
Dealing with Abstract Interaction Modelling in

an MDE Development Process: a Pattern-based

Approach

Francisco Valverde, Ignacio Panach, Nathalie Aquino and Oscar Pastor

Centro de Investigación en Métodos de Producción de Software
Universidad Politécnica de Valencia, Camino de Vera S/N, 46022 Valencia, Spain
{fvalverde, jpanach, naquino, opastor}@pros.upv.es

Abstract Currently, in the Model-Driven Engineering (MDE) community, there is
not any standard model to define the interaction between the user and the software
system. However, the Human-Computer Interaction (HCI) community has been
recently dealing with this issue. A widely accepted proposal is the specification of
the interaction at two levels or views: an Abstract Level, in which the User Inter-
face (UI) is defined without taking into account any technological details, and a
Concrete Level, in which the previous abstract models are extended with the in-
formation related to the target technology. The purpose of this chapter is to intro-
duce the Abstract Level into the OO-Method MDE development process. Specifi-
cally, this chapter is focused on how the abstract interaction can be modelled by
means of Abstract Interaction Patterns (AIPs). These patterns define a generic so-
lution for an interaction between a user and an Information System (IS), without
considering the technological details related to the final UI. In order to illustrate
the approach, two AIPs are described.

1. Introduction

Model-Driven Engineering is considered to be a promising approach for the de-
velopment of Information Systems (Schmidt 2006). Following this paradigm, the
software application can be automatically generated by means of a Conceptual
Model. From this model, several transformations are applied to obtain the final
system implementation. Since this approach improves software development, sev-
eral model-based methods have been proposed from both academic and industrial
environments. However, these methods have been mainly designed to model the
functionality and persistency of the IS (business and data-base logic, respectively)
pushing into the background the UI modelling. Nowadays, the UI is gaining

2

enormous importance because the end-user can interact with software systems
from a wide array of technological platforms (i.e. Desktop, Web, mobile devices,
etc) which have different interaction mechanisms. Therefore, the interaction mod-
elling must be considered a key requirement in a MDE development process.

The HCI community has been dealing with UI modelling for a long time. Pre-
vious HCI approaches have defined mechanisms to specify interaction such as
ConcurTaskTrees (Paternò 2004) or UI description languages (Vanderdonckt et al.
2004). A widely accepted proposal is to define the UI specification at two main
levels: an Abstract Level, in which the UI is modelled without taking into account
platform or technological details and a Concrete Level, where the previous ab-
stract models are extended with the information related to the target platform.
However, in general terms, the HCI community has not taken into account how
the interaction specification must be linked with the underlying system functional-
ity. Therefore, with the proposals of the HCI community, a prototypical UI can be
automatically generated, while a fully functional application cannot.

The main purpose of this work is to define a bridge between both HCI and
MDE principles in order to improve how the interaction is defined at the Concep-
tual Level. Combining the best practices from both communities, a model-driven
approach that defines both the interaction and the underlying IS logic can be ob-
tained. In this chapter, an Abstract Interaction Model is introduced as the first step
to achieving this goal. The basic elements proposed to define this model are the
Abstract Interaction Patterns, which describe an interaction between the user and
the IS at the Conceptual Level. The use of patterns provides the analyst with a
common modelling framework to define generic interaction requirements. Fur-
thermore, the knowledge represented by AIPs is general enough to be applied in
different model-based software development methods. As an example of applica-
tion, the OO-Method software production method (Pastor and Molina, 2007) has
been chosen to illustrate how to include the Abstract Interaction Model on a MDE
method. The main goal of this new Abstract Interaction Model is to improve the
expressivity of the current OO-Method Presentation Model.

The rest of the chapter is structured as follows. Section 2 introduces the Ab-
stract Interaction Model and describes two Abstract Interaction Patterns. Next, an
overview of the OO-Method development process using the new Abstract Interac-
tion Model is introduced. Section 4 compares the approach presented here with the
related work. Finally, the concluding remarks are stated in section 5.

2. Defining the Abstract Interaction Model: Abstract Interaction

Patterns

In the context of this work, the interaction is defined as the communication flows
between the user and the IS by means of a software interface. The main goal of the
Abstract Interaction Model is to describe the interaction without considering tech-

3

nological concepts of the UI. In order to achieve this goal, the interaction is repre-
sented by users and tasks. On the one hand, users represent a set of human sub-
jects (i.e., Anonymous user, Customer, etc.) who share the same interactions with
the IS. On the other hand, a task (i.e., ‘Payment introduction’, ‘Log to the system’,
etc.) specifies an interaction with the IS to reach a goal in a specific software ap-
plication. In addition, each user is related to a set of tasks that define its available
interactions.

In order to describe the interaction represented by each task, this work intro-
duces the concept of Abstract Interaction Pattern. An AIP defines a generic solu-
tion for a common interaction scenario between the user and the IS using a Con-
ceptual Model. Instead of defining the interaction in terms of the final UI
components involved, these patterns model the reason why the user interacts with
the IS. Two common examples of interaction are the retrieval of data (i.e. show
the user the cars that are available for rent) or the execution of a service (i.e., the
payment of the car rental). To define these two interactions, the AIP models must
be associated with the underlying models of the IS that represent the data and
functionality. Hence, interactions are modelled over the data and functionality that
the IS provides to the users.

To precisely define an interaction, the UI elements or widgets (i.e., buttons,
forms, input boxes, etc.) that are used to interact must be specified. However,
these widgets should not be included in the Abstract Interaction Model because
they are technologically dependent on the target platform. To avoid this issue, a
subset of the Canonical Abstract Components (Constantine 2003) is used at the
Abstract Level to identify the interface components involved in the interaction de-
fined by an AIP.

The advantages of using a structured and organized pattern language have been
previously stated (van Welie 2003). Therefore, according to previous works on
pattern language definition (Gamma et al. 1995, Molina et al. 2003), the AIPs
have been defined using a pattern template with the following common sections:
1) A description of the Problem that the pattern is intended to solve; 2) The Con-
text in which it is recommended to use the pattern; 3) A brief textual description of
the proposed Solution, and 4) A real Example to show how the pattern can be ap-
plied. However, to apply these patterns in a model-driven development process, a
more precise description is required. In particular, two main requirements must be
satisfied:

1. The pattern should describe the entities and the properties of a Conceptual
Model that abstracts the interaction. In the modelling step, that metamodel is
instantiated as a model by the analyst to specify the required interaction in an
application domain. In addition, the conceptual elements of that model are the
source elements from which the model-to-code transformations are defined.

2. The pattern should include a precise description about the interaction expected
in the final UI. This description must be used as a guideline to implement the

4

model-to-code transformation rules, which generate the expected UI code when
the pattern is applied.

With the aim of addressing both requirements, two more sections are intro-
duced to the pattern template:

1. Metamodel: This defines the concepts that the pattern abstracts by means of a
metamodelling language. Additionally, this metamodel must include a clear de-
scription of the different entities, relationships, properties and constraints. The
metamodel entities must also be related to the entities of the IS metamodel in
order to establish the integration between interaction and functionality at the
Conceptual Level. Therefore, the metamodel defines the static information used
to create specific models of the pattern.

2. Interaction Semantics: This precisely specifies the interaction expected when
the pattern is applied. This section shows the analyst how the different concep-
tual elements of the metamodel must be translated to implement the interaction
defined. Therefore, it describes the Abstract Interface Components (Constan-
tine 2003), the interface events and the business logic objects involved in the
interaction. Additional interaction models, such as UML Interaction Diagrams,
CTTs or Scenarios, are recommended to provide a better understanding of the
semantics represented. To sum up, this section describes the interaction behav-
iour abstracted by the pattern.

One advantage of our proposal is that the concepts represented with AIPs are
not coupled with a specific development method. As a consequence, these patterns
can be used as guidelines to improve the interaction modelling in different model-
based methods. Furthermore, new patterns detected in other approaches can be de-
scribed as AIPs to promote reuse. To illustrate how this approach is applied, two
AIPs are presented: the Service AIP and the Population List AIP. For reasons of
brevity, a brief pattern summary is provided for sections one through four of the
pattern template. In these examples, the Essential MOF (EMOF 2007) language
has been used to build the pattern Metamodel, whereas CTTs have been used to
define the Interaction Semantics as the JUST-UI approach proposes (Molina
2003).

2.1 Service AIP

Pattern summary: This pattern abstracts the dialog between the User and the IS
for the execution of an operation. That dialog can be subdivided into two basic in-
teractions: the input of the operation argument values and the invocation of the
operation. The interaction represented by this pattern can be applied in several
tasks. For example, in an online rental service, the task “Create a new rental” can
be defined using this pattern. The pattern application provides a form where the

5

user can enter the different argument values of the ‘Rent’ operation (the car name,
the delivery and return date, etc.). When the user accepts the data entered (i.e., by
clicking a button) the new rental is created in the IS.

Metamodel: A Service AIP (See Fig.1) is directly related to an operation and a
set of Input Arguments. On the one hand, the Input Argument entity represents the
input interface component in which the user must input the value for an operation
argument. On the other hand, the operation represents a IS functionality that is
composed of a set of Arguments. The value of these arguments is provided by the
Input Arguments related to the Service AIP. Therefore, the Service AIP can be de-
scribed as a view over a unique functionality provided by the IS. Finally, the
Launch Action property of the Service AIP defines which interface component
launches the operation execution.

Interaction Semantics: The first step of the interaction is the Input of the Ser-
vice Arguments (See Fig.2). This task is decomposed into several ‘Input Arg’ in-
teractive tasks, according to the different Input Arguments defined in the model.
The values can be inserted in any order as the operator (|||) means. When the re-
quired values have been introduced, the user should trigger an event interface (i.e.,
by clicking a button) to invoke the operation execution (Launch Event task). Fi-
nally, the Execute Service interactive task performs the operation with the values
introduced in the previous tasks.

2.2 Population List AIP

Pattern summary: Frequently, to avoid the incorrect input of a value, the interface
provides a list of values from which the user must make a selection. The Popula-
tion AIP represents the following type of interaction: the selection and input of a

Fig. 1. Metamodels for the Service AIP and the Population List AIP

6

Fig. 2. ConcurTaskTree for the Service AIP and the Population List AIPs

value that has been previously retrieved from the IS. Taking into account the pre-
vious example, the ‘Create a new rental’ task, this pattern can be applied to the car
name Input Argument. Hence, the interface provides all the cars available and the
user only has to choose the desired value instead of typing it.

Metamodel: The Population List AIP can be associated to any metamodel en-
tity that represents an input interaction. For instance, in Fig.1 a relationship with
an Input Argument has been defined. The pattern provides the property Collection
to represent the interface component that shows the user the collection of values.
These values are provided by a class Attribute that is associated with the pattern
by means of the relationship Value Provider. The relationship Alias Provider can
be optionally defined to show an alternative representation of the value to be se-
lected. For example, if the value to be selected is the car numeric id, an alias that
shows the car description instead of the id will be more intuitive for the end-user.

Interaction Semantics: First, the application task ‘Retrieve Values’ (Fig.2.) per-
forms a query to the IS to retrieve the values of the Value Provider attribute de-
fined in the Class Attribute. By default, these values are used to fill in the Collec-
tion property of the pattern, if there is not an Alias Provider defined. Finally, the
interactive task ‘Select Value’ represents the selection of the value by the user.

3. Introducing the Interaction Modelling in OO-Method

OO-Method (Pastor and Molina 2007) is an automatic code generation method
that produces the equivalent software product from a conceptual specification.
OO-Method provides a UML-based Platform-Independent Model, where the static
and dynamic aspects of a system are captured by means of three complementary
models: 1) The Object Model, which is defined as a UML Class Diagram; 2) The
Dynamic Model, which is described as a UML Statechart Diagram, and 3) The
Functional Model, which is specified using dynamic logic rules. Moreover, two

7

approaches have been traditionally proposed to support the presentation modelling
in OO-Method: the JUST-UI approach (Molina et al. 2002) which has been indus-
trially implemented in the OLINAVOVA tool (www.care-t.com), and the OOWS
Web Engineering Method (Valverde et al. 2007) which provides Navigational and
Presentational Models that are focused on the Web Application development do-
main. Concepts presented in both works have been taken into account to define the
basis of the Abstract Interaction Model presented in this chapter. Therefore, the
OO-Method Interaction Model is intended to be a unifying and extended proposal
of the current Presentation Models.

The proposed OO-Method Interaction Model (see Fig 3.) describes the interac-
tion using Conceptual Models (at the Problem Space) in order to automatically
generate a Presentation Layer that represents the same interaction in programming
code (at the Solution Space). Following the HCI principles, this Interaction Model
is made up of two complementary views:

1. An Abstract View, which describes the different tasks that the user can perform
with the IS in terms of AIPs introduced in the previous section. The AIP model
entities are related to the OO-Method Object Model (the relationship uses in
Fig. 3), which defines an interface with the data and the functionality from the
IS. Hence, both models are integrated at the Conceptual Level.

2. A Concrete View defined as a set of Concrete Platform Interaction Patterns.
These patterns are related to an AIP by means of a specialization relationship.
Thus, their purpose is to extend the semantics of an abstract interaction with in-
teraction concepts related to the target technological platform. In order to ad-
dress concrete interaction requirements for different platforms, several Con-
crete Views can be defined (one per platform). The description of these patterns
is beyond the scope of this chapter.

Fig. 3. Interaction Model in the OO-Method development process

8

Both views of the OO-Method Interaction Model are inputs of a model com-
piler, which according to a set of model-to-code transformation rules, produces the
final Presentation Layer (See Fig.3). Additionally, the generation of the Business
Logic Layer for several technological platforms has been industrially implemented
in the context of the OO-Method development process. Therefore, a fully func-
tional application, not just the UI, can be generated with the integration of the two
code generation processes.

4. Related Work

In the HCI community, some proposals, such as USIXML (Vanderdonckt et al.
2004) and TERESA (Mori et al. 2004), have been made to model the interaction in
an abstract way. In these works, the UI is designed independently of technological
platform characteristics by means of ConcurTaskTrees (Paternò 2004). Taking
into account the principles proposed by the Chamaleon Framework (Calvary et al.
2003), the UI is specified at different levels of abstraction. However, it is impor-
tant to mention that both USIXML and TERESA can only represent the UI. Their
abstract UI languages do not have the required expressiveness to generate the sys-
tem functionality as OO-Method does. A recent approach for modelling the UI
from the interaction perspective is the CIAM methodology (Giraldo et al. 2008).
However this methodology is mainly focused on the definition of Groupware UIs.

In the literature, there are other proposals based on patterns to represent the in-
teraction. In the work presented by Folmer et al. (2005), patterns are described as
a bridge between the HCI and Software Engineering communities. Folmer et al.
propose including patterns in the system architecture, but these patterns are not
represented abstractly and, therefore, cannot be included in a model-driven devel-
opment process. In the same line of reasoning, the work of Borchers (2000) intro-
duces the advantages of using patterns to support Interaction Design: ease of
communication among all team members and a common terminology to exchange
ideas and knowledge. Borchers proposes formal descriptions of the patterns in or-
der to make them less ambiguous, but those descriptions are also difficult to trans-
late into Conceptual Models.

Furthermore, other works have proposed pattern libraries in the field of Interac-
tion Design (Tidwell 2005, van Welie 2007). These patterns have been defined us-
ing real word examples from several applications. However, patterns are only de-
scribed textually; guidelines or a proposed implementation are not provided to
define a Conceptual Model to represent them abstractly.

Finally, the work presented by Sinnig et al. (2004) emphasizes the use of pat-
terns as building blocks of different models (task, presentation and dialog) that de-
fine the interaction. However, these patterns are described using different XML
languages and no pattern structure is proposed. As a consequence, these patterns

9

are difficult for analysts to understand. Also, this work does not describe, how to
represent the Concrete View of the interaction.

The AIPs defined in this chapter not only address the description of how to rep-
resent the interaction abstractly but also how the pattern can be applied in a
Model-Driven Environment. This approach extends the ideas proposed by Molina
(2002) and provides a more precise description of the pattern metamodel and the
interaction semantics involved. In addition, our approach can be associated with a
Concrete View that improves the expressivity of the patterns taking into account
the target platform characteristics.

5. Concluding Remarks

In this chapter, an approach for improving interaction modelling has been pre-
sented. As several works state (Molina 2002, Sinnig 2004), patterns are a recom-
mended choice to represent the interaction in a model-driven development proc-
ess. The presented AIPs provide a mechanism to promote the reuse of knowledge
between different model-driven approaches and to guide the definition of the
model-to-code generation process. The metamodel and the semantics that describe
the interaction of the pattern are useful for integrating an AIP in different model-
driven approaches. As a proof of concept, an Abstract Interaction Model that is re-
lated to the OO-Method approach has been defined.

A weakness of the approach is that there is no agreement on what the best
model is to define the interaction semantics. Although in this chapter CTTs have
been used, UML-based models may be more suitable to describe other AIP inter-
action semantics. Moreover, the introduction of the Concrete View may reveal the
need for new conceptual primitives in the Abstract view.

It is important to mention two constraints of the proposal. First, this approach
does not describe the aesthetic properties such as layout, fonts, colours, etc. Al-
though it is true that characteristics of this type can have a great impact on the us-
ability of the interaction, they should be addressed by another model. And second,
the only modality of the interaction that is supported is carried out with common
input/output devices.

Finally, further works will address the tool support required to define the Ab-
stract Interaction Model in the OO-Method development process. As a previous
step to reaching that goal, a metamodel of all the patterns must be developed to-
gether with the implementation of the corresponding model-to-code transforma-
tion rules. Furthermore, current work addresses how to define a Concrete view of
the Interaction Model for modelling Rich Internet Applications.

Acknowledgments This work has been developed with the support of MEC under the project
SESAMO TIN2007-62894

10

References

Borchers JO (2000) A Pattern Approach to Interaction Design. ACM Conference on Designing
Interactive Systems - DIS, New York, United States:369-378

Calvary G, Coutaz J, Thevenin D, et al. (2003) A Unifying Reference Framework for multi-
target user interfaces. Interacting with Computers 15(3):289-308

Constantine L (2003) Canonical Abstract Prototypes for Abstract Visual and Interaction Design.
10th International Workshop on Design, Specification and Verification of Interactive Sys-
tems (DSV-IS), Madeira, Portugal:1-15

EMOF Meta Object Facility 2.0 Core Proposal (2007). http//www.omg.org/docs/ad/03-04-
07.pdf. Accessed 29 July 2008

Folmer E, van Welie M, Bosch J (2005) Bridging patterns: An approach to bridge gaps between
SE and HCI. Information and Software Technology 48(2):69-89

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Elements of Reusable Ob-
ject-Oriented Software. Addison Wesley, Boston

Giraldo WJ, Molina AI, Collazos CA, Ortega M, Redondo MA (2008) CIAT, A Model-Based
Tool for designing Groupware User Interfaces using CIAM. Computer-Aided Design of User
Interfaces VI, Albacete, Spain:201-213

Molina PJ, Melia S, Pastor O (2002) JUST-UI: A User Interface Specification Model. Proceed-
ings of Computer Aided Design of User Interfaces, Valenciennes, France:63-74

Molina PJ (2003). Especificación de interfaz de usuario: de los requisitos a la generación au-
tomática. Valencia, PhD Thesis. Universidad Politécnica de Valencia.

Mori G, Paterno F, Santoro C (2004) Design and Development of Multidevice User Interfaces
through Multiple Logical Descriptions. IEEE Transactions on Software Engineering
30(8):507-520.

Pastor O, Molina JC (2007) Model-Driven Architecture in Practice: A Software Production En-
vironment Based on Conceptual Modelling. Springer, Germany.

Paternò, F (2004) ConcurTaskTrees: An Engineered Notation for Task Models. The Handbook
of Task Analysis for Human-Computer Interaction. Lawrence Erlbaum Associates, United
Kingdom:483-501.

Schmidt DC (2006) Model-driven Engineering. IEEE Computer 39:26-31.
Sinning D, Gaffar A, Reichart D, Forbrig P, Seffah A (2005) Patterns in Model-Based Engineer-

ing. In: Computer-Aided Design of User Interfaces IV. S Netherlands: 197-210.
Tidwell J (2005) Designing Interfaces. O'Reilly Media, United States
Valverde F, Valderas P, Fons J, Pastor O (2007) A MDA-Based Environment for Web Applica-

tions Development: From Conceptual Models to Code. 6th International Workshop on Web-
Oriented Software Technologies, Como,Italy:164-178

Valverde F, Panach JI, Pastor Ó (2007) An Abstract Interaction Model for a MDA Software Pro-
duction Method. Tutorials, posters, panels and industrial contributions at the 26th interna-
tional conference on Conceptual modeling Auckland, New Zealand 83:109-114

Vanderdonckt J, Limbourg Q, Michotte B, Bouillon L, Trevisan D, Florins M (2004) USIXML:
a User Interface Description Language for Specifying Multimodal User Interfaces. Proceed-
ings of W3C Workshop on Multimodal Interaction, Sophia Antipolis, Greece:1-12

van Welie M, van der Veer GC (2003) Pattern Languages in Interaction Design: Structure and
Organization. Ninth IFIP TC13 International Conference on Human-Computer Interaction.
Zurich, Switzerland:527-534

van Welie M (2007) Patterns in Interaction Design. http:// welie.com. Accessed 29 July 2008

