
Chapter 3
Conceptual Modelling of Interaction

Nathalie Aquino1, Jean Vanderdonckt1,2, Jośe Ignacio Panach1, Oscar Pastor1
1Centro de Investigacíon en Métodos de Produccíon de Software, Universidad
Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
2Université catholique de Louvain, Louvain School of Management (LSM),
Place des Doyens, 1 - B-1348, Louvain-la-Neuve, Belgium
{naquino, jpanach, opastor}@pros.upv.es, jean.vanderdonckt@uclouvain.be

Abstract The conceptual model of an information system cannot be considered
to be complete after just specifying the structure and behaviour of the system. It is
also necessary to specify how end-users will interact with the system. Even though
there are several proposals for modelling interaction, none of them have become
widely known or widely used in academia and industry. After illustrating the state
of the art in this field, this chapter briefly presents a practical approach with the
aim of showing how interaction modelling can be faced. The presented approach
is called OO-Method, a Model-Driven Engineering method that allows full func-
tional systems to be generated from a conceptual model. The chapter explains how
OO-Method supports the interaction modelling by means of its Presentation Model.
Apart from this description, the chapter comments on some limitations of the Pre-
sentation Model to satisfy end-user interaction requirements related to preferences
and different contexts of use. This problem is faced by distinguishing an abstract
and a concrete level for interaction modelling. The abstract perspective focuses on
what must be presented to end-users in order to allow their interaction with an in-
formation system, and the concrete perspective focuses on how those elements are
presented. Upon the basis of a whole interaction model, abstract and concrete per-
spectives are separated. On the one hand, the OO-Method Presentation Model is
shown to be an example of abstract interaction modelling. Onthe other hand, an
extension based on Transformation Templates is proposed tocover the concrete in-
teraction modelling perspective. To illustrate how both interaction modelling levels
can be used, this chapter models the interaction of a photography agency system.

3.1 Introduction

The idea that the conceptual model is the code is becoming more and more a reality
in software engineering and information systems design. Some explicit statements
for this perspective can be found in the Conceptual Schema-Centric Development
challenge [24], the Extreme Non-Programming initiative [21, 25], and the set of

1



2 3 Conceptual Modelling of Interaction

both academic and industrial approaches and tools proposedwithin the frame of
Model-Driven Engineering (MDE), with the intention of providing operative so-
lutions. Conceptually aligned with these ideas and specifically represented in this
book under the term Conceptual Modelling Programming (see the manifesto, Chap-
ter 1), we strongly believe that conceptual modelling is programming. As stated in
that manifesto,the conceptual model, with which modellers program, must becom-
plete and holistic. In practice, this statement requires every necessary aspect of data
(structure), behaviour (function), and interaction (bothcomponent interaction and
user interaction), to be adequately included.

User interaction modelling is the issue in this chapter. We are especially con-
cerned with the answer to an apparently simple question: What are the most rele-
vant conceptual primitives or modelling elements that should guide the construction
of a conceptual interaction model? This question arises since the conceptual model
community provides widely accepted and widely used data models with strong stan-
dards such as the Entity-Relationship Model [10] or UML Class Diagrams as well
as widely accepted and widely used behaviour models (from the old Data-Flow Dia-
grams [34] to the more recent Collaboration, Sequence or Activity UML Diagrams).
However, it is surprising that clear and concrete conceptual models to represent in-
teraction have not yet been provided. There are still questions about which interac-
tion models will allow us to face conceptual modelling of user interfaces and how
these models can be properly embedded into the whole conceptual model, which
includes data, behaviour, and interaction. This is particularly surprising since the
answer to these questions are so evident for the data and behaviour perspectives of
conceptual modelling, especially when considering the great importance of user in-
terface design in the whole process of building an information system. Everyone ac-
cepts that a final software application is much more than a well-defined database and
a set of programs that incorporate the needed functionality. If a conceptual model
is to be viewed as the code of the system, every essential aspect of software must
be considered, and, of course, user interface plays a basic role in this context. Go-
ing back to the Conceptual Modelling Programming manifesto, to make the goal of
having a conceptual model complete and holistic a reality, the proper specification
of user interface conceptual models (not only user interface sketches of the system)
is strictly required. Therefore, the conceptual modellingelements behind user inter-
face specification must be defined precisely and must be basedon a corresponding
ontological agreement that fixes the concepts and their associated representation and
notation.

To achieve these goals, this chapter explores two aspects. First, a particular ex-
ample of what user interface modelling means in terms of modelling primitives and
model specification is introduced. The selected approach isthe Presentation Model
of OO-Method [27]. This approach constitutes a practical case of how interaction
modelling from the user interface perspective is joined to data and behaviour mod-
elling in a unified way, and how this conceptual model includes all the relevant
information that is needed to face the subsequent conceptual model compilation
process to obtain the corresponding software system. Conceptual primitives are in-
troduced to show how user interface modelling can be specifically put in practice,



3.2 Related Work 3

bridging the gap between “conventional” (data- and behaviour-oriented) conceptual
modelling and user interface modelling. Second, an important feature that is asso-
ciated to user interface modelling is dealt with. An interaction model can fix the
presentation style, but this presentation style normally needs to be adapted to the
end-user’s tastes and wishes. Talking about the user interface is not the same as
talking about the final data and program structure. In general, end-users want to par-
ticipate in defining the way in which the human-software interaction is going to be
accomplished, and this cannot be done if the user interface model does not allow the
conceptual model to be adapted to their particular interaction requirements. Some
authors use the term “beautification” to refer to this situation [31].

A common solution for solving this problem consists in explicitly distinguishing
two levels in the interaction conceptual model: an abstractlevel and a concrete level.
This approach has been presented in several works ([9, 22, 16, 18, 39, 30], among
others), and it is currently being applied in the context of user interface development
according to MDE. While the abstract level focuses on the high-level perspective of
the interaction, the concrete level identifies several possible representations of the
abstract modelling primitives and gives modellers the chance to adapt them accord-
ing to the target platform and the end-user’s preferences. This distinction between
abstract and concrete provides a two-level approach that makes it possible to differ-
entiate concerns that are very important within the scope ofinteraction modelling.
On the one hand, there are higher-level abstractions that fixthe main relevant user
interface properties (e.g., the set of interaction units that should conform the main
menu of an application). These abstractions represent which elements are going to
be shown in each interface. On the other hand, there is a more concrete level where
interfaces are specified for particular software environments. This concrete model
represents how the elements of the interface will be presented (e.g., the particular,
concrete, presentation style chosen for presenting those main menu options to the
end-users).

In accordance with these ideas, this chapter is structured in the following way: in
Section 3.2, a related work analysis is presented to understand what other authors
have proposed and how the interaction modelling issue is confronted from a concep-
tual model perspective in current MDE approaches. In Section 3.3, the Presentation
Model of OO-Method is introduced as an example of how interaction modelling
is properly embedded in an MDE-based software production process where con-
ceptual models are the only key software artefacts. In Section 3.4, we propose an
extension to explicitly distinguish between the abstract level and the concrete level,
indicating how to accomplish this distinction in practice.The chapter ends with
concluding remarks and the list of references used.

3.2 Related Work

Since its inception in the eighties, the domain of Human-Computer Interaction
(HCI) has undergone a dramatic increase in research and development, arriving



4 3 Conceptual Modelling of Interaction

to the point where it is recognized that interaction should also be modelled just
like any other aspect of an interactive system. During more than a decade, several
model-based approaches have evolved in parallel in order tocope with the different
challenges raised by the design and development of user interfaces in continuously
evolving technological settings. We can identify various generations of works in this
area [36]. The first generation of model-based approaches focused basically on de-
riving abstractions for graphical user interfaces (see, for example, UIDE [13]). At
that time, user interface designers focused mainly on identifying relevant aspects for
this kind of interaction modality. Then, the approaches evolved into a second gen-
eration that focused on expressing the high-level semantics of the interaction: this
was mainly supported through the use of task models and associated tools, which
were aimed at expressing the activities that the users intend to accomplish while
interacting with the application (see, for example, Adept [15], GTA [42], Concur-
TaskTrees (CTT) [29], Trident [5], Humanoid [35]). Since these times, a consensus
has been reached in the community to structure interaction modelling according to
different levels of abstraction in almost the same way as in other areas (i.e. database
engineering and information systems).

In this context, one of the most recent works is the Cameleon Reference Frame-
work [9]. Cameleon structures the development life cycle into four levels of abstrac-
tion, starting from task specification to a running interface (see Figure 3.1):

• The Task and Concepts level: This level considers (a) the logical activities (tasks)
that need to be performed in order to reach the end-users’ goals; and (b) the
domain objects manipulated by these tasks.

• The Abstract User Interface (AUI): This level represents the user interface in
terms of interaction spaces (or presentation units), independently of which inter-
actors are available and even independently of the modalityof interaction (e.g.,
graphical, vocal, haptic).

• The Concrete User Interface (CUI): This level represents the user interface in
terms of “concrete interactors”, which depend on the type ofplatform and media
available and which have a number of attributes that more concretely define how
the user interface should be perceived by the end-user.

• The Final User Interface (FUI): This level consists of source code, in any pro-
gramming or mark-up language (e.g., Java, HTML5, VoiceXML,X+V). It can
then be interpreted or compiled.

These levels are structured with both a relationship of reification going from a
more abstract level to a more concrete one and a relationshipof abstraction going
from a more concrete level to a more abstract one. There can also be a relationship
of translation between models at the same level of abstraction, but conceived for
different contexts of use. These relationships are depicted in Figure 3.1.

There are other approaches for representing the interaction based on UML
models (http://www.uml.org/). Wisdom [23] is a UML-based software engineer-
ing method that proposes an evolving use-case-based methodin which the software
system is iteratively developed by incremental prototypesuntil the final product
is obtained. The UML notation has been enriched with the necessary stereotypes,



3.2 Related Work 5

USER,

PLATFORM, 

ENVIRONMENT
USER S PLATFORM S ENVIRONMENT S ENVIRONMENT TPLATFORM TUSER T

TASK AND 

DOMAIN S

ABSTRACT USER 

INTERFACE S

CONCRETE USER 

INTERFACE S

FINAL USER 

INTERFACE S

SUPPORTED

MODEL

UNSUPPORTED 

MODEL

TASK AND 

DOMAIN T

ABSTRACT USER 

INTERFACE T

CONCRETE USER 

INTERFACE T

FINAL USER 

INTERFACE T

TASK AND 

DOMAIN

ABSTRACT 

USER

INTERFACE

CONCRETE 

USER

INTERFACE

FINAL USER 

INTERFACE

T

R

A

N

S

F

O

R

M

A

T

I

O

N

S

S = Source context of use T = Target context of use

Translation

Abstraction

Reflexion

Reification

Fig. 3.1 Relationships between components in the Cameleon Reference Framework

labelled values, and icons to allow user-centered development and a detailed user
interface design. Three of its models are concerned with interaction modelling at
different stages: the Interaction Model, at the analysis stage; and the Dialog and Pre-
sentation models during the design stage, as refinements of the Interaction Model.
Another important proposal is UMLi [12], which is a set of user interface models
that extends UML to provide greater support for user interface design. UMLi intro-
duces a new diagram: the User Interface Diagram, which can beconsidered to be the
first reliable proposal of UML to formally capture the user interface. However, the
models are so detailed that the modelling turns out to be verydifficult. Middle-sized
models are very hard to specify, which may be the reason why UMLi has not been
adopted in industrial environments.

In addition, there are several proposals that model the interaction abstractly by
means of the above-mentioned ConcurTaskTrees (CTT) notation [29]. Examples of
these types of proposals are TERESA [22] and SUIDT [4]. TERESA (Transforma-
tion Environment for inteRactivE Systems representAtions) is a tool that supports
transformations in a top-down manner, providing the possibility of obtaining inter-
faces for different types of devices from logical descriptions. This tool starts with an
overall envisioned task model and then derives concrete andeffective user interfaces
for multiple devices. SUIDT (Safe User Interface Design Tool) is a tool that auto-
matically generates interfaces using several models that are related to each other: a
Formal Functional Core, an Abstract Task Model, and a Concrete Task Model. CTT
notation is used in the Abstract Task Model and in the Concrete Task Model.

We have mentioned different types of approaches for representing the interaction
in an abstract manner; however, a suitable language that enables integration within
the development environment is still needed. For this purpose, the notion of User In-
terface Description Language (UIDL) has emerged to expressany of the aforemen-
tioned models. A UIDL is a formal language used in HCI to describe a particular



6 3 Conceptual Modelling of Interaction

user interface independently of any implementation technology. As such, the user
interface might involve different interaction modalities(e.g., graphical, vocal, tac-
tile, haptic, multimodal), interaction techniques (e.g.,drag and drop), or interaction
styles (e.g., direct manipulation, form fillings, virtual reality). A common funda-
mental assumption of most UIDLs is that user interfaces are modelled as algebraic
or model-theoretic structures that include a collection ofsets of interaction objects
together with behaviours over those sets.

The design process for a UIDL encompasses the definition of the following arte-
facts:

• Semantics: This expresses the context, meaning and intention of each abstraction
captured by the underlying meta-models on which the UIDL is based.

• Abstract Syntax: This is a syntax that makes it possible to define user interface
models (in accordance with the UIDL semantics) independently of any represen-
tation formalism.

• Concrete Syntax/es: These are (one or more) concrete representation formalisms
intended to syntactically express user interface models.

• Stylistics: These are graphical and textual representations of the UIDL abstrac-
tions that maximize their representativity and meaningfulness in order to facili-
tate understanding and communication among different people.

In conclusion, there are a lot of proposals to represent the interaction abstractly,
as we have seen in this section. Each proposal is based on a specific notation, like
UML or CTTs. However, as far as we know, none of these proposals supports in-
teraction modelling together with persistence and functionality. Existing proposals
can generate interfaces but not fully functional systems. Moreover, all the works
mentioned in this section have seldom been used in industrial environments. In the
next section, we present an approach that has solved both of these limitations: the
modelling of interaction in a holistic conceptual modelling approach and the practi-
cal applicability of interaction modelling in an industrial context. Furthermore, we
show how the interaction can be represented by means of conceptual primitives.

3.3 The Interaction Model of OO-Method

OO-Method [27] is an object-oriented method which allows the automatic genera-
tion of software applications from conceptual models. These conceptual models are
structured in four system views: (1) the Object Model specifies the static properties
of the interactive application by defining the classes and their relationships; (2) the
Dynamic Model controls the application objects by defining their life cycle and in-
teractions; (3) the Functional Model describes the semantics of object state changes;
and (4) the Presentation Model specifies the user interface.

OO-Method is supported by a commercial software suite namedOlivaNOVA
that was developed by CARE Technologies (http://www.care-t.com). OlivaNOVA
edits the various models involved and applies subsequent transformations until the



3.3 The Interaction Model of OO-Method 7

final code of a fully functional application (persistence, logic, and presentation) is
generated for different computing platforms: C# or ASP running on .NET or .NET
2.0; and EJB, JSP, or JavaServer Faces running on Java. Thus,OO-Method defines
a holistic conceptual model which includes the interactionperspective as well as the
structural and behavioural ones. Furthermore, it is currently being used successfully
in an industrial environment.

This section presents the conceptual primitives of the OO-Method Presentation
Model, which allow a user interface to be modeled in a convenient way. These prim-
itives have enough expressiveness to represent any management information system
interface. Furthermore, an illustrative example related to a photography agency sys-
tem is presented throughout this section and the next one. This agency manages
illustrated reports for distribution to newspaper editorials. The agency operates with
photographers who work as independent professionals.

The OO-Method Presentation Model is structured with a set ofinteraction pat-
terns that were defined in [20]. These interaction patterns are ordered in three levels
(see Figure 3.2):

• Level 1 - Hierarchical Action Tree (HAT): organizes the access to the system
functionality through a tree-shaped abstraction.

• Level 2 - Interaction Units (IUs): represent the main interactive operations that
can be performed on the domain objects (executing a service,querying the pop-
ulation of a class, and visualizing the details of a specific object).

• Level 3 - Elementary Patterns (EPs): constitute the building blocks from which
IUs are constructed.

In the next three subsections, we provide more details aboutthe interaction pat-
terns from the three levels, going from the most specific to the most general ones.

3.3.1 Elementary Patterns

Elementary Patterns (EPs) constitute the primitive building blocks to build IUs.
They represent specific aspects of the interaction between ahuman and a system
and cannot be combined in an arbitrary way; on the contrary, each of them are ap-
plicable in specific IUs.

In the current OO-Method Presentation Model, there are eleven EPs that can
be related to their corresponding relevant IUs (see Figure 3.2). These EPs are the
following:

• Introduction: captures the relevant aspects of data to be entered by the end-
user. Interaction aspects that can be specified include editmasks and valid value
ranges.

• Defined selection: enables the definition (by enumeration) of a set of valid values
for an associated model element.



8 3 Conceptual Modelling of Interaction

HIERARCHICAL

ACTION TREE

SERVICE

INTERACTION UNIT

INSTANCE

INTERACTION UNIT

POPULATION

INTERACTION UNIT

MASTER/DETAIL

INTERACTION UNIT

INTRODUCTION

DEFINED

SELECTION

ARGUMENT

GROUPING

POPULATION

PRELOAD

DEPENDENCY

CONDITIONAL 

NAVIGATION

FILTER

ORDER CRITERION

DISPLAY SET

ACTIONS

NAVIGATIONS

MASTER

INTERACTION UNIT

DETAILS

INTERACTION 

UNITS

A uses B

A B

Legend

Level 1 Level 2 Level 3

Fig. 3.2 OO-Method Presentation Model

• Argument grouping: defines the way in which input arguments for a given service
are presented to the end-user allowing these input arguments to be arranged in
groups and subgroups.

• Dependency: enables dependency relationships to de definedbetween the value
or state of an input argument of a service and the value or state of other input
argument of the same service. The definition is based on ECA-type rules (event,
condition, action).

• Population preload: allows the designer to specify that theselection of an object
as an input argument of a service will be carried out with or without changing
the interaction context.

• Conditional navigation: allows navigation to different IUs after the successful or
failed execution of a service. In order to specify which IU tonavigate to, it is
also necessary to establish a condition that must hold afterthe execution of the
service.



3.3 The Interaction Model of OO-Method 9

• Filter: defines a selection condition over the population ofa class, which can
be used to restrict the object population of the class, thereby facilitating further
object search and selection operations.

• Order criterion: defines how the population of a class is to beordered. Ordering
is done on the values of one or more properties of the objects,taking into account
ascending/descending options.

• Display set: determines which properties of a class are to bepresented to the user
and in what order.

• Actions: define the set of available services that can be performed on the objects
of a given class.

• Navigations: determine the information set that can be accessed via navigation
of the structural relationships found in an initial class.

3.3.2 Interaction Units

An Interaction Unit (IU) describes a particular scenario ofthe user interface through
which users are able to carry out specific tasks. In the OO-Method approach, there
are three different basic kinds of interaction scenarios: execution of a service, ma-
nipulation of one object, and manipulation of a collection of objects. For each one
of these basic interaction scenarios, the OO-Method approach proposes a specific
IU that is appropriate for handling it. A fourth IU is proposed to combine the other
IUs. The four IUs are the following (see Figure 3.2):

• Service IU: enables a scenario to be defined in which the user interacts with
the system in order to execute a service. The user must provide the arguments
and launch the service. Six of the EPs can be used to complete the specification
of a Service IU: introduction, defined selection, argument grouping, dependency,
population preload, and conditional navigation (see Figure 3.2). Figure 3.3 shows
the final user interface generated from a Service IU. The userinterface for this
Service IU allows a photographer to fill in an application form for working in a
photography agency. The photographer must provide personal and contact data
as well as data related to its profesional equipment.

• Instance IU: represents a scenario in which information about a single object is
displayed, including the list of services that can be executed on it, as well as the
scenarios of related information to which the user can navigate. All this informa-
tion is structured by means of three EPs: display set, actions, and navigations (see
Figure 3.2). Figure 3.4 shows the final user interface generated from an Instance
IU. The user interface for this Instance IU shows data related to a photographer
of the agency.

• Population IU: represents an interaction scenario where multiple objects are pre-
sented. Includes the appropriate mechanisms to do the following: select and sort
objects, choose the information and available services to be shown, and list other
scenarios that can be reached. All this information is structured by means of five



10 3 Conceptual Modelling of Interaction

(a)

(b)

Fig. 3.3 User interface generated from a Service IU with argument groupings (a), and defined
selection (b)

(a)
(b)

(c)

Fig. 3.4 User interface generated from an Instance IU with display set (a), actions (b), and navi-
gations (c)

EPs: filter, order criteria, display set, actions, and navigations (see Figure 3.2).
Figure 3.5 shows the final user interface generated from a Population IU. The
user interface for this Population IU shows data related to multiple photogra-
phers of the agency at the same time.

• Master/Detail IU: presents the user with a scenario for the interaction with multi-
ple collections of objects that belong to different interrelated classes. This forms
a composite scenario in which two kinds of roles can be defined: a master role,
which represents the main interaction scenario; and detailroles, which represent



3.3 The Interaction Model of OO-Method 11

(a)

(b)

(c)

(d)

(e)

Fig. 3.5 User interface generated from a Population IU with filter (a), order criterion (b), display
set (c), actions (d), and navigations (e)

secondary, subordinated interaction scenarios that are kept synchronized with the
master role (see Figure 3.2). Figure 3.6 shows the final user interface generated
from a Master/Detail IU in which the master role correspondsto an Instance IU,
which shows data related to a photographer of the agency, andthe detail role
corresponds to a Population IU, which shows the list of reports related to the
photographer.

The user interfaces depicted in Figure 3.3, Figure 3.4, Figure 3.5, and Figure 3.6
have been generated by OlivaNOVA for the desktop .NET platform.

3.3.3 Hierarchical Action Tree

Once the interaction scenarios have been described throughthe corresponding IUs,
it is necessary to determine how these IUs are to be structured, organized, and pre-
sented to the user. This structure will characterize the toplevel of the user interface,
establishing what could be described as the main menu of the application. The Hi-
erarchical Action Tree (HAT) serves this purpose.

The HAT defines an access tree that follows the principle of gradual approxi-
mation to specify the manner in which the interactive user can access system func-
tionality. This is achieved by arranging actions into groups and subgroups by using
a tree-abstraction, from the most general to the most detailed. Intermediate (i.e.,
non-leaf) nodes in the tree are simply grouping labels, whereas tree leaves reference
pre-existing IUs (see Figure 3.2).



12 3 Conceptual Modelling of Interaction

(a)

(b)

Fig. 3.6 User interface generated from an Master/Detail IU with master role (a), and detail role (b)

3.4 Explicitly Distinguishing Abstract and Concrete Interaction
Modelling in OO-Method

The OO-Method Presentation Model constitutes a unified interaction model in
which there is no explicit distinction between an abstract level and a concrete level.
This model can be considered a good starting point for adequately modelling in-
teraction since it provides a good basis to include user interface generation in the
conceptual model compilation process. However, it still presents an important prob-
lem: the interaction style of the resultant software application is fixed by the model
compiler, and there is no way to adapt the presentation styleto the particular needs
and individual tastes of end-users. In this section, we showhow to make this dis-
tinction feasible. We also extend the above approach in thisdirection, and add a
concrete level that incorporates decisions related to platforms and users. In partic-



3.4 Explicitly Distinguishing Abstract and Concrete Interaction Modelling in OO-Method 13

ular, the Transformation Templates approach is presented as a means for concrete
interaction modelling.

3.4.1 Abstract Interaction Modelling

As explained in Section 3.3, the OO-Method Presentation Model provides primitives
that allow the designer to define user interfaces in a homogeneous and platform-
independent way. All of its interaction patterns, from the three levels, capture the
necessary aspects of the user interface without delving into implementation issues.
In other words, the OO-Method Presentation Model focuses onwhat type of user
interaction is desired, and not on how this interaction willbe implemented in the
resulting software product. Therefore, the OO-Method Presentation Model can be
considered an abstract model from which the model compiler can automatically
generate a user interface for different interaction modalities and platforms.

3.4.2 Concrete Interaction Modelling: Transformation Templates

At the abstract level, the OO-Method Presentation Model does not provide prim-
itives that allow the structure, layout and style of user interfaces to be expressed.
These decisions are delegated to the model compiler and are hard-coded in it. Thus,
design knowledge and presentation guidelines are implicitand fixed in the tool that
performs the model-to-code transformation and cannot be edited or customized.
Thus, even though different final user interface implementations are potentially valid
when moving from the abstract to the final user interface, it is not possible to adapt
the user interface generation according to end-user requirements and preferences.
This results in the generation of predetermined user interfaces, all of which look
alike, and which may not always satisfy the end-user.

Because of these issues, it has been necessary to extend the OO-Method Pre-
sentation Model with a new concrete level that provides the required expresiveness
in order to enable the customization of user interfaces before their generation. An
approach based on Transformation Templates has been definedfor this purpose.

A Transformation Template [3, 2] aims to specify the structure, layout and style
of a user interface according to preferences and requirements of end-users as well
as according to the different hardware and software computing platforms and envi-
ronments in which the user interface will be used.

A Transformation Template is composed of parameters with associated values
that parameterize the transformations from the OO-Method Presentation Model to
code. Figure 3.7 illustrates the use of a Transformation Template with OO-Method.
The model compiler takes a Presentation Model and a Transformation Template
as input. The Transformation Template provides specifications that determine how
to transform the Presentation Model to code. The specifications are expressed by



14 3 Conceptual Modelling of Interaction

MODEL 

COMPILER

TRANSFORMATION

TEMPLATE

parameter1: value1, selector1

parameter2: value2, selector2

parameter3: value3, selector3
…
...

OO-METHOD 
PRESENTATION

MODEL

USER INTERFACE 

CODE

Fig. 3.7 An OO-Method Presentation Model and a Transformation Template are inputs for the
model compiler

means of parameters with values and selectors. Selectors define the set of elements
of the OO-Method Presentation Model that are affected by thevalue of the parame-
ter. The transformation engine follows the specifications to generate the code.

In this way, Transformation Templates externalizes the design knowledge and
presentation guidelines and makes them customizable according to the characteris-
tics of the project that is being carried out. Transformation Templates can then be
reused in other projects with similar characteristics.

Even though the idea behind the Transformation Templates isbased on Cascad-
ing Style Sheets [6], there are significant differences between the two approaches
with the main one being that Transformation Templates are applied to user inter-
face models and not directly on the code. Another differenceis that Transformation
Templates are supposed to be used in an MDE process for user interface generation
for different contexts of use, not only for web environments.

The main concepts or primitives that characterize the Transformation Templates
approach are depicted in Figure 3.8. There are concepts related to context, to user in-
terface models, and to the Transformation Templates themselves. All these concepts
are explained bellow.

3.4.2.1 Context

• Context (see Figure 3.8): refers to the context of use of an interactive system.
We have defined context according to the Cameleon Reference Framework [9],
which is widely accepted in the HCI community. According to this framework, a
context of use is composed of the stereotype of a user who carries out an interac-
tive task with a specific computing platform in a given surrounding environment.
The purpose of conceptualizing context is that we want it to be possible to define
different Transformation Templates for different contexts of use.



3.4 Explicitly Distinguishing Abstract and Concrete Interaction Modelling in OO-Method 15

TRANSFORMATION

TEMPLATE
PARAMETER

VALUE

SELECTOR

CONTEXT
USER INTERFACE 

ELEMENT

PARAMETER 

TYPE
VALUE TYPE

USER INTERFACE 

META-ELEMENT

Context Transformation Templates User Interface Models

Parameter type definition level

Parameter definition level

Fig. 3.8 Main concepts of the Transformation Templates approach

3.4.2.2 User Interface Models

The Transformation Templates approach makes use of two concepts related to user
interface models (see Figure 3.8):

• User Interface Meta-Element: represents, in a generic way,any of the OO-
Method interaction patterns presented in Section 3.3.

• User Interface Element: represents an element of the OO-Method Presentation
Model, that is, a specific instance of any of the above mentioned interaction pat-
terns.

It is important to note that even though in this chapter we arepresenting the
Transformation Templates approach as an extension of OO-Method, it can also be
used with other MDE approaches related to user interface development. In fact, the
User Interface Meta-Element is a generic representation ofany meta-element of a
user interface meta-model just as the User Interface Element is a generic represen-
tation of any element of a user interface model.

3.4.2.3 Transformation Templates

With regard to concepts specifically related to the Transformation Templates ap-
proach, we distinguish two levels: one in which parameter types are defined, and
another one in which the previously defined parameter types are instantiated as pa-
rameters in a Transformation Template.

In the parameter type definition level, there are two concepts (see Figure 3.8):

• Value Type: refers to a specific data type (e.g., integer, URI, colour, etc.) or to an
enumeration of the possible values that a parameter type canassume.

• Parameter Type: represents a design or presentation optionrelated to the struc-
ture, layout, or style of the user interface. We can distinguish between low-level



16 3 Conceptual Modelling of Interaction

and high-level parameter types. Low-level ones operate at the attribute level of
user interfaces; for instance, colour or font type are low-level parameter types
related to style. High-level parameter types operate at theconcept level of user
interfaces and can be used to specify the structure of the user interface, the type
of components (containers, widgets) that will be used, or the alignment of the
components. Defining a parameter type subsumes specifying the list of user in-
terface meta-elements that are affected by, as well as its value type. A parameter
type, with all or a set of its possible values, can be implemented in different
contexts of use. In order to decide about these implementations, we propose that
each possible value receive an estimation of its importancelevel and its develop-
ment cost for different relevant contexts of use. In this way, possible values with
a high level of importance and a low development cost can be implemented first
in a given context, followed by those with a high level of importance and a high
development cost, and so on. Possible values with a low levelof importance and
a high development cost would not have to be implemented in the corresponding
context. For each relevant context of use, usability guidelines can be assigned to
each possible value of a parameter type. These guidelines will help user inter-
face designers in choosing one of the possible values by explaining under what
conditions the values should be used.

Table 3.1 shows an example of the definition of a parameter type namedgroup-
ing layout for input arguments. This paramter type is useful for deciding how to
present the input arguments of a service that have been grouped using the Argu-
ment Grouping interaction pattern presented in Section 3.3.1. Table 3.1 (a) shows
that this parameter type affects two interaction patterns of the OO-Method Presen-
tation Model. It also shows that four different possible values have been defined.
Table 3.1 (b) shows that the parameter type has been associated to two contexts of
use: a desktop platform and a mobile one. For each context of use and each possible
value the importance level and development cost have been estimated. Table 3.1 (c)
presents a list of usability guidelines for the desktop context and each possible value
of the parameter type. These usability guidelines have beenproposed from an ex-
traction from [14].

In the parameter definition level, there are four concepts (see Figure 3.8):

• Transformation Template: gathers a set of parameters for a specific context of
use.

• Parameter: each parameter of a Transformation Template corresponds to a pa-
rameter type and has both a value and a selector.

• Value: is an instance of a value type. The value of a parametercorresponds to a
possible value of the corresponding parameter type.

• Selector: delimits the set of user interface elements that are affected by the value
of a parameter. We have defined different types of selectors that allows the de-
signer to choose: a specific user interface element; all the user interface elements
of a certain type; the first or last element contained in a specific type of user
interface element; other options.



3.4 Explicitly Distinguishing Abstract and Concrete Interaction Modelling in OO-Method 17

Parameter Type

Name Affects
Possible values enumeration
Value Graphical description

Grouping layout
for input
arguments

Two patterns of
the OO-Method
Presentation
Model: Service
Interaction Unit
and Argument
Grouping

group box

Personal Data Contact Data

tabbed dialog box

Personal Data Contact Data

wizard

Personal DataPersonal Data Contact DataContact Data

CancelNext CancelOk

accordion

Personal Data

Contact Data

(a)

Contexts
SW: C# on .NET - HW: laptop or PCSW: iPhone OS - HW: iPhone

Possible value Importance
level

Development
cost

Importance
level

Development
cost

group box high low high low
tabbed dialog boxhigh low medium medium
wizard medium medium low high
accordion low medium medium medium

(b)

Possible value Usability guidelines (for desktop context)
group box Visual distinctiveness is important. The total number of groups will be small.
tabbed dialog boxVisual distinctiveness is important. The total number of groups is not greater

than 10.
wizard The total number of groups is between 3 and 10. The complexityof the task

is significant. The task implies several critical decisions. The cost of errors
is high. The task must be done infrequently. The user lacks the experience it
takes to complete the task efficiently.

accordion Visual distinctiveness is important. The total number of groups is not greater
than 10.

(c)

Table 3.1 Parameter type: grouping layout for input arguments

Figure 3.9 represents the user interface that could be obtained for the Service IU
that was presented before, in Figure 3.3, if the parametergrouping layout for input
argumentsis applied with valuewizard(see Table 3.1) and if the following three pa-
rameters are also applied: a parameter for specifying the widget to be used to display
defined selections with valueradio button; a parameter for specifying the alignment
of labels with valuevertical; and a parameter for specifying the background colour.



18 3 Conceptual Modelling of Interaction

Fig. 3.9 User interface that could be generated from a Service IU after applying different parame-
ters



3.5 Conclusion 19

3.5 Conclusion

This chapter emphasizes the importance of interaction modelling on the same level
of expressiveness as any other model involved in the development life cycle of an
interactive application. In the same way a conceptual modelof the domain could be
used to derive a database for a future application, a conceptual model of the interac-
tion could be used to derive a user interface for this same application [37]. A system
with a suitable functionality and persistence may be rejected by end-users if the in-
terface does not satisfy their expectations. Therefore, the designer must be provided
with the suitable conceptual primitives to represent everyrelevant characteristic of
the final interface; otherwise, a complete code generation from a conceptual model
cannot become a reality.

Today, the community has reached a level of progress in whichthis has now
become a reality that goes beyong mere prototypes. In the past, model-based ap-
proacheshave been exploited to capture the essence of a user interface into a con-
ceptual model of this user interface that will be later used for design, specification,
generation, and verification. More recently,model-driven engineering(MDE) ap-
proaches have been introduced in order to make the user interface development life
cycle more precise, rigorous, and systematic. The main difference between model-
based approaches and model-driven engineering approaches[40, 41] is that in the
former, only models are used while in the latter all models obey to a meta-model
that is itself defined according to a same meta-meta-model. Similarly, all operations
are captured through transformations that are themselves compliant with the same
meta-model as opposed as no meta-model in the former approaches. Not all model-
based approaches for user interface development could be considered as compliant
with Model-Driven Architecture (MDA) [40].

Indeed, the following MDE/MDA definition was approved unanimously by 17
participants of the ORMSC -Object and Reference Model Subcommittee of the Ar-
chitecture Board of the Object Management Group (OMG)- plenary session meet-
ing in Montreal on 23-26 August 2004. The stated purpose of this paragraph was to
provide principles to be followed in the revision of the MDA guide:

“MDA is an OMG initiative that proposes to define a set of non-proprietary stan-
dards that will specify interoperable technologies with which to realize model-driven
development with automated transformations. Not all of these technologies will di-
rectly concern the transformation involved in MDA. MDA doesnot necessarily rely
on the UML, but, as a specialized kind of MDD (Model-Driven Development), MDA
necessarily involves the use of model(s) in development, which entails that at least
one modeling language must be used. Any modeling language used in MDA must be
described in terms of the MOF (MetaObject Facility) language to enable the meta-
data to be understood in a standard manner, which is a precondition for any activity
to perform automated transformation”.

This definition is now completely applicable to some MDE approaches for in-
teraction modelling, such as OO-Method and its Presentation Model presented in
this chapter. Taking this Presentation Model as input, we state that the interaction
modelling must be divided into two views: abstract [27, 39, 38] and concrete [3, 2].



20 3 Conceptual Modelling of Interaction

The abstract view representswhat will be shown in each interface. This view cor-
responds to the Presentation Model of OO-Method, which represents the interface
independently of the platform and the design. The concrete view representshowthe
elements will be shown in each interface. This model is builtby means of Transfor-
mation Templates. At first glance, designers might be concerned that more effort on
their part is required for modelling the concrete level. However, this problem can be
resolved thanks to the use of default Transformation Templates for a specific context
of use. Once the abstract interaction model has been specified, the concrete interac-
tion model can be determined by just choosing the default Transformation Template
for the context of use in which the information system is going to be used. These de-
fault Transformation Templates must be designed only once,and then can be reused.
Designers might only has to change the value and/or scope of some parameters in
order to adequate the concrete modelling to end-user requirements.

Future avenues of this work include:

• Integration with requirements engineering: we plan to develop a method to cap-
ture interaction requirements that is compliant with holistic development based
on conceptual models. These requirements would help the designer to determine
the users needs and preferences in order to guide the interaction modelling. The
capture of requirements would be based on tasks, which is thenotation that is
most commonly used in the HCI community.

• Inclusion of a usability model in the transformation process: we will include us-
ability characteristics in both the abstract and concrete interaction models. These
characteristics will help the designer to build quality systems according to usabil-
ity guidelines and heuristics. This will be helpful not onlyfor evaluating usability
during the transformation process, but also to guarantee tosome extent that user
interfaces issued by this approach are somewhat usable by construction [1] so as
to provide a general computational framework for user interfaces [32].

• Building various transformation sets for various development paths: we will build
new transformation sets that would support other development paths [17] than
merely forward engineering. For instance, ReversiXML [8, 7] performs reverse
engineering of web pages into a concrete interface model expressed in UsiXML
[18] by using derivation rules, but not transformation rules. Similarly, Multi-
modaliXML [33] generates multimodal user interfaces basedon the same con-
ceptual models, but involve other sets of transformation rules.

• Building multi-fidelity editors for each model: we plan to develop model editors
that enable modelers to rely on different levels of fidelity,not just high-fidelity
[19], for instance by sketching the model [11], ranging fromlow fidelity to high
fidelity.

As for any MDA approach, it is crucial to develop any work thatcontributes to
obtain a low threshold, a high ceiling, and wide walls as muchas possible to expand
the capabilities of expressiveness and their transformation into a larger gamma of
user interfaces. This is reflected in Figure 3.10: the first generation of MDA software
usually suffered from a high threshold (they required a highamount of resources
to get some results), a low ceiling (the capabilities of the user interface generated



References 21

Capabilities

Resources

(time, experience,…)

1
0
0
%

5
0
%

Ceiling

Threshold

F
ir

s
t 
g
e
n
e
ra

ti
o
n

S
e
c
o
n
d
 g

e
n
e
ra

ti
o
n

T
h

ir
d

g
e

n
e

ra
ti

o
n

In
te

g
ra

te
d

D
e
v
e

lo
p

m
e
n

t
E

n
v
ir
o
n

m
e
n
ts

UI types

Walls

Fig. 3.10 Low threshold, high ceiling, and wide walls as determinantsof a MDA approach

were limited), and narrow walls (there was only one user interface generated for one
computing platform). The second generation improved this situation by lowering the
threshold, increasing the ceiling, and enlarging the walls. Right now, we are in the
third generation where user interface capabilities have been expanded for multiple
computing platforms and contexts of use.

This race is to be continued.

Acknowledgements We gratefully acknowledge the support of the ITEA2 Call 3 UsiXML project
under reference 20080026; the MITYC under the project MyMobileWeb, TSI-020301-2009-014;
the MICINN under the project SESAMO, TIN2007-62894, co-financed with ERDF; the Gener-
alitat Valenciana under the project ORCA, PROMETEO/2009/015, and the grant BFPI/2008/209.
Jean Vanderdonckt also thanks the FP7 Serenoa project supported by the European Commission.

References

1. Silvia Abrahão, Emilio Iborra, and Jean Vanderdonckt. Usability Evaluation of User Interfaces
Generated with a Model-Driven Architecture Tool. In E. Law,E. Hvannberg, and G. Cockton,
editors,Maturing Usability: Quality in Software, Interaction and Value, volume 10 ofHCI
Series, pages 3–32. Springer, London, 2008.

2. Nathalie Aquino, Jean Vanderdonckt, and Oscar Pastor. Transformation Templates: Adding
Flexibility to Model-Driven Engineering of User Interfaces. In Sung Y. Shin, Sascha Os-



22 3 Conceptual Modelling of Interaction

sowski, Michael Schumacher, Mathew J. Palakal, and Chih-Cheng Hung, editors,Proc. of the
25th ACM Symposium on Applied Computing, SAC 2010 (Sierre, Switzerland, March 22-26,
2010), pages 1195–1202. ACM Press, New York, 2010.

3. Nathalie Aquino, Jean Vanderdonckt, Francisco Valverde, and Oscar Pastor. Using Profiles to
Support Model Transformations in the Model-Driven Development of User Interfaces. In
V. López Jaquero, F. Montero Simarro, J.P. Molina Masso, and J. Vanderdonckt, editors,
Computer-Aided Design of User Interfaces VI, Proc. of 7th Int. Conf. on Computer-Aided
Design of User Interfaces, CADUI 2008, (Albacete, Spain, June 11-13, 2008), pages 35–46.
Springer, Berlin, 2009.

4. Mickaël Baron and Patrick Girard. SUIDT: A task model based GUI-Builder. In Costin
Pribeanu and Jean Vanderdonckt, editors,Task Models and Diagrams for User Interface De-
sign: Proc. of the First Int. Workshop on Task Models and Diagrams for User Interface Design,
TAMODIA 2002 (18-19 July 2002, Bucharest, Romania), pages 64–71. INFOREC Publishing
House Bucharest, 2002.

5. François Bodart, Anne-Marie Hennebert, Isabelle Provot, Jean-Marie Leheureux, and Jean
Vanderdonckt. A Model-Based Approach to Presentation: A Continuum from Task Analysis
to Prototype. In Paternò [28], pages 77–94.

6. Bert Bos, Tantek Çelik, Hakon Wium Lie, and Ian Hickson. Cascading Style Sheets Level 2
Revision 1 (CSS 2.1) Specification. Technical report, WorldWide Web Consortium (W3C),
July 2007.

7. L. Bouillon, Q. Limbourg, Jean Vanderdonckt, and B. Michotte. Reverse Engineering of
Web Pages Based on Derivations and Transformations. InProc. of 3rd Latin American Web
Congress LA-Web 2005 (Buenos Aires, Argentina, October 31 -November 2, 2005), pages
3–13, Los Alamitos, CA, USA, 2005. IEEE Computer Society Press.

8. Laurent Bouillon, Jean Vanderdonckt, and Kwok Chieu Chow. Flexible Re-engineering of
Web Sites. InProc. of 8th ACM Int. Conf. on Intelligent User Interfaces, IUI 2004 (Funchal,
13-16 January 2004), pages 132–139. ACM Press, New York, 2004.

9. Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg, Laurent Bouillon, and
Jean Vanderdonckt. A Unifying Reference Framework for Multi-Target User Interfaces.In-
teracting with Computers, 15(3):289–308, June 2003.

10. Peter P. Chen. The Entity-Relationship Model - Toward a Unified View of Data.ACM Trans.
Database Syst., 1(1):9–36, 1976.

11. Adrien Coyette and Jean Vanderdonckt. A Sketching Tool for Designing Anyuser, Anyplat-
form, Anywhere User Interfaces. In Maria Francesca Costabile and Fabio Paternò, editors,
Proc. of 10th IFIP TC 13 Int. Conf. on Human-Computer Interaction, INTERACT 2005 (Rome,
12-16 September 2005), volume 3585 ofLecture Notes in Computer Science, pages 550–564.
Springer-Verlag, Berlin, 2005.

12. Paulo Pinheiro da Silva and Norman W. Paton. User Interface Modeling in UMLi. IEEE
Software, 20(4):62–69, 2003.

13. James D. Foley and Piyawadee Noi Sukaviriya. History, Results, and Bibliography of the
User Interface Design Environment (UIDE), an Early Model-based System for User Interface
Design and Implementation. In Paternò [28], pages 3–14.

14. Wilbert O. Galitz. The Essential Guide to User Interface Design: An Introduction to GUI
Design Principles and Techniques. John Wiley & Sons, Inc., New York, NY, USA, 2002.

15. Peter Johnson, Stephanie Wilson, Panos Markopoulos, and James Pycock. ADEPT: Advanced
Design Environment for Prototyping with Task Models. In Stacey Ashlund, Kevin Mullet,
Austin Henderson, Erik Hollnagel, and Ted N. White, editors, Human-Computer Interaction,
Proc. of INTERACT ’93, IFIP TC13 International Conference on Human-Computer Interac-
tion, 24-29 April 1993, Amsterdam, The Netherlands, jointly organised with ACM Conference
on Human Aspects in Computing Systems CHI’93, page 56. ACM, 1993.

16. Quentin Limbourg and Jean Vanderdonckt. USIXML: A User Interface Description Language
Supporting Multiple Levels of Independence. In MaristellaMatera and Sara Comai, editors,
Engineering Advanced Web Applications: Proc. of Workshopsin connection with the 4th Int.
Conf. on Web Engineering, ICWE 2004 (Munich, Germany, 28-30July, 2004), pages 325–338.
Rinton Press, 2004.



References 23

17. Quentin Limbourg and Jean Vanderdonckt. Multi-Path Transformational Development of User
Interfaces with Graph Transformations. In A. Seffah, Jean Vanderdonckt, and M. Desmarais,
editors,Human-Centered Software Engineering, HCI Series, pages 109–140. Springer, Lon-
don, 2009.

18. Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouillon, and Vı́ctor
López-Jaquero. USIXML: A Language Supporting Multi-pathDevelopment of User Inter-
faces. In Rémi Bastide, Philippe A. Palanque, and Jörg Roth, editors,Proc. of 9th IFIP Work-
ing Conference on Engineering for Human-Computer Interaction jointly with 11th Int. Work-
shop on Design, Specification, and Verification of Interactive Systems, EHCI-DSVIS 2004
(Hamburg, July 11-13, 2004), volume 3425 ofLecture Notes in Computer Science, pages
200–220. Springer-Verlag, Berlin, 2005.

19. Benjamin Michotte and Jean Vanderdonckt. GrafiXML, a Multi-target User Interface Builder
Based on UsiXML. In D. Greenwood, M. Grottke, H. Lutfiyya, andM. Popescu, editors,
Proc. of 4th Int. Conf. on Autonomic and Autonomous Systems,ICAS 2008 (Gosier, 16-21
March 2008), pages 15–22, Los Alamitos, 2008. IEEE Computer Society Press.

20. Pedro J. Molina, Santiago Meliá, and Oscar Pastor. Just-UI : A User Interface Specification
Model. In Christophe Kolski and Jean Vanderdonckt, editors, Computer-Aided Design of
User Interfaces III, Proc. of the 4th Int. Conf. on Computer-Aided Design of User Interfaces,
CADUI 2002, (Valenciennes, France, May 15-17, 2002), pages 63–74. Kluwer, 2002.

21. Tony Morgan. Doing IT Better. Keynote address at the 3rd Conf. on Information Systems
Technology and its Applications, ISTA 2004 (Salt Lake City,UT, USA, 15-17 July, 2004),
July 2004.

22. Giulio Mori, Fabio Paternò, and Carmen Santoro. Designand Development of Multide-
vice User Interfaces through Multiple Logical Descriptions. IEEE Trans. Software Eng.,
30(8):507–520, 2004.

23. Nuno Jardim Nunes and João Falcão e Cunha. Wisdom: A Software Engineering Method for
Small Software Development Companies.IEEE Software, 17(5), 2000.

24. Antoni Olivé. Conceptual Schema-Centric Development: A Grand Challenge for Information
Systems Research. In Pastor and e Cunha [26], pages 1–15.

25. Oscar Pastor. From Extreme Programming to Extreme Non-programming: Is It the Right
Time for Model Transformation Technologies? In Stéphane Bressan, Josef Küng, and Roland
Wagner, editors,Proc. of 17th Int. Conf. on Database and Expert Systems Applications, DEXA
2006 (Krakow, Poland, 4-8 September 2006 ), volume 4080 ofLecture Notes in Computer
Science, pages 64–72. Springer, 2006.

26. Oscar Pastor and João Falcão e Cunha, editors.Advanced Information Systems Engineering,
17th International Conference, CAiSE 2005, Porto, Portugal, June 13-17, 2005, Proceedings,
volume 3520 ofLecture Notes in Computer Science. Springer, 2005.

27. Oscar Pastor and Juan Carlos Molina.Model-Driven Architecture in Practice: A Software
Production Environment Based on Conceptual Modeling. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2007.

28. Fabio Paternò, editor.Design, Specification and Verification of Interactive Systems’94, Pro-
ceedings of the First International Eurographics Workshop, June 8-10, 1994, Bocca di Magra,
Italy. Springer, 1994.

29. Fabio Paternò.Model-Based Design and Evaluation of Interactive Applications. Springer-
Verlag, London, UK, 1999.

30. Fabio Paternò, Carmen Santoro, and Lucio Davide Spano.MARIA: A universal, declarative,
multiple abstraction-level language for service-oriented applications in ubiquitous environ-
ments.ACM Trans. Comput.-Hum. Interact., 16(4), 2009.

31. Inés Pederiva, Jean Vanderdonckt, Sergio España, José Ignacio Panach, and Oscar Pastor.
The Beautification Process in Model-Driven Engineering of User Interfaces. In Maria Ce-
cilia Calani Baranauskas, Philippe A. Palanque, Julio Abascal, and Simone Diniz Junqueira
Barbosa, editors,Proc. of 11th IFIP TC 13th Int. Conf. on Human-Computer Interaction, IN-
TERACT 2007 (Ro de Janeiro, September 10-14, 2007), volume 4662 ofLecture Notes in
Computer Science, pages 411–425. Springer-Verlag, Berlin, 2007.



24 3 Conceptual Modelling of Interaction

32. Angel R. Puerta and Jacob Eisenstein. Towards a General Computational Framework for
Model-Based Interface Development Systems.Knowl.-Based Syst., 12(8):433–442, 1999.

33. Adrian Stanciulescu, Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, and Fran-
cisco Montero. A Transformational Approach for MultimodalWeb User Interfaces based on
UsiXML. In Gianni Lazzari, Fabio Pianesi, James L. Crowley,Kenji Mase, and Sharon L.
Oviatt, editors,Proc. of the 7th Int. Conf. on Multimodal Interfaces, ICMI 2005 (Trento, Italy,
October 4-6, 2005), pages 259–266, New York, 2005. ACM Press.

34. Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine. Structured Design.IBM
Systems Journal, 13(2):115–139, 1974.

35. Pedro A. Szekely. Template-based mapping of application data interactive displays. In Scott E.
Hudson, editor,Proc. of the 3rd Annual ACM Symposium on User Interface Software and
Technology, UIST 1990 (Snowbird, Utah, USA, October 3-5, 1990), pages 1–9. ACM, 1990.

36. Pedro A. Szekely. Retrospective and Challenges for Model-Based Interface Development.
In François Bodart and Jean Vanderdonckt, editors,Design, Specification and Verification of
Interactive Systems’96, Proc. of the 3rd Int. EurographicsWorkshop, June 5-7, 1996, Namur,
Belgium, pages 1–27. Springer, 1996.

37. Ismael Torres, Oscar Pastor, Quentin Limbourg, and JeanVanderdonckt. Una experiencia
prctica de generacin de interfaces de usuario a partir de esquemas conceptuales. In Angel R.
Puerta and Miguel Gea, editors,Proc. of VI Congreso Interaccin Persona Ordenador, Inter-
accin 2005 - CEDI 2005 (Granada, Spain, 13-16 September 2005), pages 401–404, Madrid,
2005. Thomson Paraninfo.

38. Francisco Valverde, José Ignacio Panach, Nathalie Aquino, and Oscar Pastor.New Trends
on Human-Computer Interaction. Research, Development, New Tools and Methods, chapter
Dealing with Abstract Interaction Modelling in an MDE Development Process: a Pattern-
Based Approach, pages 119–128. Springer London, April 2009.

39. Francisco Valverde, José Ignacio Panach, and Oscar Pastor. An Abstract Interaction Model
for a MDA Software Production Method. In John C. Grundy, SvenHartmann, Alberto H. F.
Laender, Leszek A. Maciaszek, and John F. Roddick, editors,Challenges in Conceptual Mod-
elling. Proc. of tutorials, posters, panels and industrialcontributions at the 26th Int. Conf. on
Conceptual Modeling, ER 2007 (Auckland, New Zealand, November 5-9, 2007), volume 83 of
CRPIT, pages 109–114. Australian Computer Society, 2007.

40. Jean Vanderdonckt. A MDA-Compliant Environment for Developing User Interfaces of In-
formation Systems. In Pastor and e Cunha [26], pages 16–31.

41. Jean Vanderdonckt. Model-Driven Engineering of User Interfaces: Promises, Successes, and
Failures. In S. Buraga and I. Juvina, editors,Proc. of 5th Annual Romanian Conf. on Human-
Computer Interaction ROCHI’2008, (Iasi, 18-19 September 2008), pages 1–10. Matrix ROM,
Bucarest, 2008.

42. Gerrit C. Van Der Veer, Bert F. Lenting, and Bas A. J. Bergevoet. GTA: Groupware Task
Analysis - Modeling Complexity.Acta Psychologica, 91:297–322, 1996.




