each interface. This model is tyilmeans of Transfor-
mation Templates. At first glance, designers might be corezkthat more effort on
their part is required for modelling the concrete level. loer, this problem can be
resolved thanks to the use of default Transformation Tetaeplar a specific context
of use. Once the abstract interaction model has been spk¢ifeeconcrete interac-
tion model can be determined by just choosing the defaultSfoamation Template
for the context of use in which the information system is gdimbe used. These de-
fault Transformation Templates must be designed only cneeéthen can be reused.
Designers might only has to change the value and/or scopenaé parameters in
order to adequate the concrete modelling to end-user Egeints.

Future avenues of this work include:

e Integration with requirements engineering: we plan to tigva method to cap-
ture interaction requirements that is compliant with haislevelopment based
on conceptual models. These requirements would help therosso determine
the users needs and preferences in order to guide the itberacodelling. The
capture of requirements would be based on tasks, which iadtaion that is
most commonly used in the HCI community.

¢ Inclusion of a usability model in the transformation prazese will include us-
ability characteristics in both the abstract and concratraction models. These
characteristics will help the designer to build qualitytsyss according to usabil-
ity guidelines and heuristics. This will be helpful not ofdy evaluating usability
during the transformation process, but also to guaranteert® extent that user
interfaces issued by this approach are somewhat usablensyraotion [1] so as
to provide a general computational framework for user fatas [32].

e Building various transformation sets for various develeptpaths: we will build
new transformation sets that would support other developmpaths [17] than
merely forward engineering. For instance, ReversiXML [Bp&rforms reverse
engineering of web pages into a concrete interface modeesgpd in UsiXML
[18] by using derivation rules, but not transformation sulSimilarly, Multi-
modaliXML [33] generates multimodal user interfaces basedhe same con-
ceptual models, but involve other sets of transformatidestu

e Building multi-fidelity editors for each model: we plan tov#dop model editors
that enable modelers to rely on different levels of fidelitgt just high-fidelity
[19], for instance by sketching the model [11], ranging frimw fidelity to high
fidelity.

As for any MDA approach, it is crucial to develop any work tiantributes to
obtain a low threshold, a high ceiling, and wide walls as magpossible to expand
the capabilities of expressiveness and their transfoonaitito a larger gamma of
user interfaces. This is reflected in Figure 3.10: the firaegation of MDA software
usually suffered from a high threshold (they required a hagtount of resources
to get some results), a low ceiling (the capabilities of teerunterface generated

References 21

Capabilities

100%

o
@,
E
Q

Third generation

50%
First generation
weraﬂon

Integrated Development Environments

T Threshold

_.-"" Resources
(time, experience,...)

-
Walls

Fig. 3.10 Low threshold, high ceiling, and wide walls as determinaxfits MDA approach

were limited), and narrow walls (there was only one userfate generated for one
computing platform). The second generation improved fhisgon by lowering the
threshold, increasing the ceiling, and enlarging the w&light now, we are in the
third generation where user interface capabilities haen lexpanded for multiple
computing platforms and contexts of use.

This race is to be continued.

Acknowledgements We gratefully acknowledge the support of the ITEA2 Call 3XML project
under reference 20080026; the MITYC under the project Mylédkieb, TSI-020301-2009-014;
the MICINN under the project SESAMO, TIN2007-62894, co-fioed with ERDF; the Gener-
alitat Valenciana under the project ORCA, PROMETEO/2009/@&nd the grant BFPI1/2008/209.
Jean Vanderdonckt also thanks the FP7 Serenoa projectrseghpy the European Commission.

References

1. Silvia Abrahao, Emilio Iborra, and Jean Vanderdonclgahllity Evaluation of User Interfaces
Generated with a Model-Driven Architecture Tool. In E. L&vHvannberg, and G. Cockton,
editors,Maturing Usability: Quality in Software, Interaction ancaMe, volume 10 ofHCI
Series pages 3—-32. Springer, London, 2008.

2. Nathalie Aquino, Jean Vanderdonckt, and Oscar Pastemsiormation Templates: Adding
Flexibility to Model-Driven Engineering of User Interfage In Sung Y. Shin, Sascha Os-

22

10.

11.

12.

13.

14.

15.

16.

3 Conceptual Modelling of Interaction

sowski, Michael Schumacher, Mathew J. Palakal, and Chiér@Hung, editorsRroc. of the
25th ACM Symposium on Applied Computing, SAC 2010 (Sieni¢ze3land, March 22-26,
2010) pages 1195-1202. ACM Press, New York, 2010.

. Nathalie Aquino, Jean Vanderdonckt, Francisco Valvesidd Oscar Pastor. Using Profiles to

Support Model Transformations in the Model-Driven Develgmt of User Interfaces. In
V. Lopez Jaquero, F. Montero Simarro, J.P. Molina Massal &nVanderdonckt, editors,
Computer-Aided Design of User Interfaces VI, Proc. of 7th @onf. on Computer-Aided
Design of User Interfaces, CADUI 2008, (Albacete, SpaingJil-13, 2008)pages 35-46.
Springer, Berlin, 2009.

. Mickaél Baron and Patrick Girard. SUIDT: A task model déAsGUI-Builder. In Costin

Pribeanu and Jean Vanderdonckt, editdessk Models and Diagrams for User Interface De-
sign: Proc. of the First Int. Workshop on Task Models and Eaags for User Interface Design,
TAMODIA 2002 (18-19 July 2002, Bucharest, Romarpapes 64—71. INFOREC Publishing
House Bucharest, 2002.

. Francois Bodart, Anne-Marie Hennebert, Isabelle Pral®an-Marie Leheureux, and Jean

Vanderdonckt. A Model-Based Approach to Presentation: At@aum from Task Analysis
to Prototype. In Paterno [28], pages 77-94.

. Bert Bos, Tantek Celik, Hakon Wium Lie, and lan Hicksoras€ading Style Sheets Level 2

Revision 1 (CSS 2.1) Specification. Technical report, Waride Web Consortium (W3C),
July 2007.

. L. Bouillon, Q. Limbourg, Jean Vanderdonckt, and B. Mittko Reverse Engineering of

Web Pages Based on Derivations and Transformation®rdo. of 3rd Latin American Web
Congress LA-Web 2005 (Buenos Aires, Argentina, October Bdvember 2, 2005)pages
3-13, Los Alamitos, CA, USA, 2005. IEEE Computer SocietysBre

. Laurent Bouillon, Jean Vanderdonckt, and Kwok Chieu Chd&exible Re-engineering of

Web Sites. IrProc. of 8th ACM Int. Conf. on Intelligent User Interfaces] 2004 (Funchal,
13-16 January 2004)pages 132—-139. ACM Press, New York, 2004.

. Gaélle Calvary, Joélle Coutaz, David Thevenin, Quehimbourg, Laurent Bouillon, and

Jean Vanderdonckt. A Unifying Reference Framework for MUdtrget User Interfacesin-
teracting with Computersl5(3):289-308, June 2003.

Peter P. Chen. The Entity-Relationship Model - Towarchdied View of Data.ACM Trans.
Database Syst1(1):9-36, 1976.

Adrien Coyette and Jean Vanderdonckt. A Sketching TaoDiesigning Anyuser, Anyplat-
form, Anywhere User Interfaces. In Maria Francesca Cogabid Fabio Paterno, editors,
Proc. of 10th IFIP TC 13 Int. Conf. on Human-Computer Intei@c, INTERACT 2005 (Rome,
12-16 September 2005)olume 3585 otf_ecture Notes in Computer Scienpages 550-564.
Springer-Verlag, Berlin, 2005.

Paulo Pinheiro da Silva and Norman W. Paton. User Iderfdodeling in UMLI. IEEE
Software 20(4):62—69, 2003.

James D. Foley and Piyawadee Noi Sukaviriya. HistorguR®, and Bibliography of the
User Interface Design Environment (UIDE), an Early Modatéd System for User Interface
Design and Implementation. In Paterno [28], pages 3—14.

Wilbert O. Galitz. The Essential Guide to User Interface Design: An Introdurctio GUI
Design Principles and Techniquedohn Wiley & Sons, Inc., New York, NY, USA, 2002.
Peter Johnson, Stephanie Wilson, Panos Markopouldgeaenes Pycock. ADEPT: Advanced
Design Environment for Prototyping with Task Models. In&ia Ashlund, Kevin Mullet,
Austin Henderson, Erik Hollnagel, and Ted N. White, editétaman-Computer Interaction,
Proc. of INTERACT '93, IFIP TC13 International Conferenae lduman-Computer Interac-
tion, 24-29 April 1993, Amsterdam, The Netherlands, jgiotbanised with ACM Conference
on Human Aspects in Computing Systems CHIg®je 56. ACM, 1993.

Quentin Limbourg and Jean Vanderdonckt. USIXML: A Useeiface Description Language
Supporting Multiple Levels of Independence. In Maristéllatera and Sara Comai, editors,
Engineering Advanced Web Applications: Proc. of Worksliog®nnection with the 4th Int.
Conf. on Web Engineering, ICWE 2004 (Munich, Germany, 28480 2004) pages 325-338.
Rinton Press, 2004.

References 23

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Quentin Limbourg and Jean Vanderdonckt. Multi-Patm3farmational Development of User
Interfaces with Graph Transformations. In A. Seffah, Jeandérdonckt, and M. Desmarais,
editors,Human-Centered Software EngineerindC| Series, pages 109-140. Springer, Lon-
don, 2009.

Quentin Limbourg, Jean Vanderdonckt, Benjamin Miahottaurent Bouillon, and Victor
Lopez-Jaquero. USIXML: A Language Supporting Multi-p&@bvelopment of User Inter-
faces. In Rémi Bastide, Philippe A. Palanque, and Jordp Ratitors,Proc. of 9th IFIP Work-
ing Conference on Engineering for Human-Computer Intéoacjointly with 11th Int. Work-
shop on Design, Specification, and Verification of InteraetBystems, EHCI-DSVIS 2004
(Hamburg, July 11-13, 2004)olume 3425 ofLecture Notes in Computer Sciengeges
200-220. Springer-Verlag, Berlin, 2005.

Benjamin Michotte and Jean Vanderdonckt. GrafiXML, atMualrget User Interface Builder
Based on UsiXML. In D. Greenwood, M. Grottke, H. Lutfiyya, akd Popescu, editors,
Proc. of 4th Int. Conf. on Autonomic and Autonomous Systéd#sS 2008 (Gosier, 16-21
March 2008) pages 15-22, Los Alamitos, 2008. IEEE Computer SocietgsPre

Pedro J. Molina, Santiago Melia, and Oscar Pastor-UusA User Interface Specification
Model. In Christophe Kolski and Jean Vanderdonckt, edjt@smputer-Aided Design of
User Interfaces Ill, Proc. of the 4th Int. Conf. on Compuféded Design of User Interfaces,
CADUI 2002, (Valenciennes, France, May 15-17, 20@2pes 63—74. Kluwer, 2002.

Tony Morgan. Doing IT Better. Keynote address at the 3vdfCon Information Systems
Technology and its Applications, ISTA 2004 (Salt Lake CltyT, USA, 15-17 July, 2004),
July 2004.

Giulio Mori, Fabio Paterno, and Carmen Santoro. Desigd Development of Multide-
vice User Interfaces through Multiple Logical DescripBonlEEE Trans. Software Eng.
30(8):507-520, 2004.

Nuno Jardim Nunes and Jodo Falcao e Cunha. Wisdom: tv&ef Engineering Method for
Small Software Development Compani¢SEE Software17(5), 2000.

Antoni Olivé. Conceptual Schema-Centric Developmarn®rand Challenge for Information
Systems Research. In Pastor and e Cunha [26], pages 1-15.

Oscar Pastor. From Extreme Programming to Extreme Mogrgmming: Is It the Right
Time for Model Transformation Technologies? In StépharesBan, Josef Kiing, and Roland
Wagner, editorsProc. of 17th Int. Conf. on Database and Expert Systems éqipins, DEXA
2006 (Krakow, Poland, 4-8 September 200&9lume 4080 ofLecture Notes in Computer
Sciencepages 64—72. Springer, 2006.

Oscar Pastor and Joao Falcao e Cunha, editahganced Information Systems Engineering,
17th International Conference, CAISE 2005, Porto, Portugane 13-17, 2005, Proceedings
volume 3520 oL ecture Notes in Computer Scien&pringer, 2005.

Oscar Pastor and Juan Carlos Molindodel-Driven Architecture in Practice: A Software
Production Environment Based on Conceptual Modelii8pringer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2007.

Fabio Paterno, editoDesign, Specification and Verification of Interactive Syst®4, Pro-
ceedings of the First International Eurographics Workshiyme 8-10, 1994, Bocca di Magra,
Italy. Springer, 1994.

Fabio PaternoModel-Based Design and Evaluation of Interactive Applaradé Springer-
Verlag, London, UK, 1999.

Fabio Paterno, Carmen Santoro, and Lucio Davide SpdAdIA: A universal, declarative,
multiple abstraction-level language for service-oriénggplications in ubiquitous environ-
ments.ACM Trans. Comput.-Hum. Interaci.6(4), 2009.

Inés Pederiva, Jean Vanderdonckt, Sergio Espafi@,ldoacio Panach, and Oscar Pastor.
The Beautification Process in Model-Driven Engineering selJinterfaces. In Maria Ce-
cilia Calani Baranauskas, Philippe A. Palanque, Julio Akksand Simone Diniz Junqueira
Barbosa, editorRroc. of 11th IFIP TC 13th Int. Conf. on Human-Computer latgion, IN-
TERACT 2007 (Ro de Janeiro, September 10-14, 20@1)me 4662 ofLecture Notes in
Computer Scieng@ages 411-425. Springer-Verlag, Berlin, 2007.

24

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

3 Conceptual Modelling of Interaction

Angel R. Puerta and Jacob Eisenstein. Towards a Generap@ational Framework for
Model-Based Interface Development Systemisowl.-Based Syst12(8):433—442, 1999.
Adrian Stanciulescu, Quentin Limbourg, Jean VandeskiprBenjamin Michotte, and Fran-
cisco Montero. A Transformational Approach for Multimodseb User Interfaces based on
UsiXML. In Gianni Lazzari, Fabio Pianesi, James L. Crowl&gnji Mase, and Sharon L.
Oviatt, editorsProc. of the 7th Int. Conf. on Multimodal Interfaces, ICMIGBE)Trento, Italy,
October 4-6, 2005)pages 259-266, New York, 2005. ACM Press.

Wayne P. Stevens, Glenford J. Myers, and Larry L. Cotisean Structured DesigniBM
Systems Journall3(2):115-139, 1974.

Pedro A. Szekely. Template-based mapping of applicaldba interactive displays. In Scott E.
Hudson, editorProc. of the 3rd Annual ACM Symposium on User Interface Soéand
Technology, UIST 1990 (Snowbird, Utah, USA, October 3-90) $ages 1-9. ACM, 1990.
Pedro A. Szekely. Retrospective and Challenges for MBdsed Interface Development.
In Francgois Bodart and Jean Vanderdonckt, editbesign, Specification and Verification of
Interactive Systems’96, Proc. of the 3rd Int. Eurographdgsrkshop, June 5-7, 1996, Namur,
Belgium pages 1-27. Springer, 1996.

Ismael Torres, Oscar Pastor, Quentin Limbourg, and Yaaderdonckt. Una experiencia
prctica de generacin de interfaces de usuario a partir deegsap conceptuales. In Angel R.
Puerta and Miguel Gea, editoyoc. of VI Congreso Interaccin Persona Ordenador, Inter-
accin 2005 - CEDI 2005 (Granada, Spain, 13-16 September 2@@es 401-404, Madrid,
2005. Thomson Paraninfo.

Francisco Valverde, José Ignacio Panach, Nathaliendgand Oscar PastoNew Trends
on Human-Computer Interaction. Research, Development, Mm®Is and Methodschapter
Dealing with Abstract Interaction Modelling in an MDE Dewpiment Process: a Pattern-
Based Approach, pages 119-128. Springer London, April 2009

Francisco Valverde, José Ignacio Panach, and OsctrP#@s Abstract Interaction Model
for a MDA Software Production Method. In John C. Grundy, St#amtmann, Alberto H. F.
Laender, Leszek A. Maciaszek, and John F. Roddick, edi@irallenges in Conceptual Mod-
elling. Proc. of tutorials, posters, panels and industigantributions at the 26th Int. Conf. on
Conceptual Modeling, ER 2007 (Auckland, New Zealand, Nbees+9, 2007)volume 83 of
CRPIT, pages 109-114. Australian Computer Society, 2007.

Jean Vanderdonckt. A MDA-Compliant Environment for Bleyping User Interfaces of In-
formation Systems. In Pastor and e Cunha [26], pages 16-31.

Jean Vanderdonckt. Model-Driven Engineering of Ustgrfaces: Promises, Successes, and
Failures. In S. Buraga and |. Juvina, editd?spc. of 5th Annual Romanian Conf. on Human-
Computer Interaction ROCHI'2008, (lasi, 18-19 Septemi98), pages 1-10. Matrix ROM,
Bucarest, 2008.

Gerrit C. Van Der Veer, Bert F. Lenting, and Bas A. J. Beoge. GTA: Groupware Task
Analysis - Modeling ComplexityActa Psychologica91:297-322, 1996.

