
Web 2.0 Patterns:

A Model-driven Engineering Approach

Ana Rosa Guzman, Victoria López, Francisco
Valverde

PROS Research Center
Universitat Politècnica de València

Camino de Vera S/N, 46022, Valencia, Spain
{aguzman,vlopez,fvalverde}@pros.upv.es

Jose Ignacio Panach
Escola Tècnica Superior d'Enginyeria,

Departament d’Informàtica, Universitat de València
Av. de la Universidad, s/n 46100 Burjassot, València, Spain

joigpana@uv.es

Abstract—Web 2.0 is a concept that is not only discussed by the
Software development community but also in the research
community. However, Web Engineering methods, specifically
Model-driven Engineering (MDE) ones, are not yet ready to cope
with advanced user involvement features that Web 2.0 is
demanding. In this work the concept of Web 2.0 pattern is
introduced to support the user involvement concern. With the
goal of providing a formal description, Web 2.0 patterns are
defined precisely using conceptual models that represent both
interaction and functionality, since in Web 2.0 applications both
features are intertwined. This work also presents how the
conceptual models that describe these Web 2.0 patterns can be
integrated into a model-driven Web Engineering method. As
proof of concept of the contribution, the integration of the Quick
Comment pattern with the OOWS 2.0 method is discussed.

I. INTRODUCTION

Nowadays Web 2.0 is a topic with a remarkable impact on
the development of Web applications. However, the Web 2.0
definition [14] has been traditionally ambiguous because it
defines a set of best practices and technologies that, at first
glance, are not clearly related. Nevertheless, everybody agree
that the Web 2.0 summarizes the evolution of the Web in
recent years [13]. This evolution has introduced a set of
development technologies that have improved: 1) the usability
perceived by the end-users [28], and 2) the information
integration among several Web 2.0 applications [29].
Simultaneously, Social Webs such as Facebook or Twitter, in
which user involvement is a key concern, have gained
relevance as the best examples of Web 2.0 applications. Two
main distinctive characteristics describe these Social Webs: 1)
the creation of virtual communities to link users that share the
same interests, and 2) the definition of the Web content by
users. Therefore, a successful user involvement has been also a
decisive factor in the current success of the Web 2.0.

Industry has perceived the great potential of this new
tendency and it has started to demand Web 2.0 features inside
their Information Systems. The main detected benefits are the
ability to reach new audiences and the increase of customers’
involvement and loyalty. Additionally other interesting
advantages have been detected. Firstly, the information

available in such Web 2.0 applications can be extremely useful
to target a product for a specific users group. Since people
introduce their personal profile in these Social Webs,
customized adverts can be easily addressed. And secondly, the
feedback among customers, employees and third parties is
improved. Therefore, though Web 2.0 was introduced as a
marketing word, nowadays it is a philosophy with a
considerable influence on the development of industrial
Information Systems.

Web Engineering has provided interesting MDE methods
[17] to face the development of Web Applications. These
methods have defined conceptual models to support different
concerns of the Web Application development. Whereas
several works [3][12] have addressed how to introduce new
Web 2.0 technologies in a model-driven method, few works
have proposed how the user involvement can be supported as
well. As the demand of Web 2.0 applications is increasing, the
inclusion of this facet within a MDE development process is an
interesting research topic. The main advantage is that the
analyst could easily model the social facet of the Web
application at the problem space avoiding implementation
decisions. From that modeling step, the final code can be
generated from these conceptual models. As a result, the Web
2.0 Application development should improve in terms of time
and maintenance, according to the MDE benefits that the
Software Engineering community states [25][26].

Currently, there are sound works in the MDE paradigm to
model interface and functionality separately. For example,
UML Class Diagrams to represent data persistency and UMLi
[27] or CTTs [16] to represent the interaction. However, these
works have not been adapted to the Web 2.0 development, in
which interaction and functionality has to be considered as a
whole. The main contribution of this work is to provide a
holistic model-driven approach in order to support the Web 2.0
development in the current MDE methods.

 Many Web 2.0 Applications are developed using design
patterns that are useful to emphasize the user involvement.
Some examples of these patterns are the user mechanisms for
creating and evaluating the content in Web 2.0 applications.
This work proposes introducing those solutions described as

patterns at the conceptual level. To achieve this goal, the Web
2.0 pattern concept is defined as a reusable solution based on
conceptual models for improving the end-user involvement in
the creation of Web content. In current approaches, a Web 2.0
pattern is specified using a pattern template made up of the
common sections for describing design patterns [9]. However,
this textual description is sometimes ambiguous and cannot be
included in a MDE paradigm, where model-to-model (M2M)
and model-to-code (M2C) transformations require
unambiguous rules.

With the aim of providing a more precise description, we
have proposed a Web 2.0 pattern template that also includes
the definition of two conceptual models: 1) a Functionality
Model represented using an UML Class Diagram to describe
the data structures and operations abstracted by the pattern and,
2) an Interaction Model represented using the Concur-Task
Tree notation [19] to describe the user interaction when the
pattern is applied.

Additionally, this work presents a strategy to integrate these
Web 2.0 patterns into a model-driven Web Engineering method
using model-to-model transformations (M2M). To illustrate
that strategy the OOWS 2.0 Web Engineering method, which
also follows the MDE paradigm, is extended with the inclusion
of the Quick Comment pattern.

The rest of the work is organized as follows: Section 2
describes the related work. Next, section 3 introduces the Web
2.0 pattern concept and presents an example: The Quick
Comment Pattern. Section 4 introduces the strategy for
integrating the Web 2.0 patterns at conceptual level. This
strategy is applied into the OOWS 2.0 method in order to
integrate the Quick Comment pattern previously described.
And finally, Section 5 presents the concluding remarks and
future works.

II. RELATED WORK

The concept of pattern, which was proposed by Alexander
[1] in urban architecture, has been widely used in the Software
Engineering community. In software development, design
patterns [9] have been applied as implementation guides to
improve the code quality. Furthermore, in the User Interface
(UI) development discipline, several pattern libraries have been
defined by authors such as Tidwell [19] or Welie [30]. These
solutions have been shown to benefit end-users; they have
already been implemented, evaluated, and proved. However,
design patterns are focused on functionality whereas UI
patterns are focused on interaction issues. Web 2.0 application
requires a solution that includes both concerns.

Since Web 2.0 applications are built around clearly defined
best practices, it is an interesting approach to gather that
knowledge as patterns. In this reasoning line, one of the most
relevant works is the pattern library developed by Yahoo [31].
This library includes both technological and social patterns that
address several best practices of the Web 2.0. The main interest
of this library is that the patterns are illustrated using examples
from Yahoo Web applications. Additionally, an extension of
this library is presented by Crumlish and Malone [6]. Another
interesting pattern library can be found in the UI patterns
Website [20]. Though this library is focused on the UI design,

it also includes five social or community-driven patterns. These
patterns are described using a standard template as well.

Since the inclusion of patterns in model-driven
environments is a relevant topic, Levendovszky et. al [11]
formalize the different constructs needed for supporting
domain-specific model patterns in metamodels. This proposal
provides a set of theoretical foundations that can also be
applied to patterns from the Web 2.0 domain. In a similar
reasoning line, Koch et. al [10] propose a pattern approach for
the model-based engineering of Rich Internet Applications
(RIAs). This approach is based on UML state diagrams that
model the behavior of the RIA pattern. However the patterns
proposed (Autocomplete and Dynamic refresh) deal only with
technological issues related to Web 2.0 Applications
development.

A model-driven approach for supporting the social facet of
Web 2.0 development has been proposed by Fraternali et. al
[8]. In that work, several community-driven patterns extracted
from popular Web 2.0 applications are described. Authors also
discuss how the patterns can be defined using models from the
WebML method [5]. However, how the same pattern can be
introduced into another Web Engineering method is not
addressed.

From all this study we can conclude that, in general,
existing pattern libraries are based on textual descriptions and
code examples. These descriptions are ambiguous and, at the
end, the developer is who decides the specific implementation
of the pattern. In order to mellow this problem, we propose a
more precise solution using conceptual models. Apart from
defining the patterns unambiguously, another advantage of our
approach is that the proposed solution is neither linked to a
specific technology nor implementation decisions. Moreover,
the analyst does not have to recurrently implement the pattern;
the code is automatically generated by M2C transformation
rules that implement the targeted transformation.

 Existing approaches that deal with Web 2.0 patterns in a
MDE context, such as the works of Fraternali et al. and Noch et
al, are based on a specific Web Engineering method (WebML
and UWE respectively). For emphasizing the knowledge reuse,
we aim to develop a proposal that can be applied to any MDE
method. Additionally, we also aim to define a strategy for
integrating the Web 2.0 patterns into the metamodel of the
methods, such as the work of Levendovszky et. al justifies.

III. A MODEL-BASED APPROACH FOR WEB 2.0 PATTERNS

Patterns are usually defined in the literature using a
template for structuring their specification. These templates
only provide a textual description of the proposed solution.
However, a more precise description is required to successfully
integrate them into a MDE development process. In this work,
the following template has been used for describing the Web
2.0 patterns:

 Problem: a brief description about the problem that the
pattern solves.

 Contexts of use: scenarios where the pattern is
recommended to be applied. Specific constraints that
advise against the use can be documented as well.

 Solution: a textual description that introduces in detail
how the pattern solves the stated problem.
Technological details and variations over the generic
behavior of the pattern can also be introduced.

 Rationale: Why the solution provided by the pattern is
useful to improve the user involvement. The
advantages of the Web 2.0 pattern with regard to other
solutions can also be stated in this section.

 Real examples: several examples of Web 2.0
applications where the pattern has been applied for a
specific purpose. This section must optionally include
a screenshot of an application that uses the social
pattern or sample code.

These five sections are common to previous analyzed
works [6][8] and traditional literature about patterns [9].
However, in our pattern template two more sections, which are
not defined in previous works, have been introduced. The goal
of these sections is to document the Web 2.0 pattern precisely
by means of conceptual models. Hence, the semantic gap
between the solution representation at the conceptual level and
the solution to be implemented is reduced. In order to provide a
generic approach, the selected notations to define these models
are not linked to a specific method. The two proposed
conceptual models are:

 Functionality Model: this model is defined using a
UML Class Diagram that describes the different
classes, attributes, relationships and operations that
implement the Web 2.0 pattern. Hence, this model
provides a static view that defines the objects to be
created when the pattern is applied. The UML Class
Diagram has been selected because it is the most
common notation for representing functionality and
data.

 Interaction Model: this model provides a description of
the interactions performed between the user and the
system when the pattern is applied. In the context of
this work, the interaction is defined as the
communication flows between the user and the system
by means of an abstract interface. Concur-Task Trees
[16] (CTT) have been selected to create this model,
since it is a widely accepted notation to define the
interaction in the HCI community.

In order to illustrate the template in detail, a Web 2.0
pattern is described using our proposal: the Quick Comment
pattern. Though in this work, CTT and class diagrams have
been used to document the patterns, it is worth mentioning that
other suitable standard notations can be used for the same
purpose.

A. Quick Comment Pattern

Problem: the user wants to share their point of view
regarding some specific content, using a very simple process.

Contexts of use:

 To provide textual feedback about some specific
content.

 To broadcast textual information about personal
thoughts (tweets).

 To provide a personal evaluation or rating about the
content

Solution: the pattern is implemented as a text component
for introducing the comment below the related content, and one
submit button that publishes the introduced text. When the user
is registered, the comment is published along with some user
information, like the user alias.

Rationale: this pattern is often used in Web 2.0
applications to gather users’ feedback. The process to introduce
the comment is performed in the same page as the related
content and its simplicity avoids the user to give up. Another
advantage of the pattern is that the comment publication takes
place immediately. All the mentioned advantages provide a
very simple interaction, which significantly encourages the
user participation.

Real example: this pattern is applied in the Washington
Post (http://www.washingtonpost.com) website, where there is
a text box below each article to introduce comments. This
example also supports the creation of recommendations or
replying a previous comment.

Conceptual models: Figure 1. (up) shows the functionality
model for this pattern represented with a class diagram. The
classes that made up the model represent the information about
the comment. If the comment is not anonymous, there is a
relationship with the user who creates it; optionally, the
comment can also be related to a specific content or to another
comment. The model not only supports the creation of new
comments (postNewComment operation), but also supports
comments modification (edit operation), comments replying
(replyTo operation) and subscription for automatically
receiving responses (subscribe operation).

Figure 1. (bottom) shows the CTT that represents the
corresponding interaction model. The first mandatory operation
is to create a new comment that establishes a trigger for the
subscriptions (“Create Comment” task). Any subsequent
operation is represented by the abstract task “Comment
Operations” and it can be repeated indefinitely. The tasks
“Reply comment” and “Edition” can be used to modify a
comment and save the changes using the task “Store comment
modifications”. When the user is subscribed to a comment
because of the execution of the task “Subscription”, two
additional system tasks are executed: one task to store the
subscription and the other one to send the information related
with the subscription.

Figure 1. Functionality and Interaction Models for the Quick Comment Pattern

IV. INTEGRATING WEB 2.0 PATTERNS INTO AN MDE

METHOD

In the previous section a Web 2.0 patterns has been
documented using the proposed pattern template. The main
contribution of this work is to document and model these
patterns and to provide a strategy to include them in an MDE
method.

The modeling phase of Web Engineering methods is
defined using a set of modeling elements that made up the
method metamodel. When the analyst creates instances of these
modeling elements, a model that represents the application is
specified. The current Web Engineering methods models are
expressive enough to represent the functionality of the most
common Web 2.0 patterns. However, because these methods
do not provide any reuse mechanism, analysts must define the
same models continually for specifying common solutions. As
Web 2.0 patterns are fairly frequent, a solution for improving
MDE methods is to include them in the modeling phase.

A common approach for extending a MDE method
expressivity is the introduction of new modeling elements. In

the context of Web 2.0 patterns, this approach has a main
drawback. With the purpose of representing each pattern, at
least, one new modeling element is introduced. Because there
is not an intermediate model between that pattern modeling
element and the code generation process, the pattern
transformation to code has to be specified and implemented
into the MDE method. Furthermore, this model transformation
is far from being trivial. The main reason is because Web 2.0
patterns abstract a complex solution, thus there is a wide
semantic gap between the modeling entity and the code to be
generated.

In our view, a more suitable solution to this issue is the
reuse of previous modeling elements for representing the
pattern transformation. Hence, the current modeling entities are
used as an intermediate model and the complexity is managed
at the modeling level. Furthermore, applying this approach, the
previous code transformation rules can be reused.

In the context of this work, a Web 2.0 pattern is represented
as a model defined using the modeling elements of a MDE
method. This method-specific model must be compliant with
the interaction and functionality model that represent the

pattern. Our approach is based on the following mechanism:
when the analyst uses the modeling element that refers to a
Web 2.0 pattern, the underlying model, which is abstracted by
the pattern, is used as a substitute. The main advantage is that
the complexity of that underlying model is hidden to the
analyst. A similar mechanism has been put in practice in the
Rational Architect tool [18] in order to introduce model-based
patterns into development processes. The ideas of that work are
applied in our proposal for integrating Web 2.0 patterns within
MDE methods.

Because each MDE method is based on their domain-
specific models, obviously an all-encompassing solution
cannot be defined. For that reason, each pattern has a specific
model for each MDE method. To deal with this issue, we
propose a generic strategy that simplifies the introduction of
Web 2.0 patterns in a MDE method. This strategy is made up
of four steps:

1. Extension of the MDE method semantics: The first
step is to check whether or not the current modeling elements
of the method support the expressivity required by the Web 2.0
pattern. This check is mandatory because Web 2.0 patterns are
built using these modeling elements. The analysis must
consider every modeling element that is useful to support both
the functionality and the interaction concerns. Therefore, the
functionality and interaction model proposed in the pattern
template are used as guidelines to perform this check. In case
the analysis concludes that current modeling elements do not
support the expressivity, the MDE method models must be
previously updated.

2. Redefining the method metamodel: Next, the MDE
method metamodel must be extended to support the definition
of Web 2.0 patterns. To achieve this goal, the metamodel must
contain a modeling element that represents each Web 2.0
pattern to be introduced. Additionally, the pattern must be
related by means of a unary relationship to at least another
modeling element of the metamodel. This relationship defines
the methodological extension point from which the pattern is
applied (See Figure 2. up). As the figure shows, the pattern
element is related to the modeling element “C” from the
metamodel. Therefore, when analysts create a new model, the
pattern can be applied over the instances of the modeling
element “C”. Optionally, the new pattern element can include
metamodel attributes and relationships with the rest of the
metamodel elements. Both attributes and relationships are used
as additional information, which are used in the modeling
phase, to configure the final implementation.

3. Generation of the pattern model: Once the method
supports the required expressivity, Web 2.0 patterns must be
defined as a model made up of the modeling elements of the
method. This step defines the underlying model that is actually
used when the pattern is applied. The underlying model is
precisely defined using a M2M transformation. The purpose of
the transformation is to substitute the modeling element that
represents the pattern by the corresponding modeling elements
of the method. The transformation proposed is also known as
refining, because both target and source metamodels are the
same. An advantage of using a M2M transformation is the
possibility of defining different model configurations according

to attributes of the pattern. For instance, in the case of the
Quick Comment pattern, a Boolean attribute can be defined in
the pattern for enabling the edition of comments.

 Figure 2. (bottom) shows this process graphically. The
analyst creates an M model in which the modeling element of
the pattern is used (for instance, a class that represents the
“Share content” pattern). Then, the model M is transformed
into another model M’ by means of a refining M2M
transformation. The resultant model M’ is then used by the
current set of M2C transformations to generate the pattern
functionality. Applying this approach, the M2C transformation
rules do not change because the new pattern modeling entities
are not used in this last transformation.

4. Tool support: Finally, the tool that supports the MDE
method must be extended in order to include the Web 2.0
patterns. This step also takes into account the definition of a
textual or graphical notation for specifying the patterns.
Whether new semantics have been included in the first step, the
M2C transformation rules must be modified as well.

As proof of concept, this strategy has been applied in the
OOWS 2.0 Web Engineering method. In the next subsections,
the OOWS 2.0 method is briefly described, and this strategy is
illustrated with the integration of the Quick Comment pattern.

Figure 2. Overview of the proposed strategy

A. The OOWS 2.0 Web Engineering method

OOWS (Object-Oriented Web Solutions) [7] is a Web
Engineering method that provides methodological support for
Web application development. This method has been
developed as an extension of OO-Method [15], an automatic
code generation method. Both OOWS and OO-Method are
examples of MDE methods because conceptual models are
considered key elements in all development steps. Software
products are generated from a system conceptual specification
by means of four complementary OO-Method models and two
OOWS models, which capture the data, the business logic and
the interface requirements of a given Web Information System.

OOWS 2.0 has been recently developed in order to support
the specific features of Web 2.0 applications. This evolution of
the method basically extends OOWS at the modeling phase by
providing the following set of models:

 Abstract Interaction model: this model describes the
interaction between users and the system.

 Web 2.0 patterns model: this model introduces a set of
Web 2.0 patterns following the guidelines explained in
this work.

 RIA Interface model: this is an optional model to
specify a user interface generated using a RIA
technology.

OOWS 2.0 modeling phase is made up of four activities.
Figure 3. shows the relationship between the different method
activities for the OOWS 2.0 modeling phase (left) and the
associated models (right) required in each one. The first
activity (OO-Method Modeling) is the definition of the models
that describe the system data and functionality. This activity is
also shared with the previous version of the method.

The next activity of the method is the Interaction Modeling.
The key element of this activity is the Abstract Interaction
Model. This model represents the interaction between the users
and an Information System without taking into account
technological details. This model is made up of several
modeling elements. First, real users that interact with the
system are represented as a User Diagram. Next, the abstract
tasks that the users can carry out with system, for instance add
a new customer to the system, are represented as Interaction
Contexts. The relationship between Users and Interaction
Contexts is described using an Interaction Map. This map
describes which Interaction Contexts are accessible to a
specific User and the interaction path or tasks to be completed
in order to execute them.

With the goal of specifying the interaction, the model
introduces the concept of Abstract Interaction Units or AIUs.
Each Interaction Context is composed by several AIUs that
describe the represented interaction. An AIU is defined as an
interaction view over the state of the Information System
objects. There are two types of AIUs: (1) Population AIU,
which retrieves a chunk of data to interact with, and (2) Service
AIU, which represents an interface to input the arguments for a
service execution. Therefore AIUs represent two main
interactions: data retrieval and functionality execution.

Since all the interaction specification with a system cannot
be defined using only the Population and the Service AIUs,
Auxiliary Interaction Patterns (AIPs) are introduced to
constraint the behavior and/or to refine more accurately these
two main interactions. Examples of such patterns are “Filter”,
which is used to constrain the data to be retrieved, or
“Validation Rule”, which defines a Boolean rule that must be
accomplished by the input data. Currently, the Abstract
Interaction Model includes thirteen of these patterns providing
a wide array of interaction expressivity. Further details about
the Abstract Interaction Model are discussed in [21].

The next activity is the Web 2.0 Patterns modeling. This
activity is directly related with this work. Finally, the details
about the RIA Interface Modeling activity, which addresses the
User Interface concern, can be consulted in [23].

Figure 3. OOWS 2.0 Modeling Phase

B. Introducing the Quick Comment pattern into OOWS 2.0

In this section we explain how the Quick Comment pattern
is integrated into the OOWS 2.0 method, according to the
strategy presented above. With the purpose of illustrating the
strategy, a scenario has been selected from the 23andMe
website (http://www.23andme.com): a personal genetics Web
2.0 portal that provides knowledge about the genetic
information of registered users. In this website, a registered
user can participate in a regular forum called “23andMe
Community” to discuss about its personal genetics. This
scenario provides the interaction for discussing about several
genetic topics in a collaborative way. Each thread is created by
one user and is related to one topic discussion and to one tag.
Registered users can also reply to one thread any number of
times and can add threads to a favorites list. Therefore, this
scenario uses clearly the semantics of the Quick Comment
pattern.

The first step for applying the integration strategy is to
check, whether or not, the scenario can be modeled using the
current semantics of OOWS 2.0. With this goal in mind, the
illustrative scenario has been modeled using the Abstract
Interaction Model. Semantics are quite straightforward in this
case; hence there is no need to add additional expressivity.

The scenario is represented in the Interaction Context
“Discussion Threads” shown in Figure 4. Discussions to be
shown to the user are represented as a Population AIU. This
AIU is made up of population classes that represent a view
over the corresponding OO-Method Object Model, a variation
of a UML Class Diagram which specifies the system
functionality. This view is represented graphically as
stereotyped classes with the «manager» or the
«complementary» keyword with the set of attributes to be
shown.

Figure 4. Interaction Context for describing discussion threads

The Population AIU represents the next retrieval of data:
one discussion is composed by one or more tags; a thread is
assigned to one tag and written by a user which is represented
by the profile class; a thread can optionally have any number of
replies, each one is written by on user; one user can have any
number of threads in her/his favourite list.

The Interaction Context also includes four AIPs: 1) a
Pagination AIP to show the discussion in groups of ten threads,
2) an Order Criteria AIP to sort the discussions according to the
thread date, 3) and Object Navigation AIP to navigate to the
detail of a thread, and 4) an Object Navigation AIP to navigate
to the user profile information.

The second step is to specify the methodological extension
point from which each pattern is included. The Quick
Comment pattern must be related to a class from which the
users will add new comments. This fact implies that the
methodological extension point for this pattern is the
“Population Class” modeling element. Figure 5. shows the
extension point in the OOWS 2.0 metamodel. Two new
relationships are defined: 1) the “contentId” relationship that is
related to an attribute which is used as comment identifier, and
2) the “content” relationship that relates the pattern with the
class which represent the content to be commented.

Figure 5. Quick Comment pattern extension point

Additionally, the pattern specification includes four
attributes for configuring the specific behavior. The first two
“allowEdition” and “allowReply”, activate the mechanisms to
edit and to reply to comments. The “subscription” attribute,
enables the reception by users of new replies to their
comments. Finally, the “anonymous” attribute, enables the
creation of comments by non-registered users.

Figure 6. (up) shows an example of an Interaction Context
in order to reply to the threads created in the proposed scenario.
This Interaction Context is reached throughout an Object
Navigation AIP from the “Discussion Threads” context. The
selected notation to represent the pattern is a stereotyped UML
class with the word pattern, linked to the class that represents
the content to be commented. In order to create the replies to a
thread, the pattern has been applied over the class “Thread”.
The result is the ability for associating new comment instances
to this class that represent the replies.

The third step of the strategy is the generation of the
pattern model. When the analyst instantiates a Web 2.0 pattern,
what really happens is that a more complex model is generated
at the background. That generated model (M’ model in Figure
2.) must be based on the functionality and interaction models
proposed in the Web 2.0 pattern template. Therefore in this
third step, functionality and interaction models must be
translated to the corresponding modeling elements of the
OOWS 2.0 method. As the OOWS 2.0 counterpart of the
functionality model resembles the UML Class Diagram, this
translation is straightforward.

To perform the mappings between the interaction model
and the OOWS 2.0 models, the semantics of the CTT tasks
must be analyzed in detail (see an example of CTT in Figure
1. bottom). On the one hand, interactive tasks (ellipse boxes)
represent the user-system interaction, for that reason they are
described by means of AIUs and the corresponding AIPs. On
the other hand, computer tasks (rectangular boxes) represent a
processing information/functionality of the system; as a
consequence they are mapped to a specific operation of the

OO-Method Object Model. Finally, abstract tasks (cloud icon)
are a composition of the previous tasks, thus a specific
mapping is not required. Next, the transformation process for
the Quick Pattern is discussed in more detail.

Figure 6. (bottom) represents the resulting OOWS 2.0
model (M’) when the Quick Comment pattern is applied The
first level of the Quick Comment CTT (See Figure 1.) is made
up of two optional (|| operator) abstract tasks. Each task will be
represented as a Service AIU, in which the tasks of the sub-
trees are performed. Figure 6. (bottom) shows the generated
OOWS 2.0 model entities (depicted with a wider line) for the
“Create Comment” and “Comment Operations” abstract tasks.
The “Add new comment” task is represented by the Service
AIP “postNewComment” defined over the “Thread Class”. The
“Reply comment” task is represented by the new class
“Comment” and the “replyTo” Service AIP that stores the new
comment associated to a thread. Besides the pattern application
relates each new comment to a user and to its profile URL.

The pattern instantiation provides the definition of three
Service AIPs, three additional population classes and an
additional Object Navigation AIP using a single modeling
element. As a consequence the complexity perceived by the
analyst is reduced. It is also worth mentioning that in this
specific pattern instantiation, the edition and subscription
attributes are set to false. Therefore, a more complex model can
be translated from the pattern application.

Regarding the four step, tool support, the underlying M2M
transformation has been defined using ATL [2], because this
language is compatible with the OOWS 2.0 metamodel defined
in the Ecore language. The result of this M2M transformation
is the input for the OOWS 2.0 code generation process. The
specific details about this transformation and the code
generation process are out of scope of this paper.

Figure 6. Generation of the Quick Pattern underlying Model

V. CONCLUDING REMARKS

This work has presented an approach to include in MDE
methods the best practices of the Web 2.0 development. The
two main contributions of this work are: 1) the definition of the
user involvement in the Web 2.0 content creation by means of
model-based patterns, and 2) a strategy to extend the current
MDE methods with this novel Web 2.0 pattern concept. To our
knowledge, the research community does not focus yet on
these issues from the perspective proposed in this work.
However, in the Web 2.0 domain where heterogeneous
concerns are involved, the use of Web 2.0 patterns provides
interesting benefits.

Several lessons have been gathered from the presented
work. Firstly, the use of conceptual models simplifies the
translation of Web 2.0 patterns to the specific models of the
method. Another interesting lesson is that several Web 2.0
patterns can be modeled with the current Web Engineering
methods because they have enough expressiveness.
Consequently using patterns, we can benefit from a mechanism
to reuse the best practices in both models and applications.
Additionally, Web 2.0 patterns must be described using
conceptual models based on standard or well-known modeling
languages. Therefore the knowledge can be shared among
different MDE methods.

 The last lesson is with regard the effort to implement the
proposal in a specific MDE method. Methods, whose
conceptual models have poor expressiveness to represent
interaction and functionality, will require the extension with
new conceptual primitives. Therefore, it is important to
evaluate the expressiveness of the MDE method to use and the
extension cost, before applying our proposal.

Though the presented approach provides a noteworthy
improvement, there are some issues that must be considered as
well. Firstly, a Web 2.0 pattern may involve the abstraction of
a very complex model. As a consequence, the M2M
transformation to be defined is not a straightforward task.
Additionally, for each pattern a new metamodel element must
be defined. Therefore, the modeling language provided to
analysts may become more difficult to understand.
Nevertheless, the main concern is that the method expressivity
constrains whether or not the pattern can be introduced. If the
models of the method cannot be adapted or extended to support
the expressivity required, the inclusion may not be feasible.

Future works will address the definition of an extensive
Web 2.0 pattern library. The OOWS 2.0 method will be
extended to support this library and to generate code from the
models defined as Web 2.0 patterns. Finally, an empirical study
must be carried out to validate the improvement of the user
experience and the analyst modeling effort.

ACKNOWLEDGMENT

This work has been developed with the support of,
MICINN (PROS-Req TIN2010-19130-C02-02), GVA (ORCA
PROMETEO/2009/015), and co-financed with ERDF.

REFERENCES
[1] Alexander, C., Ishikawa, S. & Silverstein, M.: A Pattern Language:

Towns, Buildings, Construction. Oxford University Press (1977)

[2] Atlas INRIA & LINA: ATL User Guide http://wiki.eclipse.org
/ATL/User_Guide Last Visit: December 2011 (2011)

[3] Bozzon, A., Comai, S.: Conceptual Modeling and Code Generation for
Rich Internet Applications. 6th International Conference on Web
Engineering (ICWE), California, United States (2006)

[4] Budinsky, F., Merks, E., Steinberg, D., Ellersick, R., Grose, T.J.: Eclipse
Modeling Framework. Addison-Wesley Professional (2003)

[5] Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML):
a modeling language for designing Web sites. WWW9 Conference,
Amsterdam, (2000) 137 - 157

[6] Crumlish, C., Malone, E.: Designing Social Interfaces: Principles,
Patterns, and Practices for Improving the User Experience. O'Reilly
Media (2009)

[7] Fons, J., Pelechano, V., Albert, M., Pastor, O.: Development of Web
Applications from Web Enhanced Conceptual Schemas. ER 2003,Vol.
2813. LNCS Springer(2003) 232-245

[8] Fraternali, P., Tisi, M., Silva, M., Frattini, L.: Building Community-
based Web Applications with a Model-Driven Approach and Design
Patterns. www.webml.org/webml/upload/ent5/1/CommunityPatterns-
final.pdf. Last Visit: November 2011

[9] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns:
Elements of Reusable Object-Oriented Software. Addyson Wesley
(1995)

[10] Koch, N., Pigerl, M., Zhang, G., Morozova, T.: Patterns for the Model-
Based Development of RIAs. Web Engineering (2009) 283-291

[11] Levendovszky, T., Lengyel, L., Mészáros, T.: Supporting domain-
specific model patterns with metamodeling. Software and Systems
Modeling 8 (2009) 501-520

[12] Linaje, M., Preciado, J.C., Sánchez-Figueroa, F.: Engineering Rich
Internet Application User Interfaces over Legacy Web Models. IEEE
Internet Computing (2007) 53-59

[13] Murugesan, S.: Understanding Web 2.0. IT Professional 9 (2007) 34-41

[14] Oreilly, T.: What is Web 2.0?. Design Patterns and Business Models for
the Next Generation of Software. Vol. 2008 (2005)

[15] Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice. A
Software Production Environment Based on Conceptual Modeling.
Springer-Verlag, Berlin Heildeberg (2007)

[16] Paternò, F.: ConcurTaskTrees: An Engineered Notation for Task
Models. In: Diaper, D., Stanton, N., Stanton, N.A. (eds.): The Handbook
of Task Analysis for Human-Computer Interaction. Lawrence Erlbaum
Associates, London, United Kingdom (2004) 483-501

[17] Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.): Web Engineering:
Modeling and Implementing Web Applications. Springer (2008)

[18] Swithinbank, P., Chessell, M., Gardner, T., Griffin, C., Man, J., Wylie,
H., Yusuf, L.: Patterns: Model-Driven Development Using IBM
Rational Software Architect. IBM Redbooks (2005)

[19] Tidwell, J.: Designing Interfaces. O'Reilly Media (2005)

[20] UI Patterns library: http://ui-patterns.com/ Last visit: December 2011

[21] Valverde, F., Panach, I., Aquino, N., Pastor, O.: Dealing with Abstract
Interaction Modeling in an MDE Development Process: a Pattern-based
Approach. In: Macías, J.A., Granollers, T., Latorre, P. (eds.): New
Trends on Human-Computer Interaction. Springer, London (2009) 119-
128

[22] Valverde, F., Pastor, O.: Applying Interaction Patterns: Towards a
Model-Driven Approach for Rich Internet Applications Development.
In: Gaedke, M., Bieliková, M. (eds.): 7th International Workshop on
Web-Oriented Software Technologies. Vydavateľstvo STU, New York,
United States (2008) 13-18

[23] Valverde, F., Pastor, O.: Facing the Technological Challenges of Web
2.0: A RIA Model-Driven Engineering Approach. Web Information
Systems Engineering - WISE 2009 (2009) 131-144

[24] Valverde, F., Valderas, P., Fons, J., Pastor, O.: A MDA-Based
Environment for Web Applications Development: From Conceptual
Models to Code. In: Brambilla, M., Mendes, E. (eds.): 6th International
Workshop on Web-Oriented Software Technologies (IWWOST).
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy,
Como, Italy (2007) 164-178.

[25] Sendall, S., Kozaczynski, W.: Model Transformation: The Heart and
Soul of Model-Driven Software Development. IEEE Software 20 (2003)
42-45.

[26] Hailpern, B., Tarr, P.: Model-Driven Development: the Good, the Bad,
and the Ugly. IBM Syst. J. 45 (2006) 451-461.

[27] Silva, P.P.d., Paton, N.W.: User Interface Modeling in UMLi. IEEE
Software 20 (2003) 62-69

[28] Noda, T., Helwig, S.: Rich Internet Applications - Technical
Comparison and Case Studies of AJAX, Flash, and Java based RIA.
Best Practice Reports University of Wisconsin-Madison, Vol. 2008
(2005)

[29] Schroth, C., Janner, T.: Web 2.0 and SOA: Converging Concepts
Enabling the Internet of Services. IT Professional 9 (2007) 36-41

[30] Welie, M.v., Traetteberg, H.: Interaction Patterns in User Interfaces. 7th.
Pattern Languages of Programs Conference, Illinois, USA (2000)

[31] Yahoo design pattern library: http://developer.yahoo.com/ypatterns/ Last
visit: december 2011

