
A Proposal for Enhancing the UsiXML Transformation 
Meta-Model 

 

Nathalie Aquino, José Ignacio Panach, Oscar Pastor 
Centro de Investigación en Métodos de Producción de Software  

Universidad Politécnica de Valencia  
Camino de Vera s/n, 46022 Valencia, Spain  

+34 96 387 70 07 Ext. 83534 
{naquino, jpanach, opastor}@pros.upv.es  

 
ABSTRACT 
UsiXML proposes a set of conceptual models that represent 
diverse aspects of user interfaces. Some of these models 
represent a user interface at a high abstraction level. From 
these high level models, other models at a lower abstraction 
level can be obtained by means of model-to-model 
transformations. Model-to-model transformations can 
occur between several abstraction levels. Finally, the user 
interface code is reached through a model-to-code 
transformation. Therefore, transformations are a 
fundamental piece in the UsiXML development process. 
Current UsiXML model-to-model transformation rules are 
specified using a graph-based notation. This strong 
dependency on graphs can result in a lack of efficiency in 
transformations when the amount of involved graphs is 
medium or large. In order to face this problem, we propose 
a transformation meta-model independent of graphs and 
any other transformation technology. The analyst can use 
this transformation meta-model to specify how 
transformations should be carried out throughout different 
abstraction levels. Once this specification has been 
finished, the analyst will be able to translate the 
transformation rules into a specific transformation language 
that performs the transformation. In the paper, we 
introduce an example to illustrate that a same 
transformation rule specified in our proposal can be 
translated into two different translation languages such as 
graph notation and ATL, depending on analyst’s 
preferences. 

Keywords 
Model-driven engineering, UsiXML, meta-model, 
transformation, interaction modelling, conceptual model.  

INTRODUCTION 
Model-driven engineering (MDE) is a software 
development methodology which focuses on creating 

models, or abstractions, closer to concepts of a particular 
domain (i.e., at the problem space level) than to computing 
concepts (i.e., at the solution space level). According to 
[12], MDE is simply the notion that we can construct a 
model of a system that we can later transform into the real 
thing. MDE states that the analyst’s effort must be gathered 
in a conceptual model, and the system is implemented later 
by means of transformation rules that can be automated or 
semi-automated. In other words, the MDE paradigm 
distinguishes between conceptual models, defined by 
analysts, and the code that implements the system, which 
can be generated with as much automation as possible from 
the corresponding conceptual model. In this context, 
model-to-model and model-to-code transformations are an 
essential piece to develop systems according to the MDE 
paradigm.  
UsiXML [11] proposes an MDE method for user interface 
development. It comprises various types of high level 
models that allow to represent interactive tasks in a way 
that is independent of platforms and interaction modalities 
(e.g., character, graphical, vocal), as well as other lower 
level models that add the relevant details about platforms, 
devices, modalities, users, etc. Furthermore, UsiXML uses 
a transformational approach: higher level models are 
transformed to lower level models by means of model-to-
model transformations, and the final user interface code is 
reached from lower level models by means of model-to-
code transformations. Model-to-model and model-to-code 
transformations are specified by means of transformation 
rules.  
The current proposal to perform model-to-model 
transformations in UsiXML is based on graph 
transformations [11]. The current version of the meta-
model that characterizes this proposal is defined in the 
UsiXML V1.8 Reference Manual [21]. This meta-model 
incorporates classes which are too much related to the 
structure of graphs. This can be seen as a disadvantage, 
since it can result in a very high correlation between 
UsiXML and graphs transformations with their related 
tools. Furthermore, graph transformations have some 
disadvantages [22] that are inherited by UsiXML. For 
example, the number of nodes is critical. Graphs with many 

 
 



nodes require much time to perform transformations. 
Another critical factor is the maximum degree of nodes. 
The more degrees, the more time is needed to carry out 
transformations. These disadvantages suggest that graph 
transformations would not be suitable for models of large 
size.  
In the literature, there are other proposals related to 
transformations which are not focused on graphs, like the 
Query/View/Transformation (QVT) standard [18] and the 
ATLAS Transformation Language (ATL) [2]. QVT is the 
standard of the Object Management Group for specifying 
model transformations. It aims to transform MOF-based 
models. MOF (Meta-Object Facility) [14] is also a standard 
of the Object Management Group and is used for 
specifying meta-models. Its current version is MOF 2.0. 
The UML 2 meta-model (UML 2.0 and above) has been 
defined according to MOF 2.0, so all models compliant 
with UML 2 are MOF-based models and hence, can be 
transformed using QVT. QVT has been implemented in 
various languages. Among those languages, ATL is 
currently the most widely used [17]. ATL allows 
describing transformations using a syntax that is similar to 
the one of declarative and imperative programming 
languages. Since all UsiXML meta-models are defined 
using UML 2, we consider that features of languages that 
implement QVT, as ATL, are good options to take into 
consideration to perform UsiXML transformations.  
In this paper, we propose some changes to the UsiXML 
transformation meta-model in order to enable the creation 
of transformation models in which rules are expressed in a 
way that is independent not only from the graph notation, 
but also from the specific syntax and notation of any 
transformation language. We incorporate concepts that are 
general enough to express the current UsiXML 
transformation rules that are expressed with the graph 
notation, as well as general transformation rules that can be 
expressed with languages like ATL. In fact, the proposed 
enhancements were inspired by features of ATL, taking 
care of not adopting its specific syntax and notation. 
Moreover, our proposed meta-model is also abstract 
enough to be used in other MDE methods that build user 
interfaces or fully functional software applications, like the 
OO-Method [15].  
The main advantage of our proposal is that the analyst can 
specify transformations in a way that is abstract and 
independent of any specific transformation language. In a 
next step, it will be possible to automatically translate the 
transformation rules specified according to our proposed 
meta-model, to a selected transformation language. This 
translation must be performed according to the syntax of 
the target transformation language, such a way, 
transformations rules will be executed in the corresponding 
transformation technology. This transformation technology 
and language could be graph notation, ATL or other.  

The remainder of the paper is structured as follows: Section 
2 presents related works. Section 3 provides a brief 
description of UsiXML and its transformational approach. 
Section 4 presents our proposal for enhancing the current 
UsiXML transformation meta-model. Section 5 illustrates 
our proposal with an example. And, finally, Section 6 
presents conclusions and future works.  

RELATED WORK 
In the literature there are many proposals to perform 
transformations. Graph grammars and graph 
transformations have been recognized as powerful 
techniques for specifying complex transformations that can 
be used in various situations in a software development 
process [1]. 
Besides graph transformations used in UsiXML, there are 
many other proposals based on graphs. For instance, Karsai 
[8] has defined a graph-transformation-based technique for 
specifying model transformations. Karsai proposes starting 
from a domain specific modelling language specified with 
UML class diagrams. Domain specific models are networks 
of objects, where each object (link) belongs to a 
corresponding class (association) in the class diagram. 
From a mathematical point of view, domain specific 
models are graphs where the labels denote the 
corresponding entities in the meta-model. According to the 
author, the design transformation process specified in this 
way is formal, and it assigns a semantic to the input models 
in terms of the target domain.  
Another author who proposes performing transformations 
by means of graphs is Gogolla [6]. This author has studied 
transformation rules on the UML meta-model layer. The 
aim of those rules is to identify the minimal set of UML 
concepts, a UML core, which is necessary in order to 
express all UML language features. Due to the 
diagrammatical nature of UML, graph transformation is a 
natural language for the formulation of such rules. 
Specifically, Gogolla has defined transformations for class 
diagrams and statechart diagrams. 
Other authors propose performing transformations by 
means of algebraic compositions. In this group, we can 
comment the work of Ho [7]. Ho has specified a freely 
available UML transformation framework for manipulating 
UML models, called UMLAUT. These manipulations are 
expressed as algebraic compositions of reified elementary 
transformations. Thus, they are open to extension through 
inheritance and aggregation. By means of UMLAUT, a 
UML model of a distributed application can be 
automatically transformed into a labelled transition system 
validated using a pre-existing protocol validation tool.  
Other authors have defined more formal transformations 
than algebraic compositions. In this group, we would like 
to mention the work of Caplat [4]. This author has 
presented a model for Model Mappings based on 
formalisms. As a model is expressed in a given formalism, 
the transformation of a model into another model leads to 



compare the formalisms they are based upon, i.e., to 
compare their primitives and their semantics. As a 
consequence, model mapping can be seen as a meta-
modelling activity. 
A widely used transformation language is the Extensible 
Stylesheet Language Transformation (XSLT) [23]. XSLT 
is the language used in XSL style sheets to transform XML 
documents into other XML documents. An XSL processor 
reads the XML document and follows the instructions in 
the XSL style sheet, and then it outputs a new XML 
document or XML-document fragment. Some authors, like 
Peltier [16], propose carrying out transformations using 
this language. He has defined a process called MTRANS to 
perform transformations. MTRANS uses XSLT to 
transform models, but in a more abstract way than XSLT. 
MTRANS is based on a meta-modelling approach, where a 
meta-model is used to define the semantics of each model. 
The MTRANS framework supplies a language and an 
environment to write models transformations. The 
language is composed by a set of instructions and a part 
depending on the particular used meta-model.  
With regard to QVT (Query/View/Transformation) [18], as 
previously mentioned, it is a standard defined by the Object 
Management Group. Transformations in the context of 
QVT are classified into relations and mappings. On the one 
hand, relations allow verifying the consistence among 
related models. On the other hand, mappings implement 
transformations, in other words, they transform elements 
from one model to another. The ATLAS Transformation 
Language (ATL) [2] implements the QVT standard and it 
is composed of a mixture of imperative and declarative 
expressions. In the context of ATL, a source model is 
transformed into a target model by means of a set of 
transformations. Source and target models are specified by 
means of meta-models. ATL transformations are 
unidirectional, source model can only be read and target 
model can be modified.  
Another proposal was developed by the Object 
Management Group: the Common Warehouse Metamodel 
Specification [5]. It specifies a model for describing 
transformations that introduces the concepts of black-box 
and white-box transformations. Both of these 
transformation styles only provide a relationship among 
model elements which are the sources and targets of a 
transformation, but do not express exactly what the 
resulting target will consist of. White-box transformations 
may have a procedure expression associated with the 
transformation, allowing for a program fragment in some 
implementation language to describe the implementation of 
the transformation.  
Finally, there are authors who have defined a specific 
taxonomy, such as Mens [13]. By taxonomy, the author 
means “a system for naming and organizing things into 
groups which share qualities”. That taxonomy can help 
software developers in choosing a particular model 

transformation approach that is best suited for their needs; 
it can help tool builders to assess the strengths and 
weaknesses of their tools compared to other tools; and it 
can help scientists to identify limitations across tools or 
technology that need to be overcome by improving the 
underlying techniques and formalisms.  
As conclusion, it is important to highlight the amount of 
proposals to express model-to-model transformations. Each 
proposal has advantages and disadvantages and there is not 
only one proposal more useful than others. The choice of 
one notation depends mainly on the analyst that will work 
with it. Comparing our proposal with existing ones, our 
work is not focused on a specific transformation language. 
This is the main contribution of our work with regard to 
existing proposals. This paper aims to propose a meta-
model that is abstract enough to support the main concepts 
related to transformation rules in such a way that these 
concepts can be expressed independently of the particular 
syntax or notation of a specific transformation language. 
Once the transformation has been specified by means of the 
transformation model, the analyst can transform that model 
into a specific transformation language, according to 
analyst’s preferences. 

USIXML AND ITS TRANSFORMATIONAL APPROACH 
This section briefly presents UsiXML and its 
transformational approach, including a description of the 
current UsiXML transformation meta-model which is 
based on graph notation.  
UsiXML [11] proposes a user interface development 
process which is compliant with MDE. The UsiXML 
approach proposes a user interface description language 
aimed at describing user interfaces with various levels of 
details and abstractions, depending on the context of use. 
UsiXML supports a family of user interfaces such as, but 
not limited to: device-independent, modality-independent, 
and context-independent.  
 

 
Figure 1. The four basic levels of abstraction of 

UsiXML and the three basic transformation types 



UsiXML is structured according to four basic levels of 
abstraction defined by the Cameleon Reference Framework 
[3] (see Figure 1).  
• Task and Domain: this level describes the various 

interactive tasks to be carried out by the end user and the 
domain objects that are manipulated by these tasks.  

• Abstract user interface (AUI): this level provides a 
user interface definition that is independent of any 
modality of interaction (e.g. graphical interaction, vocal 
interaction, etc.).  

• Concrete user interface (CUI): this level represents a 
user interface independently of any computing platform 
or programming toolkits peculiarities.  

• Final user interface (FUI): in this level operational 
user interfaces are located, i.e., any user interface running 
on a particular computing platform either by 
interpretation or by execution.  

Since the Task and Domain level is the more abstract level, 
and the FUI is the less abstract level, we can consider that 
these 4 abstraction levels are ordered and that there are 3 
pairs of adjacent levels: 1) Task and Domain is adjacent to 
AUI; 2) AUI is adjacent to CUI; and 3) CUI is adjacent to 
FUI.  
The Cameleon Reference Framework also exhibits three 
types of basic transformations (see Figure 1): (1, 2) 
Abstraction (respectively, Reification) is a process of 
elicitation of artefacts that are more abstract (respectively, 
concrete) than the artefacts that serve as input to this 
process. Abstraction is the opposite of reification. (3) 
Translation is a process that elicits artefacts intended for a 
particular context of use from artefacts of a corresponding 
level of abstraction but aimed at a different context of use.  
Previous works proposed a transformational approach to 
handle transformations between the different described 
abstraction levels and considering different interaction 
modalities and contexts of use [9, 10, 19, 20]. This 
transformational approach is based on graph transformation 
rules. Graph transformations are performed as follows. Let 
G be the initial UsiXML specification, when 1) a Left Hand 
Side (LHS) matches into G and 2) a Negative Application 
Condition (NAC) does not match into G, 3) the LHS is 
replaced by Right Hand Side (RHS). G is consequently 
transformed into G’ (the resultant UsiXML specification). 
All elements of G that are not covered by the match are left 
unchanged. This transformation approach is sustained by 
TransformiXML, a tool that allows the definition and 
application of transformation rules.  
The current version of the meta-model that characterizes 
this transformational approach is defined in the UsiXML 
V1.8 Reference Manual [21]. Figure 2 illustrates this meta-
model. As we can see in Figure 2, the current 
transformation meta-model incorporate concepts that are 
strongly related to graph transformation rules. Next, 

according to the definitions provided in [21], we briefly 
explain each class of this meta-model.  
• uiModel: is the topmost superclass containing 

common features shared by all component models of a 
user interface.  

• transformationModel: contains a set of rules 
enabling the transformation of one model, at a certain 
level of abstraction, into another, or to adapt a model for 
a new context of use.  

• developmentPath: refers to the abstraction level 
where the transformation starts (Task and Domain, AUI, 
CUI or FUI), and the abstraction level where the 
transformation ends. The source and target levels can be 
non-adjacent.  

 
Figure 2. UsiXML transformation meta-model [21] 

• developmentStep: is a transformation between 
adjacent abstraction levels, or a direct transformation 
between 2 contexts of use at the same abstraction level. 
There is a specialization of this class for each basic 
transformation type: reification, abstraction and 
translation.  

• developmentSubStep: a development step can be 
composed of several sub-steps that need to be carried out 



to accomplish a transformational goal. For instance, when 
transforming from Task and Domain to AUI 
(development step), the following sub-steps, or goals, 
were identified in [10]: 1) identification of AUI structure; 
2) selection of abstract individual components; 3) spatio-
temporal arrangement of abstract interaction objects; 4) 
definition of abstract dialog control; and 5) derivation of 
AUI to domain mappings.  

• transformationSystem: is composed of a set of 
sequentially applied transformation rules that realize a 
basic development activity.  

• transformationRule: performs a unitary 
transformation operation on a model. It is composed of a 
LHS, a RHS, and a NAC.  

• applicationOrder: defines the order of execution of a 
transformation rule with respect to a particular 
transformation system.  

• attributeCondition: textual expression indicating a 
condition scoping on element attributes of the LHS of a 
transformation rule. 

• ruleTerm: is the content of a rule. It is composed of 
any fragment of uiModel.  

• nac: NAC attached to a transformation rule.  
• lhs: LHS of a transformation rule.  
• rhs: RHS of a transformation rule.  
• ruleMapping: defines the source and target models of 

a transformation rule.  
This meta-model has been used as the basis for our 
proposal, as we explain in the next section. 

A PROPOSAL FOR ENHANCING THE USIXML 
TRANSFORMATION META-MODEL 
This section presents a transformation meta-model abstract 
enough to represent transformations independently of the 
underlying structure of a specific transformation language 
or technology. The proposed meta-model aims to enhance 
the current UsiXML transformation meta-model avoiding 
the use of explicit concepts related to graph-based 
transformation rules. Hence, our proposal has been based 
on the UsiXML transformation meta-model presented in 
[21]. On this basis, we have tried to eliminate explicit 
references to graphs concepts, and we have tried to add 
more expressiveness taking as inspirations features from 
ATL. We have also tried to provide clear explanations for 
all concepts that appear in our proposed meta-model.  
Figure 3 presents the Transformation package of our 
proposed meta-model. The main concepts related to 
transformations are included in this package. Next, these 
concepts are explained.  
Different Models can be created to specify an interactive 
system. For instance, we could use models of tasks, 
domain, AUI, CUI, context, etc., in order to specify an 

interactive system. All these models have some basic 
properties that were defined in [21].  
A Transformation Model is a specialization of Model that 
has the aim to specify the rules that enable the 
transformation of a model at a certain level of abstraction, 
into another model at a different level. A Transformation 
Model also allows the adaptation of a model for a new 
context of use. When defining a Transformation Model, it 
is necessary to specify the initial abstraction level and the 
final abstraction level. These abstraction levels could be 
adjacent levels or not (see Figure 1). For instance, we could 
define a Transformation Model for transforming from the 
Task and Domain level to the adjacent AUI level, or for 
transforming from the AUI level to the non-adjacent FUI 
level. Furthermore, when defining a Transformation Model 
it is also necessary to specify the initial and final contexts 
of use. These contexts could be the same or different ones. 
For instance, we could define a Transformation Model for 
transforming from FUI models at context C1 to CUI 
models at context C1 or to CUI models at context C2. It is 
important to note that when considering different contexts 
of use, it is also meaningful to specify a Transformation 
Model with the same initial and final abstraction level, but 
for different contexts. For instance, we could define a 
Transformation Model for Transforming from CUI models 
at the C1 context to CUI models at the C2 context.  
A Transformation Model aggregates an ordered set of 
Transformation Steps. A Transformation Step is a 
transformation between adjacent abstraction levels, or a 
direct transformation between two contexts of use at the 
same abstraction level. A Transformation Step is specified 
with a source abstraction level and a target abstraction 
level. Source and target must be adjacent abstraction levels, 
or the same level.  
When the source abstraction level is higher than the target 
adjacent abstraction level, the Transformation Step is a 
Reification. For instance, we could define a Reification in 
which the source abstraction level is AUI and the target 
abstraction level is CUI. When the source abstraction level 
is lower than the target adjacent abstraction level, the 
Transformation Step is an Abstraction. For instance, we 
could define an Abstraction in which the source abstraction 
level is CUI and the target abstraction level is AUI. 
Another specialization of a Transformation Step is the 
Translation. A Translation allows the specification of a 
direct transformation, at a same abstraction level, from a 
source context of use to a target context of use. For 
instance, we could define a Translation in which the source 
abstraction level and the target abstraction level are CUI, 
the source context is C1, and the target context is C2. Thus, 
the ordered set of Transformation Steps that are chosen for 
a Transformation Model must be composed of 
Abstractions, Reifications and/or Translations that allow 
reaching the target abstraction level and the target context, 
from the source abstraction level and context. 



 
Figure 3. Transformation package of the new proposed transformation meta-model 

 

 
Figure 4. Program package of the new proposed transformation meta-model  

Each Transformation Step is an ordered aggregation of 
Transformation Systems. A Transformation System groups 
a set of rules that accomplish a transformational goal. As 
an example, we have previously mentioned the goals that 
need to be reached when performing the transformation 
step from Task and Domain to AUI. Identification of the 
AUI structure and selection of abstract individual 
components are two of these goals. Each one of them 
corresponds to a transformation system.  
Each Transformation System is an ordered aggregation of 
Transformation Rules. A Transformation Rule is a unitary 
transformation operation. For instance, the transformation 
system that corresponds to the goal of identifying the AUI 
structure is composed of several transformation rules, one 

of which generates an abstract container for each sub-task 
of the root task [19].  
Regarding its structure, a transformation rule has an 
optional Condition. If the condition exists, it must be 
satisfied for the transformation rule to be applied. The 
condition is composed of a Logical expression that can be 
evaluated to true or false. A transformation rule can also 
have an optional Declaration section. In this section, 
auxiliary resources (e.g., variables, functions) can be 
specified in order to be used later in the specification of the 
rule. Hence, the declaration section can be composed of 
Variable Declarations and Function Declarations. Each 
transformation rule has a Source that represents a Meta-
Model Element whose instances belong to the source 
model. Finally, each transformation rule has a Target that 



represents what will be written in the target model. The 
target of a transformation rule is associated to a Program, 
which has enough expressivity to specify what needs to be 
written in the target model.  
The previously mentioned concepts Logical, Variable 
Declaration, Function Declaration, and Program, are 
defined in the Program package, which is illustrated in 
Figure 4. This package represents a generic imperative 
programming language with which Programs can be 
written. A program is composed of an ordered set of 
Statements. Variable Declaration and Assignment are 
specializations of a statement which can not be composed 
of other statements. A variable declaration allows defining 
the name and type of a variable. An assignment allows 
specifying a value for a variable. Control Structure is 
another specialization of statement which can be composed 
of other ordered statements. Conditional, Loop, and 
Function Declaration are specializations of control 
structure. Conditional is a type of statement in which it is 
possible to specify a logical condition, a set of statements 
to trigger if the condition evaluates to true, and a set of 
statements to trigger if the condition evaluates to false. 
Loop is a type of statement in which it is possible to specify 
a logical condition and a set of statements that will be 
repeatedly executed while the condition evaluates to true. 
A Function Declaration allows specifying functions with a 
name and a return type. Furthermore, function declarations 
are composed of variable declarations that play the role of 
input parameters, variable declarations that play the role of 
local variables, and an ordered set of statements which 
compose the body of the function. The specific restrictions 
on the structure of a statement which is conditional, or 
loop, or function declaration, are specified by means of 
OCL constraints.  
All type of statements can be composed of Expressions 
which return a value. Literal, Variable and Meta-Model 
Element are expressions which can not be composed of 
other expressions. A Literal expression returns its 
associated value. A Variable expression returns the value 
of a specific variable. A Meta-Model Element expression 
returns an object which is an instance of a meta-model 
element. Call is another specialization of Expression which 
can be composed of other ordered expressions. Function 
and Operator are specializations of Call. A Function call is 
an expression that returns the value which results from the 
execution of a specified function. In a similar way, an 
Operator call, (Arithmetical or Logical) is an expression 
that returns the value which results from the execution of a 
specified operator. Again in this case, the specific 
restrictions on the structure of the different types of 
expressions are specified by means of OCL constraints.  
Even though there are relationships between elements of 
the Transformation package and elements of the Program 
package, the Program package is independent enough to be 
replaced, if necessary, by another Program package which 

represents other type of programs, for instance, declarative 
or functional programs.  

 
Figure 5. MetaModel package of the new proposed 

transformation meta-model 
Finally, the previously mentioned concept Meta-Model 
Element is defined in the MetaModel package, which is 
illustrated in Figure 5. In the context of UsiXML, a Meta-
Model Element represents an element of any UsiXML 
meta-model published in [21]. The meta-model element is 
composed by a set of Attributes. Furthermore, 
Relationships can be established among meta-model 
elements.  

AN ILLUSTRATIVE EXAMPLE 
As an example, we are going to explain how the proposed 
meta-model can store transformation rules independently of 
the language used to carry out the transformations. Once 
the transformation is expressed according to the meta-
model, all this information can be translated into a specific 
transformation language, such as the graph notation or 
ATL.  

 
Figure 6. Example to instantiate the transformation 

meta-model 
The goal of the example is to transform from the Task and 
Domain level to the CUI level. This aim is divided into two 
transformation steps: a transformation from the Task and 
Domain level to the AUI level, and a transformation from 
AUI level to the CUI level. For space reasons and to 
simplify the example, we focus on the last step. More 
specifically, we focus on a transformation rule to transform 
an input element with restricted values of an AUI model to 
a list of radio buttons in a CUI model, as Figure 6 shows. 
This transformation is useful, for instance, in a form where 
the user has to provide his/her marital status. Possible 
values are only: single, married, divorced and widowed.  



Firstly, we are going to show how different instances of 
classes of our proposed meta-model store the required 
information to perform the transformation of the example. 
• TransformationModel: it includes the set of 

transformation rules necessary to perform a 
transformation from the Task and Domain level to the 
CUI level. The attributes have the following values: 
initialAbstractionLevel: Task and Domain; 
finalAbstractionLevel: CUI. 

• ContextModel: initial and final contexts are the same, 
there is no change of context. 

• TransformationStep: in the example, this class has 
two instances of type Reification. One instance to 
represent the transformation from the Task and Domain 
models to the AUI model and another from the AUI 
model to the CUI model. With regard to the last instance, 
the attributes are: id: AUItoCUI; name: From AUI to 
CUI; sourceAbstractionLevel: AUI; 
targetAbstractionLevel: CUI. 

• TransformationSystem: according to [10], the goals 
that need to be achieved when transforming from AUI to 
graphical CUIs are: 1) reification of abstract containers 
into concrete containers; 2) selection of concrete 
individual components; 3) arrangement of concrete 
individual components; 4) navigation definition; 5) 
concrete dialog control definition; and 6) derivation of 
CUI to domain mappings. Each one of these goals will 
have a corresponding transformation system instance. 
Our specific rule to transform an input element to a list of 
radio buttons is included in the second goal, selection of 
concrete individual components. The attributes of this 
transformation system instance have the following 
values: id: 4333e; name: Selection of concrete individual 
components; goal: Select the concrete individual 
components to be used; description: transforms abstract 
individual components to concrete individual 
components. 

• TransformationRule: this instance stores the rule to 
transform an input element to a list of radio buttons. The 
values of its attributes are: id: Rdbtt1; name: Input 
element to radio button; description: transforms an input 
element with a limited number of possible values into a 
list of radio buttons. 

• Condition: only input elements with a set of limited 
possible values can be transformed into radio buttons. In 
the example, this instance is related to a logical 
expression that verifies if the input element has a set of 
limited possible values.  

• Source: this instance is used to specify which element 
of the AUI model is going to be transformed. In this 
example, it is an input element from an abstract container.  

• Target: this instance stores a program that specifies 
how to build the target element of the transformation. In 

this example, it is a program that builds a list of radio 
buttons of the CUI model.  

• MetaModelElement: instances of this class represent 
all the classes of the AUI meta-model and the CUI meta-
model involved in the transformation. Classes affected of 
the AUI meta-model are: Abstract Container; Abstract 
Individual Component; Facet; Input; Selection Value. 
With regard to the CUI meta-model, affected classes are: 
Window; Tabbed Dialog Box; Radio Button.  

• Attribute: each instance of this class represents an 
attribute of the classes belonging to the AUI meta-model 
or to the CUI meta-model included in the transformation. 
For example, the class Selection Value of the AUI meta-
model has an attribute called name. 

• Relationship: instances of this class store the 
relationships among classes of the AUI meta-model or 
the CUI meta-model included in the transformation. For 
example, the class Input is related to the class Selection 
Value in the AUI meta-model. 

• Program: this instance represents the set of statements 
of the transformation process that are used to reach the 
target.  

• Statement: this class is specialized in other ones 
depending on the type of statement. In our example, there 
are assignments to perform the transformation from an 
input element to a RadioButton.  

• Expression: this class is specialized in other classes to 
represent sentences that return a value. For example, 
there is an instance of the class MetaModelElement for 
each element of the CUI model created in this 
transformation.  

All the information stored in a transformation model 
compliant with our proposed transformation meta-model 
can be translated into an existing transformation language 
to perform the transformation, such as, the graph notation 
or ATL.  
Regarding the graph notation, from the information 
available in the previously explained transformation model 
example, we could automatically generate the 
corresponding graph-based transformation rules defined in 
[19]. Figure 7 illustrates the NAC of the transformation 
rule. Figure 8 illustrates the LHS, and Figure 9 illustrates 
the RHS. (In Figure 7, Figure 8, and Figure 9, the red part 
corresponds to the transformation to a graphical CUI 
model).  



 
Figure 7. NAC statement to transform an input element 

to a radio button with possible options [19]  
 

 
Figure 8. LHS statement to transform an input element 

to a radio button with possible options [19]  
 

 
Figure 9. RHS statement to transform an input element 

to a radio button with possible options [19] 
 
From the information available in the previously explained 
transformation model example, we could also automatically 
generate the following corresponding ATL code:  
module TransformationRadioButton; 
create OUT: CRadioButton from IN: AInoutElement; 
uses strings; 
rule container2window{ 
 from 
 c:AInoutElement!abstractContainer 
 to 
 out:CRadioButton!window ( 
 title <- c.title) 
} 
 

rule input2TabbedDialogBoxes{ 
 from 
 ie:AInoutElement!Input(ie.type.oclIsKindOf(AIno   
utElement!SelectionValue)) 
 to 
 out: CRadioButton!TabbedDialogBoxes( 
 name <- ie.name) 
} 
rule selectionValue2RadioButton{ 

from 
 sv : AInoutElement!SelectionValue ( 
 sv.type.oclIsKindOf(AInoutElement!Input)) 
 to 
 out: CRadioButton!RadioButton( 
 value <- sv.name) 
 } 
 
This example suggests that our proposed meta-model is 
abstract enough to represent concepts of transformation 
languages as dissimilar as ATL and graphs. Analysts can 
put all their efforts on specifying the transformation rules 
independently of transformation language details, and in a 
next step, these rules can be translated into a specific 
transformation language that performs the transformation 
automatically.  

CONCLUSION 
This paper proposes a new transformation meta-model 
independent of graph transformations for a user interface 
description language called UsiXML. The aim is to provide 
a transformational approach independent of the specific 
syntax and notations of transformation languages or 
technologies. This paper is a first step to reach the aim. 
Once the transformation meta-model has been defined, a 
precise syntax must be specified to write transformation 
rules. The transformation meta-model expresses only how 
to store transformation rules, but the analyst must have an 
unambiguous language to represent those rules. This syntax 
is going to be defined as a future work.  
Furthermore, once the transformation meta-model supports 
all type of transformations and a precise syntax has been 
defined to specify them, the last step will be to specify 
different translators. These translators must translate all the 
information stored in the transformation model into a 
transformation language selected by the analyst. Each 
transformation technology will have a specific translator 
that performs the translation automatically taking as input a 
transformation model. 
The paper has exemplified how a transformation model 
stores the required information to translate transformation 
rules into a graph-based notation or ATL. As future work, 
we are going to test with other transformation technologies 
such as XSLT or CWM. Moreover, we have not tested the 
transformation meta-model to assess whether or not it 
supports model-to-code transformations. This kind of 
transformations is very common in UsiXML because final 



user interfaces are automatically generated from CUI 
models. Hence, it would be very interesting that analysts 
could also specify this type of transformations by means of 
the transformation model. 

ACKNOWLEDGMENTS 
This work has been developed with the support of the 
ITEA2 Call3 UsiXML project under reference 2008026. It 
also has the support of MICINN under the project 
SESAMO (TIN2007-62894) and has been co-financed by 
ERDF. 

REFERENCES 
1. Assmann, U.: How to uniformly specify program 

analysis and transformation with graph rewrite systems. 
6th International Conference on Compiler Construction, 
Vol. LNCS 1060. Springer Berlin / Heidelberg (1996).  

2. ATL: http://www.eclipse.org/m2m/atl/. Last visit: 
March 2010  

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, 
Q., Bouillon, L., and Vanderdonckt, J. A Unifying 
Reference Framework for multi-target user interfaces. 
Interacting with Computers, 15(3):289–308, 2003. 

4. Caplat, G., Sourrouille, J.L.: Model Mapping in MDA. 
Workshop in Software Model Eng. (WISME) (2002).  

5. CWM Partners. Common Warehouse Metamodel 
(CWM) Specification. OMG Documents: ad/01-02-
{01,02,03}, Feb. 2001.  

6. Gogolla, M.: Graph Transformations on the UML 
Metamodel. ICALP Workshop Graph Transformations 
and Visual Modelling Techniques, Waterloo, Canada 
(2000).  

7. Ho, W.M., Jézéquel, J.-M., Guennec, A.L., Pennaneach, 
F.: UMLAUT: an Extendible UML Transformation 
Framework. In: Tyugu, R.J.H.a.E. (ed.): 14th IEEE 
International Conference on Automated Software 
Engineering, ASE'99. IEEE (1999).  

8. Karsai, G., Agrawal, A., Shi, F., Sprinkle, J.: On the use 
of graph transformation in the formal specification of 
model interpreters. Journal of Universal Computer 
Science, Vol. 9 (2003) 1296–1321.  

9. Limbourg, Q. and Vanderdonckt, J. Transformational 
development of user interfaces with graph 
transformations. In R. J. K. Jacob, Q. Limbourg, and 
J. Vanderdonckt, editors, CADUI, pages 105–118. 
Kluwer, 2004. 

10. Limbourg, Q. Multi-Path Development of User 
Interfaces. PhD thesis, Universithé catholique de 
Louvain, November 2004.  

11. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, 
L., and López-Jaquero, V. USIXML: A Language 
Supporting Multi-path Development of User Interfaces. 
In R. Bastide, P. A. Palanque, and J. Roth, editors, 
EHCI/DS-VIS, volume 3425 of Lecture Notes in 
Computer Science, pages 200–220. Springer, 2004. 

12. Mellor, S.J., Clark, A.N., Futagami, T.: Guest Editors' 
Introduction: Model-Driven Development. IEEE 
Software, Vol. 20 (2003) 14-18. 

13. Mens, T., Gorp, P.V.: A Taxonomy of Model 
Transformations. Language Engineering for Model-
Driven Software Development - Dagstuhl Seminar 
Proceedings, Dagstuhl, Germany (2005).  

14. MOF: http://www.omg.org/spec/MOF/2.0/. Last visit: 
March 2010.  

15. Pastor, O., Molina, J.: Model-Driven Architecture in 
Practice. Springer, Valencia (2007)  

16. Peltier, M., Bézivin, J., Guillaume, G.: MTRANS: A 
general framework based on XSLT for model 
transformations. Workshop on Transformations in 
UML, WTUML’01, Genova, Italy (2001).  

17. Pérez-Medina, J. L., Dupuy-Chessa, S., and Front, A. A 
Survey of Model Driven Engineering Tools for User 
Interface Design. In M. Winckler, H. Johnson, and 
P. A. Palanque, editors, TAMODIA, volume 4849 of 
Lecture Notes in Computer Science, pages 84–97. 
Springer, 2007.  

18. QVT: http://www.omg.org/spec/QVT/1.0/. Last visit: 
March 2010.  

19. Stanciulescu, A. A Methodology for Developing 
Multimodal User Interfaces of Information Systems. 
PhD thesis, Université catholique de Louvain, June 
2008. 

20. Stanciulescu, A., Limbourg, Q., Vanderdonckt, J., 
Michotte, B., Montero, F.: A Transformational 
Approach for Multimodal Web User Interfaces based 
on USIXML.: ICMI. ACM Press (2005) 259-266. 

21. Université catholique de Louvain. UsiXML V1.8 
Reference Manual. 2008. Available at: 
http://www.usixml.org/index.php?mod=pages&id=5. 
Last visit: March 2010.  

22. Varró, G., Schürr, A., Varró, D.: Benchmarking for 
graph transformation. IEEE Symposium on Visual 
Languages (VL/HCC 2005), University of Texas at 
Dallas (2005).  

23. XSLT Specification: http://www.w3.org/TR/xslt. Last 
visit: March 2010. 

 


