
A Models-to-Program Information Systems
Engineering Method?

Rene Noel1,2[0000−0002−3652−4645], Ignacio Panach3[0000−0002−7043−6227], and
Oscar Pastor1[0000−0002−1320−8471]

1 Centro de Investigación en Métodos de Producción de Software, Universitat
Politècnica de València, Valencia, Spain

rnoel, opastor @pros.upv.es
2 Escuela de Ingenieŕıa Informática, Universidad de Valparáıso, Valparáıso, Chile

rene.noel@uv.cl
3 Escola Tècnica Superior d’Enginyeria, Departament d’Informàtica, Universitat de

València, València, Spain
joigpana@uv.es

Abstract. The Model-Driven Development paradigm aims to represent
all the information system features through models. Conceptual-Model
Programming offers a similar approach, but with a focus on automatic
code generation. Both approaches consider modeling and traceability of
different abstraction levels, where each level can be tackled with dif-
ferent modeling methods. This heterogeneity introduces a challenge for
the quality of the traceability and transformations among models, es-
pecially when aiming for automatic code generation. In this paper, we
introduce a holistic conceptual-model programming method to generate
code from different abstraction levels (from the problem space to the so-
lution space), through three modeling languages whose consistency has
been ontologically ensured by two transformation techniques. Particu-
larly, we focus on transformations from the strategic layer using i*, to
business process layer using Communication Analysis (CA), and to the
system conceptual model layer with OO-Method, which can automati-
cally generate fully functional systems. Even though there are previous
works that have proposed partial transformations among these modeling
methods, this paper is the first one that deals with the perspective of
putting together all the models in a single development method. For each
transformation, we discuss what parts can be automatically performed
and what parts need human intervention.

Keywords: modeling methods combination · model-driven interoper-
ability · conceptual model programming.

? This project has the support of the Spanish Ministry of Science and Innovation
through the DATAME project (ref: TIN2016-80811-P) and PROMETEO/2018/176
and co-financed with ERDF and the National Agency for Research and Development
(ANID)/ Scholarship Program/ Doctorado Becas Chile/ 2020-72210494.



2 Rene Noel, Ignacio Panach, and Oscar Pastor

1 Introduction

The use of modeling languages for different information systems abstraction
levels and the transformation between them, are key characteristics of model-
driven approaches [13]. Most of the claims of these approaches, regarding im-
provements on product quality, process efficiency, and developer’s satisfaction
[18] are based on the suitability of the modeling methods and the quality of the
transformations. However, combining modeling methods from different abstrac-
tion levels with different languages, semantics, and theoretical foundations is an
open challenge: it is necessary to precisely define their connection to ensure the
internal quality of the transformations, the quality of the models generated by
the transformations, and the overall method quality, besides the quality of the
independent methods [12].

This article presents a Models-to-Program Information Systems Engineer-
ing Method (M2PM), which combines three modeling methods for different ab-
straction levels, going from organizational modeling of strategic dependencies
with i* [23], to business process modeling with Communication Analysis [6],
and to an executable conceptual model of the system with OO-Method [19]. As
its main contribution, this paper reinforces the feasibility of Conceptual-Model
Programming paradigm [5] in practice, by showing that it is possible to design
a holistic software production method that connects -with a sound method-
ological background- stakeholder’s goals and requirements with their associated
code. This is achieved by connecting in a precise way scientifically (but individ-
ually) validated methods and transformation techniques, ensuring traceability
throughout the process and providing as much automation as possible.

The rest of the article continues with Section 2, where the related work is
presented. An overview of the holistic modeling method and a detailed working
example showing the model-to-program process is presented in Section 3. Finally,
Section 4 details the conclusions and future work for the method.

2 Related Work

2.1 Connection of Modeling Methods

The model-driven community has widely studied the connection of models of dif-
ferent abstraction levels for developing information systems in the last decade.
In a systematic literature review about interoperability [10], the authors iden-
tified several approaches for model-driven interoperability, i.e., the exchange of
information among models. Model weaving regards the identification of seman-
tic equivalences between the metamodels of the models to integrate, to generate
specific maps between the concepts of the models. The pivotal metamodel ap-
proach is the equivalencies between metamodels identification using a reference
metamodel to compare them; Pivotal ontology follows a similar approach. Meta-
extensions are the transformations semantics additions to models to improve in-
teroperability. Despite the early recognition of the interoperability approaches,
the traceability among models is still an open challenge. In another literature



A Models-to-Program Information Systems Engineering Method 3

review [17], authors studied the state of traceability among models, identifying
challenges related to the semantics of traceability and its generality. Most of the
reviewed studies described problem-specific semantics for the transformations,
which might be domain, organization, or project dependent.

With regard to the quality definition for the combination of modeling lan-
guages in a single method, Giraldo et als.[13] report issues both in the criteria
for choosing the languages to be combined and in the overall quality assess-
ment of the combined methods. The literature review concludes that there is a
predominant subjectivity in selecting modeling languages, and raises questions
about how it is assessed the suitability, coverage, pertinence, and utility of the
languages to be combined. It also reports that most of the existing quality eval-
uation frameworks have definitions of a high level of abstraction, lacking imple-
mentation details, and are specific for a unique language combination. Authors
continue this work in [11], presenting a method and a tool for a general quality
evaluation framework, which helps to better define the quality concepts and the
metrics for language comparison. One of the quality metrics supported by the
framework regarding information loss is the preservation of constructs through
the model transformations. Another quality metric regarding the suitability of
a modeling language is the number of integration points that it provides for its
connection with the other languages.

In summary, modeling language connection is still a challenge, although re-
cent proposals approach systematically its quality evaluation. These additions
offer insights about the desired characteristic for a new combination of meth-
ods, such as problem-independent traceability, transformations with a clear and
defined interoperability approach, and focus on key quality attributes such as
constructs preservation and the suitability of each modeling language.

2.2 Background

I* is an agent-oriented and goal-oriented modeling framework for the description
and reflection of the intentionality of the actors of an organization. I* considers
two modeling levels: the Strategic Dependency Model and the Strategic Ratio-
nale Model. In the Strategic Dependency Model (SDM), the actors are presented
as nodes, and their intentions are represented by directed relationships from the
actor that wants to achieve a goal to the actor that enables the achievement of
the goal. These relationships are called dependencies, and there are four types
of them: goal, soft-goal, task, and resource dependency. The Strategic Ratio-
nale Model (SRM) aims to detail the way that those dependencies are satisfied,
linking the SDM dependencies to specific goals, soft-goals, tasks, and resources
inside the boundaries of each actor. Those elements can be linked to represent
task decomposition, means to an end, and contribution to soft-goals. The frame-
work is implemented in OpenOME Requirements Engineering Tool [15]. The
version 2.0 of the modeling language [3] is supported by the piStar Tool [20].

Communication Analysis (CA) [6] is an information system’s requirements
specification method, which allows business process modeling from a commu-
nication perspective. The model support three specification artifacts: the Com-



4 Rene Noel, Ignacio Panach, and Oscar Pastor

municative Event Diagram, the Communicative Event Specification, and the
Message Structures specification. The Communicative Event Diagram graphi-
cally depicts the sequence of interactions between a Primary Actor (who starts
the communication), a Support Actor (who is the organization’s interface in
the communication), and the Receiver actor (who is notified of the results of
the event). The Communicative Event Specification allows the textual specifi-
cation of requirements, through a template that considers contact requirements,
the content of the communication, and the reactions produced after the com-
municative event. The Message Structure Specification allows to represent the
information that is inputted, derived, or generated in the communication by
defining one or more data fields, aggregations of data fields, and substructures.
Aggregations are structures valuable to business logic, so they are also called
Business Objects. The supporting tool for CA is a functional prototype based
on Eclipse modeling Framework, the GREAT Process Modeler, described in [21].

The OO-Method (OOM) [19] is an automatic software production method
from platform-independent conceptual schemes. It considers four views to model
the information system: the structural view (Object Model), the behavioral view
(Dynamic model), the logic (Functional Model), and the user interfaces (Pre-
sentation Model). OOM is based on the OASIS language [16] and considers a
Conceptual Schema Compiler for the generation of platform-specific models and
code. The supporting tool for OOM is INTEGRANOVA [2], that can generate
fully functional web or desktop systems in many programming languages.

GoBIS [22] technique proposes nine guidelines for the derivation of CA mod-
els from i* models. The guidelines propose to derive a Communicative Event in
CA for each dependency between i* actors, as well as to derive precedence of
the events, although there is no temporal dimension in i*. Also, it promotes the
generation of communication events for the registry of information of relevant
actors. GoBIS guidelines are implemented in the tool GREAT Process Modeler,
described in [21].

España proposes in [7, 14] the integration of CA models with OOM mod-
els, presenting a set of rules to derive OOM’s object, functional, and dynamic
models. The proposal considers rules that are fully automatable, as well as semi-
automatic transformations that require manual modeling tasks from the analyst.
This transformation technique is also implemented in the GREAT Process Mod-
eler [21].

3 The M2P Information Systems Engineering Method

3.1 Method Overview

We introduce the Models-to-Program Information Systems Engineering Method
(M2PM), as a connection of existing modeling methods and model transforma-
tion techniques. The goal of the method is to support the following claims:

– Improve the maintainability of the software product through traceability
between the organizational level, business processes level, and the conceptual
model of the system level.



A Models-to-Program Information Systems Engineering Method 5

– Improve the efficiency of the development process by providing as much
automation as possible between the abstraction levels.

This is achieved by connecting in a precise way scientifically (but individually)
validated methods and model transformation techniques. In Fig. 1 we present the
connection of methods proposed: organizational modeling with i* [23], business
process modeling with Communication Analysis (CA) [6], and Systems modeling
with OO-Method (OOM) [19].

Fig. 1. Proposed connection of modeling methods.

As commented in Section 2, one of the key quality elements for method
integration is its semantic consistency. We choose i*, CA, and OOM because of
the ontological alignment of the existing transformation techniques [22, 7]. The
transformation techniques use FRISCO [8] as a pivotal ontology to ensure the
consistency of i* concepts with CA concepts, and of the CA concepts with the
OOM concepts.

In the following subsections, we will present the models and transformations
of the proposed method following an example. For each stage modeling level,
we will provide the semantic justification for the transformations, as well as
the rationale for mapping concepts from different abstraction levels, which are
the basis for the successful combination of modeling languages [11, 17]. This
ontological alignment led us to choose CA over other similar business process
modeling methods, such as BPMN Collaboration Diagrams [1] and S-BPMN [9].



6 Rene Noel, Ignacio Panach, and Oscar Pastor

3.2 Working Example

For presenting the key elements of the method, we introduce the Custom Bicycle
Company. The customers can order a custom bicycle, that is composed of a
basic structure (that includes the frame, rims, grips, and chain) and one or many
additional components, such as custom handlebars, tires, and pedals. Customers
can choose a model for the basic structure (for example, a sports bicycle), its
color, and size. For each of the components, customers can choose the color.
The company must request the additional components to an external company.
Once all the components are provided, the company delivers the bicycle to the
customer.

3.3 Organizational Level Modeling with i*

The Strategic Dependency Model depicted in Fig. 2 represents the actors and
their strategic dependencies. Circles represent the actors of the domain example:
the customers, the clerk (who represents the organization before the external
actors), and the provider of the components. The goals of the actors are pictured
as an ellipse, and the direction of the relationship indicates that the source
actors depend on the target actor to satisfy the goal. Resources dependencies
are pictured as rectangles and represent that the source actor needs the resource
from the target actor. Although i* provides a rich language to specify other types
of dependency as well as how the goals are achieved, the example does not cover
these aspects for the sake of simplicity.

Fig. 2. Strategic Dependency Model.

3.4 Business Process Level Modeling with Communication Analysis

Transformation from i* model to Communication Analysis Model.
The guidelines presented in [22] provide support for the transformation of i*
models into Communication Analysis (CA) models. The transformation is not
problem specific. The central idea of the transformation is that a strategic depen-
dency of any type in i*, generates a communicative interaction between the same



A Models-to-Program Information Systems Engineering Method 7

actors in CA. In model transformation terms, organizational goals (represented
in a source istar model) are materialized by business processes (represented in a
target CA model). Resource dependencies that relate to information are trans-
formed into a Communicative Event in CA, with all its associate concepts. The
semantic of this transformation is as follows: for an Actor A to satisfy the need
of an informational resource of an Actor B , the Actor A must communicate with
Actor B to deliver the informational resource. Other types of dependencies also
transform into communicative events with all their associated concepts, as pre-
viously detailed. It is noticeable that the semantic for each type of dependency is
different. For instance, for goal dependencies the semantic can be expressed as: if
an actor A depends on Actor B for achieving a goal, Actor B must communicate
to Actor A the information that is relevant for Actor A to verify that the goal
has been achieved.

The guidelines also support the transformation of actors from i* whose in-
formation is relevant for the business model, into a communicative event for the
registry of its information. Other transformation supported by the guidelines
deals with actors which satisfy the same dependency for two or more actors,
which transform into a single communicative with a primary actor and many
receiver actors. Also, subsequent dependencies between three or more actors are
transformed into precedence relationships between the communicative events.
The semantic of this transformation is: before Actor A can satisfy the need for
the resource of Actor B, Actor C must satisfy the need of Actor A. This provides
a sense of temporal precedence which is not explicitly modelled in i*.

It is important to note that some Communication Analysis Concepts cannot
be generated following the guidelines. The structure of the input and output
messages (that will be explained in the following subsections) must be elicited
and documented by the Analyst. Also, the Support Actor for the Communicative
Event must be chosen among the actors of the event, and alternate behaviors
(known as Communicative Event Variants), cannot be derived.

Fig. 3 exemplifies the elements traced from the previous example to CA
models, following the guidelines. In the example, the resource ”custom bicycle
order” (A in the left diagram of Fig. 3) and its source and target actors, clerk
and customer, respectively, are mapped into a communicative event (A in the
right diagram). This event has the following elements: customer as the primary
actor (A.1) who starts the communication by sending an input message (A.2)
to the clerk, who is the receiver actor (A.3) of the output message (A.4). The
details of the communication are meant to be specified in the communicative
event “customer places a bicycle order” (A.5).

The same transformation described above also applies to the dependency B
in the diagram in the left of Fig. 3, which is transformed in the elements of
the communicative event marked as B in the right. It is important to note that
the Analyst can choose a more appropriate name for the message: although the
content of the communication between the clerk and the provider can be the same
”bicycle order”, the aim of the communication of the clerk with the provider is
to request the additional components, so the input and output messages are



8 Rene Noel, Ignacio Panach, and Oscar Pastor

named as ”components order” (B.1 and B.2 in Fig. 3). This is the same case of
the dependencies D and E in the diagram at the left in Fig. 3, which transforms
into the communicative events D and E in the right of the diagram in the same
figure.

The subsequent dependency of the resource ”custom bicycle order” (C at the
left) is transformed into the precedence relationship between the events “cus-
tomer places a bicycle order” and “clerk places a component order” (C at the
right of Fig. 3). Finally, regarding the registry of data of relevant actors, cus-
tomer data would be valuable to represent in this way, but it is not depicted in
Fig. 3 for simplicity.

As has been shown, almost all of the i* constructs are preserved in the CA
model. Table 1 summarizes the elements that can be traced from i* to Commu-
nication Analysis, and what must be manually addressed by the Analyst.

Fig. 3. Transformation from i* Strategic Dependency Model to a Communicative Event
Diagram.

Additional Business Modeling Activities. Communication Analysis (CA)
supports the specification of the communicative events, allowing the Analyst
to specify requirements regarding the goal of the communicative event, the de-
scription, and a more detailed specification of contact, content, and reaction
requirements. These elements are exemplified in Fig. 4for the communicative
event “customer places a bicycle order”.



A Models-to-Program Information Systems Engineering Method 9

Table 1. Traceability of concepts between i* and Communication Analysis.

CA Concept I* Concept Comment

Communicative
Event

Goal, soft-goal, task, re-
source dependums

Traceable and semiautomatic.

Actors Actors Primary and receiver actors are
derivable. Support actors can-
not be derived.

Messages Goal, soft-goal, task, re-
source dependums

Traceable. No details for mes-
sage structure can be derived.

Precedence Subsequent dependencies of
the same dependum

Communicative
Event Specification

Not supported -

Communicative
Event Variant

Not supported -

In the communicative event specification, the content requirements detail the
information of the communication, in the form of a Message Structure (MS).
The MS specifies the data elements in the communication, as well as other
more complex structures, such as aggregations (structures containing one or
more data fields or other structures), and iterations (several repetitions of the
same field or structure). In the example, the MS “Bicycle Order” (colored in
orange in Fig. 2 4) is composed of an initial aggregation (BICYCLEORDER,
in red), which is composed of six data fields (number, date, and price of the
order; model, size or color of the basic bicycle structure), and an iteration of
several components (in violet). ”Component” is also an aggregation, with two
data fields (type and color). A special case of data field is customer (colored in
brown): this is a reference field for other aggregations already defined in other
communicative events. In the same way, the aggregations defined in this structure
can be referenced in other communicative events. These aggregations are also
known as Business Objects, given its value for the business process.

Finally, it is important to identify the supporting actor of a communicative
event. Although GoBIS rules do not provide support for its automatic generation,
the Analyst has the information to identify which of the two actors in the event
belongs to the organization and set it as the supporting actor.

3.5 Conceptual Modeling of the System with OO-Method

Transformation from Communication Analysis Model to OO-Method
Model. The rules in [7] allow the transformation of communicative events and
message structures of CA into elements of the object model, functional model,
and dynamic model of OO-Method (OOM). The transformation is not problem-
specific. The presentation model of OOM is out of the scope of the transforma-
tion. In these rules, the Message Structures (as presented in Table 1) provide
information for OOM’s object model. The aggregations in the MSs (hereinafter



10 Rene Noel, Ignacio Panach, and Oscar Pastor

Fig. 4. Communicative Event Specification example.

namely Business Objects or BOs) transform into Classes in OOM’s object model.
The semantic of this transformation can be understood as: If the contents of the
communication between two actors in the business process level are valuable,
they must persist in the information system that supports the process.

Regarding the Communicative Events (CE), the primary receiver and sup-
port actor are transformed into Agents of the object model of OO-Method.
Agents are classes that have execution permissions for the services of the classes.
The services of the classes are derived from CEs, to allow the actors to create,
edit, delete, and make complex operations with the objects, according to the
behavior described in the communicative events. The semantics of these trans-
formations can be interpreted as: If an actor has behavior associated with the
content of the communication at the business process level, the actor must be
able to execute the services that encapsulate that behavior at the system level. If
the same BO is referenced in several communicative events, the transformation
rules guide the generation of edit service; also, the rules support the generation
of the logic to update the class, by introducing a valuation rule in OOM’s func-
tional model. For BOs that are referenced in several events, the transformation
rules support the generation of OOM’s dynamic model, where the states and
transitions of each class are defined.

A special case are the BOs that change of state through the business pro-
cess, which is also supported by the rules by generating the attributes, services,



A Models-to-Program Information Systems Engineering Method 11

and functionality to implement the state machine for the class. Finally, for com-
municative events in which the messages introduce changes for several BOs at
the same time, the transformation rules support the generation of a transaction
service in the object model, and a transaction formula in the functional model
to specify all the services that must be connected in the transaction.

There are OOM’s model elements that cannot be automatically generated
following the rules and require manual modeling by the Analyst. For instance, the
cardinality of some structural relationships in OOM’s object model, the selection
of data fields as unique identifiers of objects, as well as the null allowance and
variability of attributes.

Fig. 5 presents examples for the most powerful transformations, that are
commented below. Dealing with the generation of classes from Message Struc-
tures, the business object BICYCLEORDER (Fig. 5.A in the left) transforms
into the class BicycleOrder (A in the diagram at the right). Data fields of the
BO transform into attributes of the class. The referenced BOs, such as customer
(left B), are transformed into structural relationships (right B). In this case, the
customer is referenced but not defined, but, as was presented in the previous
section, the guidelines provided support to generate a BO for the customer’s
relevant data. Regarding the nested aggregations defined in the MS, such as
Component (left C), they are also transformed into structural relationships, and
in this case, into a new class, with a cardinality given by the iteration (right C).
Regarding the generation of services, when an actor introduces a new BO in the
business process, i.e., the customer places a new bicycle order (left D in Fig. 5),
it generates a creation service for the corresponding class (BicycleOrder), and
the clerk, which is the supporting actor of the organization, gets access to this
service as an agent (right D). If the bicycle order is referenced in several com-
municative events through the process (left E in Fig. 5), then an editing service
is generated for the BicycleOrder class, and the valuation rules for registering
the change of states of the object, in OOM’s functional model (bottom right in
Fig. 5).

As an example of a transaction service, if for the final delivery of the bicycle
it is needed to register the “delivery date· in the BicycleOrder, and set the “last
delivery date” attribute in the Customer (left F in Fig. 5), this would produce
a transaction service in the BicicyleOrder class (right F).

Table 2 summarizes the elements that can be traced from i* to Communi-
cation Analysis, and what must be manually addressed by the Analyst. Most
of the constructs of CA are preserved to OOM’s models, including constructs
originated in i* concepts. For example, the class BicycleOrder is traceable to
a resource dependency in i*, offering strategic and business process context for
the Analyst. This is a key contribution of the method combination proposal: the
modeling methods and transformation techniques combination preserve most of
the high abstraction level constructs, which gives strategic and business context
to the system modeling, providing traceability and automation in the generation
of the most important concepts in each level.



12 Rene Noel, Ignacio Panach, and Oscar Pastor

Fig. 5. Communicative Event Specification example.

Table 2. Traceability of concepts between Communication Analysis and OO-Method.

OOM Concept CA Concept Comment

Classes, attributes
and relationships

Message structures Traceable and automatic.

Services definition Communicative
events

Traceable and semi-automatic. Require
some manual modeling and interpretation
of text requirements.

Classes structural re-
lationships

Message Structures,
Communicative
Events

Traceable and semiautomatic. Require
some manual modeling and interpretation
of text requirements.

Agents Actors Traceable and automatic.

States and transi-
tions

Communicative
Events and prece-
dence.

Traceable and automatic.

Services logic (func-
tional model)

Communicative
events

Semi traceable and semiautomatic. Re-
quire some manual modeling and interpre-
tation of text requirements.

Presentation model Not supported -



A Models-to-Program Information Systems Engineering Method 13

Additional system modeling activities. The transformation of CA models
generates OOM’s model elements with strong semantic foundations, however,
there are OOM concepts that are not supported by the rules. Additional model-
ing is needed to fully specify the logic of additional services. OOM’s presentation
model cannot be derived from the rules in [7]. Due to the high technology readi-
ness level of OO-Method and its tool support [2], fully functional software can
be generated by using the embedded presentation patterns of the method. Also,
complementary methodological approaches from models to working user inter-
faces can be introduced, such as the presented in [4].

4 Conclusions and Future Work

Information systems modeling at different levels of abstraction, and the transfor-
mations between them, are key elements of model-driven approaches to increase
both product and process quality with respect to traditional methods. We pre-
sented the M2P Information Systems Engineering Method as the connection
of three different modeling methods which are suitable for different abstrac-
tion levels: i* for organizational level, Communication Analysis for the business
process level, and OO-Method for the system model level, which supports the
generation of working code of the information system. The connection among
these methods is supported by well-defined and empirically validated transfor-
mation techniques, that have been developed separately, and have never been
put together in a holistic method. With an example, we showed the feasibility
of conceptual model programming in practice, emphasizing the semantics of the
transformations, and the support provided by the method for the Analyst to
complete the models of each abstraction level.

Regarding the limitations of the example, certainly many special cases are
not covered (for instance, exception handling in business process models), and
the scalability of methods that work in small examples is a matter of concern.
However, the example goal is to demonstrate the feasibility of the method and
identify traceability and automation issues that are also present in more com-
plex problems. Further work aims for analyzing improvement opportunities to
connect concepts that could be not currently considered by the transformation
techniques, to enhance traceability and provide as much automation as possi-
ble. Also, modeling challenges for improving the overall quality of the modeling
method, such as overlapping of modeling activities, must be identified.

References

1. Business Process Model and Notation (BPMN), Version 2.0 p. 532
2. Integranova Software Solutions, http://www.integranova.com/es/
3. Dalpiaz, F., Franch, X., Horkoff, J.: istar 2.0 language guide. arXiv preprint

arXiv:1605.07767 (2016)
4. Dı́az, J.S., López, O.P., Fons, J.J.: From user requirements to user interfaces: A

methodological approach. In: International Conference on Advanced Information
Systems Engineering. pp. 60–75. Springer (2001)



14 Rene Noel, Ignacio Panach, and Oscar Pastor

5. Embley, D.W., Liddle, S.W., Pastor, o.: Conceptual-model programming: a mani-
festo. In: Handbook of Conceptual Modeling, pp. 3–16. Springer (2011)

6. España, S., González, A., Pastor, Ó.: Communication analysis: a requirements engi-
neering method for information systems. In: International Conference on Advanced
Information Systems Engineering. pp. 530–545. Springer (2009)

7. España Cubillo, S.: Methodological integration of Communication Analysis into a
model-driven software development framework. Ph.D. thesis (2012)

8. Falkenberg, E.D.: A framework of information system concepts: the FRISCo report.
University of Leiden, Department of Computer Science, Leiden (1998)

9. Fernández, H.F., Palacios-González, E., Garćıa-Dı́az, V., G-Bustelo, B.C.P.,
Mart́ınez, O.S., Lovelle, J.M.C.: Sbpmn—an easier business process modeling no-
tation for business users. Computer Standards & Interfaces 32(1-2), 18–28 (2010)

10. Giachetti, G., Valverde, F., Maŕın, B.: Interoperability for model-driven develop-
ment: Current state and future challenges. In: 2012 Sixth International Conference
on Research Challenges in Information Science (RCIS). pp. 1–10. IEEE (2012)

11. Giraldo, F.D., España, S., Giraldo, W.J., Pastor, O.: Evaluating the quality of a
set of modelling languages used in combination: A method and a tool. Information
systems 77, 48–70 (2018)

12. Giraldo, F.D., España, S., Pastor, O.: Analysing the concept of quality in model-
driven engineering literature: A systematic review. In: 2014 IEEE Eighth Inter-
national Conference on Research Challenges in Information Science (RCIS). pp.
1–12. IEEE (2014)

13. Giraldo, F.D., España, S., Pastor, O., Giraldo, W.J.: Considerations about quality
in model-driven engineering. Software Quality Journal 26(2), 685–750 (2018)

14. González, A., España, S., Ruiz, M., Pastor, Ó.: Systematic derivation of class
diagrams from communication-oriented business process models. In: Enterprise,
Business-Process and Information Systems Modeling, pp. 246–260. Springer (2011)

15. Horkoff, J., Yu, Y., Eric, S.: Openome: An open-source goal and agent-oriented
model drawing and analysis tool. iStar 766, 154–156 (2011)

16. Lopez, O.P., Hayes, F., Bear, S.: Oasis: An object-oriented specification language.
In: International Conference on Advanced Information Systems Engineering. pp.
348–363. Springer (1992)

17. Mustafa, N., Labiche, Y.: The need for traceability in heterogeneous systems: a
systematic literature review. In: 2017 IEEE 41st Annual Computer Software and
Applications Conference (COMPSAC). vol. 1, pp. 305–310. IEEE (2017)

18. Panach, J.I., España, S., Dieste, O., Pastor, O., Juristo, N.: In search of evidence for
model-driven development claims: An experiment on quality, effort, productivity
and satisfaction. Information and software technology 62, 164–186 (2015)

19. Pastor, O., Molina, J.C.: Model-driven architecture in practice: a software pro-
duction environment based on conceptual modeling. Springer Science & Business
Media (2007)

20. Pimentel, J., Castro, J.: pistar tool–a pluggable online tool for goal modeling. In:
2018 IEEE 26th International Requirements Engineering Conference (RE). pp.
498–499. IEEE (2018)

21. Ruiz, M.: TraceME: A Traceability-Based Method for Conceptual Model Evolution.
Springer (2018)

22. Ruiz, M., Costal, D., España, S., Franch, X., Pastor, O.: Gobis: An integrated
framework to analyse the goal and business process perspectives in information
systems. information systems 53, 330–345 (2015)

23. Yu, E.: Modeling strategic relationships for process reengineering. Social Modeling
for Requirements Engineering 11(2011), 66–87 (2011)


