
Chapter 1

INTEGRATING MODEL-BASED AND TASK-
BASED APPROACHES TO USER INTERFACE
GENERATION

Sergio España, Inés Pederiva, Jose Ignacio Panach
Department of Information Systems and Computation
Valencia University of Technology, Camino de Vera s/n, 46071 Valencia, Spain

Abstract: Software Engineering community has been interested in defining methods and
processes to develop software by specifying its data and behaviour, but
disregarding user interaction. Human-Computer Interaction community has
defined techniques oriented to the modelling of the interaction between the
user and the system, proposing user-oriented software constructions. In this
paper, we show how to lay proper bridges between both visions, by integrating
a CTT task model into a sound, model-based software development process.
This proposal is underpinned by the MDA-based technology OlivaNova
Method Execution, which makes software generation a reality, while still
taking the user interaction needs into account.

Key words: Functional Requirements, User Interaction, Model-based, Task-based, User
Interface, Code Generation.

1. INTRODUCTION

Software Engineering (SE) is considered to be strong in specifying
functional requirements, while Human-Computer Interaction (HCI) is
centred on defining user interaction at the appropriate level of abstraction. In
either case, software production methods that combine the most functional-
oriented, conventional requirements specification with the most interaction-
oriented, user interface modelling are strongly required.

From an HCI point of view, there is a number of model-based user
interface development environments (MB-UIDEs) reported in the literature

2 Chapter 1

[2]. The first generation aimed to provide run-time environment, as in
COUSIN [4] and HUMANOID [14]. The second generation increased the
abstraction level, as in MASTERMIND [15]. More recently, some broader
frameworks have been proposed, like USIXML [16] and TERESA [10]. SE
has proposed UML-based approaches, for example WISDOM [11] and
UMLi [3].

Model transformation technologies (i.e. MDA [7]) make it possible to
provide a global software process where the requirements model includes all
the relevant aspects of the analysed problem. These are first projected onto a
Conceptual Model and onto the final software product later.

The intended contribution of this paper is to extend a sound software
production process with an interaction requirements elicitation. Two basic
principles remain constant in the paper:
• Model Transformation is used to automate the conversion of the

Requirements Model into the Conceptual Model and then convert this
Conceptual Model into the final software application.

• Each modelling step provides appropriate methods to deal properly with
the specification of structural, functional and interaction properties.

The approach presented here has been successfully implemented in
OlivaNova Model Execution (ONME), an MDA-based tool that generates a
software product that corresponds to the source Conceptual Model. This tool
should later be enhanced to support our requirements level proposal.

The paper is structured as follows. Section 2 introduces a software
production process that combines model-based and task-based approaches.
This process is explained using a case study. And section 3 presents the
conclusions, and future work.

2. MODEL-BASED INTERFACE DEVELOPMENT
WITH OLIVANOVA MODEL EXECUTION

In this section, we present a complete software production process that
combines functional requirements specification, user interaction design, and
implementation. It is defined on the basis of OlivaNova Model Execution
(ONME) [1], a model-based environment for software development that
complies with the MDA paradigm [7] by defining models of a different
abstraction level. Figure 1-1 shows the parallelism between the models
proposed by MDA and the models dealt with in OO-Method [12] (the
methodology underlying ONME).

At the most abstract level, a Computation-Independent Model (CIM)
describes the information system without considering if it will be supported
by any software application; in OO-Method, this description is called the

1. INTEGRATING MODEL-BASED AND TASK-BASED
APPROACHES TO USER INTERFACE GENERATION

3

Requirements Model. The Platform-Independent Model (PIM) describes the
system in an abstract way, still disregarding the underpinning computer
platform; this is called the Conceptual Model in OO-Method. ONME
implements an automatic transformation of the Conceptual Model into the
source code of the final user application. This is done by a Model
Compilation process, with knowledge about the target platform. This step is
equivalent to the Platform Specific Model (PSM) defined by MDA.

Figure 1-1. A MDA-based development framework for UI development

2.1 Obtaining Functional Requirements

The first step in the construction of a software system is the requirements
elicitation. Its purpose is to specify what the customer needs. In our process,
this step is accomplished through the definition of a Functional
Requirements Model [5]. The requirements model is composed by: a mission
statement, a function refinement tree, and a use-case model.

The Mission Statement describes the purpose of the system in one or two
sentences. The external interactions are partitioned into functions, which are
hierarchically structured in a Functions Refinement Tree (FRT) where the
root is the mission statement, the internal nodes are business activities, and
the leaves are use cases. Finally, the Use Case Model includes the interaction
(decomposed in steps) between the system and an external actor.

In order to explain our proposal, we have chosen an application generated
using ONME. The system to be built is OlivaNova Automatic Tweaking, part
of the ONME suite. It is intended to automate subtle manual changes
requested by clients after the code generation. We have simplified the case
study, selecting one task of this system: Create a version. In this task, the
user must select an existing project and add a new version for it. In Figure 1-
2 (a), we show part of the FRT in which this task is included.

4 Chapter 1

Figure 1-2. Functional requirements for the Tweaking system

Once we have the FRT, the Use-Case Model can be obtained from the
leaves of the tree. Our case study will be centered on the Create version use
case that corresponds to the leaf that is marked in the FRT. Figure 1-2 (b)
presents the specification of this use case. It consists of a use case
description, the actors who can invoke it, the conditions needed to execute it
and the list of events which compose it.

2.2 Eliciting User Interaction

In order to document interaction requirements, we propose the use of the
Concur Task Trees (CTT) notation [13]. The interaction between the user
and the system is specified by means of a task model, resulting in a
hierarchical task tree in which the tasks have different granularity and are
related by temporal operators.

A CTT tree is built for each use case. It specifies how the user interacts
with the system in order to accomplish the task required. The use case
constitutes a high-level task that is decomposed into lower granularity tasks;
it is important to define the criterion of decomposition: we propose to reach
basic tasks concerning data elements. There is a deep mapping between
elements of the use-case specification and elements of its corresponding task
model: the steps of the use case involving elemental data manipulation
appear as basic tasks of the task tree.

Sometimes this interaction modelling process involves several use cases,
which results in their restructuring; that is, the interaction requirements
reorganize the functional requirements. These interaction requirements
complete the CIM level of our development approach. We have built the task
trees with certain structures of tasks that we have observed to be frequent.

Following with the example, Figure 1-3 shows the CTT model for the
Create version use case.

The root of the task tree is the use case whose interaction is being
modelled. Since this use case has the selection of a project as a precondition,
we reuse the List versions from project CTT, and we include the Demand the
creation of a new version interactive task.

1. INTEGRATING MODEL-BASED AND TASK-BASED
APPROACHES TO USER INTERFACE GENERATION

5

Figure 1-3. CTT model for the Create version use case

We can now identify the mapping between the steps of the use-case
specification and the lowest level tasks; i.e., step 5 “Indicate the relative path
of the project” has its correspondent interaction task: “Relative path”. It is
also noticeable that several use cases have been reorganized: the main
functionality of Create version (the New version abstract task) is accessed
through the interface of the List projects and List versions use cases.

2.3 Modelling Data, Behaviour, and Interaction

After the Functional Requirements Model and the CTTs are specified, the
data, behaviour, and presentation issues should be modeled. OO-Method
defines a PIM called Conceptual Model [12] consisting of four models. The
Object Model, the Dynamic Model, and the Functional Model can be built
using the Functional Requirements Model as input.

Interaction between the system and the user is specified in the
Presentation Model [8]. It is based on a pattern language which defines three
levels of interaction patterns: (1) Hierarchy of Actions Tree (HAT): it
organizes the functionality that will be presented to the different users who
access the system; (2) Interaction Units (IUs): it represents abstract
interface units that the user will interact with to carry out his/her tasks. There
are four types of UIs: Service IU, Instance IU, Population IU, and
Master/Detail IU; (3) Elementary patterns (EPs): these patterns constitute
the primitive building blocks of the UI and allow the restriction of the
behaviour of the different interaction units.

As suggested in Figure 1-1, there is a direct mapping between parts of the
CTT and parts of the Presentation Model. To do that, we have to define a

6 Chapter 1

design pattern for CTT and concrete names for their components. We show
some of them in Table 1-1.

Table 1-1. Some matching between CTT and Presentation Model
CTT Presentation Model

Two abstract tasks related by an Enabling with information
passing temporal operator

Master / Detail

An abstract task whose name starts with New or Modify Service IU
An abstract task whose name starts with List Population IU
An abstract task whose name starts with Detail Instance IU
An interaction task named Select filter Filter
An interaction task named Select sort criteria Order criteria
An interaction task, leaf of a subtree, in a Service IU Introduction
An interaction task whose name starts with Demand Action

Figure 1-4. Presentation Model for the Tweaking system

Figure 1-4 (a) shows the system’s first two levels of presentation patterns
according to the case study. The patterns that appear highlighted in gray are
detailed in (b). Figure 1-4 (b), shows the services and the arguments of
Create_Instance.

To design this model, we consider the CTT generated in the previous
step. In particular, Figure 1-4 (b) was generated by the definition provided in
Figure 1-3. The left subtree of the CTT is mapped to a Master/Detail pattern.
And, on the other hand, the right side of the tree model is equivalent to a
Service IU; its execution will call the Create_Instance service. As this
service corresponds to a service defined in the Object Model, it turns
towards an early model validation, based on the traceability among the
Presentation Model and the Use Cases.

1. INTEGRATING MODEL-BASED AND TASK-BASED
APPROACHES TO USER INTERFACE GENERATION

7

2.4 Generating the System

Once we have completed the PIM, the next step is to take advantage of
ONME automatic production of the source code (Code Model). Nowadays,
ONME implements a Model Compilation process to automatically transform
the information captured in the Conceptual Model into a full software system
over the following platforms: Visual Basic, C #, ASP. NET, Cold Fusion and
Java; using as repository SQL server 2000, ORACLE or DB2. The resulting
application is a three-layer application that includes the interface tier, the
application tier, and the persistence tier. Some correspondences between
PIM elements and their final, concrete widgets for the Visual Basic platform
are defined in [8].

Figure 1-5. New version window

The result of applying the translation patterns [8] is shown in Figure 1-5.
The HAT has become the application menu and the List Version from
Project and Versions patterns have been turned into windows. In the List
Versions from Project window, we can invoke the tasks related to the
versions listed by a project. It contains the task to create a version (marked
button). Once the button is clicked, the New Version window appears to
allow the introduction of the information to create a version.

3. SUMMARY AND FUTURE WORK

Software production methods need a complete software production
process that properly integrates system functionality, behaviour, and user
interaction in the early stages of the system lifecycle. This process should
also allow the sketching, modelling, and prototyping of UIs. In accordance
with these ideas, we have presented a software production process that starts
from requirements elicitation and uses CTT notation based on tasks to build
a full software system, not just its user interface. To do this, we embedded

8 Chapter 1

the CTT notation in a model-based development approach by respecting its
original semantics.

The proposed process will be empirically validated in the near future to
prove its effectiveness. As a future work, an application that will implement
CTT drawing using these proposed patterns will be integrated into the
ONME suite. This will allow CTT nodes to be reused easily.

REFERENCES

[1] Care Technologies: http://www.care-t.com Last visited: Mar-2006.
[2] da Silva, P. P. (2001) ”User interface declarative models and development environments:

A survey”. Interactive Systems. Design, Specification, and Verification, 8th International
Workshop, DSV-IS 2001, Glasgow, Scotland, Springer-Verlag Berlin.

[3] da Silva, P. P. d. and N. W. Paton (2003). "User Interface Modeling in UMLi " IEEE
Softw. 20 (4); pp. 62-69.

[4] Hayes, P., Szekely, P. and Lerner, R. (1985) Design Alternatives for User Interface
Management Systems Based on Experience with COUSIN. Proceedings of SIGCHI'85,
pp. 169-175. Addison-Wesley.

[5] Insfrán, E., Pastor, O., Wieringa, R. (2002). Requirements Engineering-Based Conceptual
Modelling. Requirements Engineering, Vol. 7, Issue 2, p. 61-72. Springer-Verlag.

[6] Limbourg, Q. and J. Vanderdonckt (2004). Addressing the mapping problem in user
interface design with UsiXML Proceedings of the 3rd annual conference on Task models
and diagrams Prague, Czech Republic ACM Press; pp. 155-163.

[7] MDA: http://www.omg.org/mda Last visited: Jan-2006.
[8] Molina P., User interface specification: from requirements to automatic generation, PhD

Thesis, DSIC, Universidad Politécnica de Valencia, March 2003 (in Spanish).
[9] Montero, F., V. López-Jaquero, et al. (2005). Solving the mapping problem in user

interface design by seamless integration in IdealXML. Proc. of DSV-IS'05, Newcastle
upon Tyne, United Kingdom, Springer-Verlag.

[10] Mori G., Paternò F., Santoro C. (2004) "Design and Development of Multidevice User
In-terfaces through Multiple LogicalDescriptions" IEEE Transactions on Software
Engineer-ing; pp.507-520.

[11] Nunes, N. J. y J. F. e. Cunha (2000). "Wisdom: a software engineering method for small
software development companies." Software, IEEE 17(5); pp. 113-119.

[12] Pastor, O., J. Gómez, et al. (2001). "The OO-method approach for information systems
modeling: from object-oriented conceptual modeling to automated programming."
Information Systems 26(7): 507-534.

[13] Paternò, F., C. Mancini, et al. (1997). ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models. Proceedings of the IFIP TC13 International Conference on
Human-Computer Interaction, Chapman & Hall, Ltd.; pp. 362-369.

[14] Szekely, P. (1990) Template-Based Mapping of Application Data to Interactive Displays.
Proceedings of UIST'90, pp. 1-9. ACM Press.

[15] Szekely, P., Sukaviriya, P., Castells, P., Muthukumarasamy, J., and Salcher, E. (1996)
Declarative Interface Models for User Interface Construction Tools: the MASTERMIND
Approach. In Engineering for HCI, pp. 120-150, London, UK, Chapman & Hall.

[16] Vanderdonckt, J., Q. Limbourg, et al. (2004). USIXML: a User Interface Description
Language for Specifying Multimodal User Interfaces. Proceedings of W3C Workshop on
Multimodal Interaction WMI'2004, Sophia Antipolis, Greece.

