
An Abstract Interaction Model for a MDA Software Production 
Method 

Francisco Valverde1, Ignacio Panach1, Oscar Pastor1 
1Department of Information Systems and Computation 

Technical University of Valencia 
Camino de Vera S/N,  46025 Valencia , Spain 

Email:{fvalverde,jpanach,opastor}@dsic.upv.es 
 

Abstract 
Currently, most well-known model-based software pro-
duction methods focus on defining the system functional-
ity (business logic and persistence). However, the interac-
tion between users and the system is too often not accu-
rately described. Frequently an interface must be gener-
ated for multiple technological platforms (Desktop, Web, 
Mobile devices etc.) from the same model. The key issue 
is the model that was designed for describing a specific 
platform interface. When this model is used in other plat-
forms, the final user interfaces have usability problems 
due to a lack of expressiveness at conceptual level. An 
interesting approach is to solve this problem from a MDA 
point of view. Two abstraction levels are defined in order 
to model interaction: a PIM (Platform Independent 
Model) or abstract level to describe interaction without 
taking into account technological issues and a PSM (Plat-
form Specific Model) or concrete level to deal with plat-
form concrete requirements. This paper explains in detail 
how the PIM level is defined in order to produce multi-
platform user interfaces. This Abstract Interaction Model 
is made up of two models: an User Model that defines 
different types of users and an Abstract Interface Model 
to define the user interface. The final goal is to introduce 
these new models into OO-Method, an MDA-based soft-
ware production method to produce software systems. As 
a result, a user interface which can be used as a prototype 
is automatically generated.  

Keywords:  Model Driven Development, MDA, Interac-
tion modelling, User Interfaces, HCI 

1 Introduction 
An important topic to be analysed by the Software Engi-
neering (SE) community is the interaction modelling. SE 
community has developed some well known methods to 
represent system structure and functionality in an abstract 
way, like the Class Diagram or the Sequence Diagram 
(UML 2003). However, SE community does not have a 

                                                           
 Copyright (c) 2007, Australian Computer Society, Inc. This 
paper appeared at the Twenty-Sixth International Conference on 
Conceptual Modeling - ER 2007 - Tutorials, Posters, Panels and 
Industrial Contributions, Auckland, New Zealand. Conferences 
in Research and Practice in Information Technology, Vol. 83. 
John Grundy, Sven Hartmann, Alberto H. F. Laender, Leszek 
Maciaszek and John F. Roddick, Eds. Reproduction for aca-
demic, not-for profit purposes permitted provided this text is 
included. 

method widely used and accepted to represent the interac-
tion between the user and the system. 

Several methods provide an Interaction Model that only 
represents interfaces for a concrete platform like the Web. 
As a consequence, the migration process to another plat-
form (i.e. mobile devices) is a difficult task. In addition, 
when this migration process is possible, the interaction 
model does not have enough expressiveness to describe 
specific characteristics of the new platform. Some authors 
have proposed user interface languages such as USIXML 
(Vanderdonckt 2004) or models such as UMLi (Silva 
2003) to define interaction in an abstract way.  But these 
approaches only define generic user interfaces and are not 
integrated in a full code generation process. Therefore, 
how the user interface is properly linked to the system 
functionality is not clear. 

OO-Method is a software production method based on 
MDA (MDA 2003) that has a Presentation Model 
(Molina 2002) that represents the system user interface. 
For each modelling element, a software representation in 
several implementation languages is generated by a 
Model Compiler. Currently, the Model Compiler always 
produces the same code, from the same modelling ele-
ment. This approach has a drawback because a modelling 
element could have several implementations, especially 
from a user interface perspective. For example, a user 
interface can be more adequate in a particular domain 
attending to usability constraints. The current OO-
Method solution could be acceptable in a desktop envi-
ronment where homogeneity between applications is 
recommended. However in web environments in which 
interfaces guidelines are less strict, the generated Web 
Applications may have different usability issues or do not 
meet customer requirements.  

The main contribution of this poster is to propose an 
Abstract Interaction Model that redefines current OO-
Method Presentation Model. This new definition, Interac-
tion Model, emphasizes that interface is not only related 
to aesthetic aspects but it must take into account the 
communication between the user, the interface and the 
system. This new Interaction Model, to be compliant with 
the MDA development process proposed by OO-Method, 
is divided into two abstraction levels: An Abstract level 
(PIM), in which interaction is modelled without taking 
into account platform details and a Concrete level (PSM), 
in which specific concepts related to the target platform 
are defined. According to this approach, the set of model-
ling elements to be used in the PIM level must have the 
required expressiveness to represent multiplatform (Web,  



Task Model

Use Cases Model

CIM

Task Model

Use Cases Model

CIM

Abstract Interface
Model

M2M

PIM

Abstract Interface
Model

M2M

PIM

Desktop Concrete
Model

Web Concrete
Model

Mobile Device
Concrete Model

M2M

PSM

M2M

M2M

Desktop Concrete
Model

Web Concrete
Model

Mobile Device
Concrete Model

M2M

PSM

M2M

M2M
WWW

Interface

M2T

M2T

M2T

WWW

Interface

M2T

M2T

M2T
User Model

OOWS OO-Method+

Current Presentation Models

OOWS OO-Method+

Current Presentation Models

OOWS OO-Method+

Current Presentation Models

 

Figure 1:  Abstract Interaction Model in a MDA development process

Desktop and PDA) aspects. Once the Abstract Interface 
Model is built, the Concrete Interface Model is generated 
by means of model-to-model transformations. At this 
level, analysts can refine the generated Concrete Interac-
tion Model to introduce specific platform requirements. 
Subsequently, the Model Compiler transforms each Con-
crete modelling element to specific code. Therefore, the 
same Abstract Interaction Model can be used to produce a 
Web interface or a Desktop one. 

This work is focused on the new Interaction Model de-
fined at abstract level (PIM). The model is composed of 
two sub-models: the Users Model to represent different 
types of users that can interact with the system; and the 
Abstract Interface Model, that extends the current OO-
Method Presentation Model with the interaction concept. 
Since the described modelling elements are defined inde-
pendently from technological and methodological as-
pects, the same concepts can be used by another software 
engineering methods based on abstract models.  

To accomplish the goals mentioned above, the paper is 
structured as follows: section 2 presents the OO-
Method’s Background and another works related to inter-
action. Section 3 describes the Interaction Model at the 
abstract level. Next, in section 4, a practical example that 
shows how an user interface is defined using the Abstract 
Interaction Model is presented. Finally, the conclusions 
and future research lines are stated.  

2 Background and Related Work 
Previous experiences of OO-Method and OOWS, our 
current methodologies, have been considered in order to 
define the new Abstract Interaction Model. OO-Method 
(Pastor 2001) is an Object Oriented software production 
Method that is MDA compliant (MDA 2003). OO-
Method models the system in different abstraction levels, 
distinguishing between problem space (the most abstract 
level) and solution space (the lowest abstract level). The 
system is represented by a set of Conceptual Models: 1) 
A Class Diagram that represents the static structure; 2) 
The State and Functional Diagram that represents the 
behaviour; 3) The Presentation Model (Molina 2002), that 
is the current model used in OO-Method to describe ab-
stract user interfaces. The Presentation Model is based on 
a pattern language that represents common interactions as 

information retrieval, service execution or data validation. 
The Abstract Interface Model described in this work, has 
been developed to be included in this method. 

The industrial tool that supports OO-Method is called 
OlivaNOVA, (CARE) that has been developed in close 
cooperation with Care Technologies S.A. This tool pro-
duces functional systems for several platforms and im-
plementation languages from an OO-Method Conceptual 
Model. However, users complained about the low usabil-
ity of the generated web applications. 

In order to solve OO-Method web usability issues, 
OOWS (Object-Oriented Web Solutions) was defined. 
OOWS (Fons 2003) is a web engineering method that 
provides methodological support for web application 
development. OOWS has been developed as an extension 
of OO-Method to support web-domain concepts. OOWS 
introduces the diagrams that are needed to capture web- 
based applications requirements, enriching the expres-
siveness of the OO-Method Conceptual Model. From a 
web engineering perspective, OOWS generates the code 
corresponding to the user interaction layer, and Oli-
vaNOVA generates the business logic layer and the per-
sistence layer. Some development process (Valverde 
2007 and Giner 2007), are using OOWS to model and 
produce web interfaces. 

In the HCI field, some proposals have appeared to model 
the interaction in an abstract way. Two proposals that 
share the same approach are USIXML (USer Interface 
eXtensible Markup Language) (Vanderdonckt 2004) and 
TERESA tool (Transformation Environment for inteRac-
tivE Systems representAtions) (Mori 2004). In these 
works, the system is designed independently of techno-
logical platform characteristics. User interface specifica-
tion is described in two levels: 1) Using a Task Model 
and a Concept Model in order to define an abstract model 
independently of the platform; 2) The Abstract Model is 
refined in a Concrete Model for a specific context of use. 
However, it is important to mention that both USIXML 
and TERESA are not an interface implementation lan-
guage themselves. Their abstract user interface language 
does not generate system functionality as OO-Method 
proposes. Moreover, USIXML needs a transformation 
engine to interpret the model and to generate the interface 
code.  



There are other proposals based on UML models, as 
WISDOM (Whitewater Interactive System Development 
with Objetc Models) (Nunes 2000), or UMLi (Da Silva 
2003). On the one hand, WISDOM uses three models 
related to interaction modelling: the Interaction Model in 
analysis step, and Dialog Model and Presentation Model 
in design step. However, WISDOM does not support 
automatic software generation at business logic level or 
interface level. On the other hand, UMLi uses a User 
Interface Diagram based on UML to capture interaction 
requirements formally. UMLi project includes an auto-
matic code generation process for user interfaces. How-
ever, the models have to be built with too much detail. 
Therefore, the User Interface Diagram is little practical 
and a medium–size specification problem is difficult to 
carry out. 

Finally, in the web engineering field, there are several 
web engineering methods that, as OOWS does, use mod-
els to define web user interface. Some examples are 
OOHDM (Schwabe 1996), WebML (Ceri 2003) or 
WSDM (De Troyer 2003). However, their presentation 
models are mainly focused on visual appearance and 
configuration of web system information. As a conse-
quence, using their presentation models in other platforms 
is a difficult task. 

The main difference with regard to other interaction ap-
proaches mentioned above, is that the Abstract Interaction 
Model presented is incorporated into a software produc-
tion method. Therefore, the user interface generated is a 
component of fully functional system. 

3 The OO-Method Abstract Interaction Model 
This model extends OO-Method Presentation Model with 
the concept called Interaction. In the context of this work, 
interaction is defined as the actions that take place be-
tween a human user and an interface, which acts as com-
munication link to the software system functionality, in 
order to perform a particular task. Therefore, in the inter-
action process there are three main actors: the user, the 
software system and the interface between them. Since 
the software system is modelled by OO-Method Concep-
tual Model, the main task of the Interaction Model is to 
define the other two actors. As a consequence presenta-
tion model is not a precise concept to abstract interaction.  

Interfaces produced by the Interaction Model follow an 
MDA approach. Figure 1 illustrates the global approach. 
First, interactions are modelled in an abstract level (PIM) 
using the User Model and the Abstract Interface Model 
(explained below). Next, the abstract models are trans-
lated to the Concrete Interaction Model (PSM) in order to 
capture the specific platform requirements. This paper is 
focused only on the abstract level. To define the two 
models that compose the Interaction Model abstract level, 
OOWS and OO-Method Presentation Models have been 
used as starting point. Combining experiences from both 
domains (Web and Desktop environments) a more ex-
pressive model has been proposed.  

The main modelling constructor of the Abstract Interac-
tion Model is the Interaction Unit (IU). An IU is defined 
as a modelling elements container that encapsulates a 

specific interaction (Buy a ticket, See all clients, etc.) 
between the user and the software system. Introducing 
this concept, the whole interaction process can be seen as 
an aggregation of different Interaction Units. 

3.1 User Model 
The User Model represents sets of human users that are 
allowed to interact with the system. Each type of user has 
the rights to access to a set of UIs which defines its Inter-
action Map. Therefore, a main objective of the Interaction 
Map is to provide a global vision about the user available 
interactions. To emphasize reuse, a user can inherit the 
Interaction Map from another User or in other words, 
Users can inherit IU access rights. In this case, all parent 
IUs are available for the child user that can additionally 
access to its own IUs. The notation used to define the 
Interaction Map is based on UML Use Cases; users are 
presented as actors that are connected by arrows to 
stereotyped UML packages that represent UIs. This nota-
tion has been chosen among others, because is widely 
accepted in the Software Engineering community. The 
figure 2 illustrates an Interaction Map. 

 

Figure 2: Interaction Map Diagram 

Interaction Units are classified in the Interaction Map 
from an accessibility point of view: Exploration IUs that 
are always available to the user and Sequence IUs that 
only can be reached from a source IU. Sequence IUs are 
useful to define a sequence of previous required interac-
tions to follow. For example, the interaction “Rent car” 
cannot be realized if previously, the “Select Car” interac-
tion has not been performed. 

3.2 Abstract Interface Model 
This model defines for each IU the set of interaction 
components that define its interface with the software 
system. Interaction components are conceptual modelling 
elements that describe the interaction behaviour expected 
by the user but not how this interaction is implemented. 
For that reason, interaction components are not related to 
visual aspects such as colour, font size or layout, though 
their final implementations are user interface widgets. An 
IU can be composed by two types of interaction compo-
nents: Basic Interaction Components (BICs), which de-
scribes a generic interaction and Interaction Patterns that 
models a complex interaction. 



3.2.1 Basic Interaction Components 
A Basic Interaction Component or BIC represents a ge-
neric interaction. The BIC concept is related to the ab-
stract canonical components introduced in (Constantine 
2003) that have been used by other approaches as 
USIXML (Vanderdonckt 2004). Each BIC abstracts, in a 
simple way, a clear purpose from the interaction point of 
view. Thanks to their flexibility, BICs can be used to 
represent quickly the interaction needed with the system. 
Abstract Interface Model uses five BICs:  

• Input:  this component models the data introduc-
tion to the system introduced by the user. Com-
mon interactions that are represented by this 
component are for example to write a search 
string, login or introduce personal data. 

• Output: shows to the user information retrieved 
from the system. This BIC is very common in 
user interfaces. It models interactions such as to 
show information in a table, field labels or feed-
back messages. 

• Navigation: in the Interaction Model a transition 
from one UI to other UI is called navigation. 
Therefore Navigation BIC is related to an inter-
face element that triggers navigation. Examples 
in the final system are links in a web application 
or the main menu in a desktop one. 

• Action: an action interaction component triggers 
an event that changes the state of the system ob-
jects or the interface. This BIC is mainly related 
to service execution. Push a button to store data 
is an interaction example that can be modelled as 
an action interaction.  

• Group:  this component groups a set of BICs in 
order to define a more complex component. 
Grouping is very useful to provide relationship 
between BICs. For example, in a conventional 
invoice service, to separate those arguments rep-
resenting personal data from those arguments 
describing the billing information. 

With the purpose of illustrate the use of BICs, a little 
example is explained. The IU “Create new account” (See 
Fig.2) is a modelled interaction to create a new customer 
in the System. The user must introduce the personal in-
formation (name, e-mail, password, country etc.) and 
choice a set of personal preferences. When the data is 
entered the new user is created in the system and a con-
firmation e-mail is sent.  

This interaction is modelled with several inputs that rep-
resent the user information to be entered. The inputs can 
be divided into two groups: Personal Information and 
Profile Preferences. After that, two Action BICs are 
needed; one to store the information and another to send 
an e-mail reply. Finally a navigation component is de-
fined in order to navigate to an IU that informs the user 
about the operation result. 

3.2.2 Interaction Patterns 
An Interaction Pattern (IP) defines a complex interaction, 
such as to retrieve data or to fill a form and execute a 
service, carried out frequently by users. The set of inter-
actions that can be expressed by BICs are too generic so 
interaction behaviour must be defined at Concrete Level. 
For that reason, the main purpose of Interaction Patterns 
is to be more detailed than BICs. As a result, the analyst 
can define more precise interactions and more related to 
the domain. From a model using IPs, a functional user 
interface can be generated whereas from an interaction 
model made up by BICs, only a prototype is possible. 
Therefore, both concepts complement each other in order 
to support a wide range of user interactions. 

Each IP is defined by a pattern template (Molina 2002) 
that describes the pattern in a generic way to be compared 
with others. This template is made up by five sections: 1) 
Intent: the interaction that is modelled and the problem 
that the patterns solve, 2) Formal representation: a MOF 
based meta-model that describes the pattern structure and 
its relationships with other patterns and modelling ele-
ments, 3) Specification: the information needed to instan-
tiate the pattern, 4) Semantics: the relationship between 
the pattern elements and their corresponding interface and 
5) Example: an user interface implementation that shows 
the pattern in action. Currently, the Abstract Interface 
Model is composed by ten patterns that are briefly de-
scribed below: 

• Population: represents a set of instances re-
trieved from the system that shows data to the 
user. The Population IP is defined as an informa-
tion view over the OO-Method Class Diagram. 
This view is made up by a Manager Class and a 
set of its attributes that describes what informa-
tion is retrieved. For example, if the user wants 
to know all names of the cars in the system, a 
Population IP is defined over class “Car” and its 
attribute “name”. The information could be 
complemented by means of several Complemen-
tary Classes, which have a structural relationship 
with the Manager Class. From the Complemen-
tary Classes only the instances related to the 
Manager Class are shown. 

• Service: abstracts a service dialog (usually a 
form) in order to be executed. Service IP is asso-
ciated to a unique service from the Class Dia-
gram. For each argument from the service signa-
ture, an Input BIC is created to insert the corre-
sponding value. In addition, an Action BIC is 
needed to trigger the execution. 

• Feedback: shows a message to the user from the 
system. There are three types of possible feed-
back behaviour: error, when an internal or vali-
dation error has happened; information, to in-
form the user about an specific situation; and 
progress, to show the evolution of a complex 
transaction 

• Order Criteria: this pattern is always related to a 
Population IP. It defines how to order the in-



stances of a Population IP (Ascendant or De-
scendent) from a set of attributes defined in the 
view. This mechanism improves usability allow-
ing the user to find information easily. 

• Validation Rule: a validation rule is related to an 
Input BIC. It defines a rule based on a logic 
formula that must be accomplished by the value 
introduced. If the value is not correct, an error, 
which is defined as a Feedback IP, is shown.  

• Enumeration: this pattern defines a set of values 
associated to an Input BIC. The user only can 
choose one value from the enumeration to fill 
the input. The set of values could be a static list 
of values, defined in modelling time, or a dy-
namic list of values linked to a Population IP.  

• Filter: a filter is always related to a Population 
IP. By default, a Population IP retrieves all the 
instances that compose the view. A filter defines 
a well-formed formula that restricts the popula-
tion to be retrieved. Only the instances that 
comply with the formula are shown to the user. 
Two types of filters are distinguished: dynamic, 
if the user must introduce a value to define the 
filter condition (as a consequence, an Input BIC 
is needed) or static if the condition is fully speci-
fied.  

• Object Navigation: this pattern models a naviga-
tion that is triggered when an object attribute is 
selected within a Population IP. When the new 
IU is reached, the object oid is available in the 
target IU. This information is globally available 
to other IPs that made up the target IU and can 
be used to restrict their interactions to a particu-
lar object. 

• Relationship Navigation: this navigation is asso-
ciated to a relationship defined in a Population 
IP. When an instance of the Manager Class and 
the relationship is selected, the navigation is 
triggered. In the target IU, the object oid from 
the instance and the relationship id is available.  

• Service Navigation: in contrast to previous navi-
gations, this navigation is triggered when a ser-
vice is executed. Therefore, service navigation is 
related to a Service IP. As commented before, 
the target IU receives the object oid from which 
the service was executed. 

Usually, an IP extends one or more BICs or is related to 
another IP to complement the interaction that it offers. In 
addition, an IP can model behavioural aspects related to 
the system and the domain model (OO-Method Class 
Diagram). Therefore, an IP can be related to modelling 
elements from the OO-Method Class Diagram such as 
classes and its attributes, associations or operations. 

4 Applying the Interaction Model: Rent a Car 
In order to show the use of the Abstract Interaction 
Model, a small example is explained. This application 

example is based on an on-line rent a car service. The 
interactions to model are: 

• Allow the user to select a car by its category 
from all available in the system  

• Model a dialog to rent the selected car and vali-
date the information 

The user to perform the interaction is an “anonymous 
user”. The Interaction Map is made up of two Interaction 
Units, each one related to a requirement: Car Selection 
and Rent Car (See Fig. 2). The first IU is an Exploration 
IU whereas the second is a Sequence IU (a car would not 
be able to be rented if it had not previously selected).  

The first Interaction Unit, a car list selection, is modelled 
by a Population IP. The view is associated to Car Class 
and Category Class from the Class Diagram. This Popula-
tion IP includes the relevant car attributes to show to the 
user as: car name, rent price, description and so on. To 
aid the customer to select a car, a Dynamic Filter IP is 
defined in order to show only the cars related to the se-
lected category. In addition, an Order Criteria IP defined 
over an attribute from the Population IP, for example car 
name, is recommended to aid the car selection attending 
to usability issues. Finally, an object navigation whose 
target is “Rent Car” IU and defined over car name attrib-
ute is specified. 

Next, the second IU “Rent Car” has as main element a 
Service IP. This service IP is related to the operation Rent 
from the class Car. The Service IP is composed by sev-
eral Input BICs that represent the operation arguments: 
car to rent, delivery date, return date, customer name, etc. 
The argument car to rent is filled with the car object that 
was previously selected in “Car Selection” IU. For a 
delivery and return date, two Validation Rules IP are 
mandatory to avoid incorrect values (for example, a pre-
vious date from today). Feedback IPs to inform user 
about errors or process progress are recommended ac-
cording to usability guidelines. 

5 Conclusions and Further Research 
This poster presents a new Abstract Interaction Model for 
OO-Method, an MDA software generation method. This 
Abstract Interaction Model together with the rest of OO-
Method Conceptual Models generates automatically full 
functional systems. To be compliant with MDA princi-
ples and HCI community, this Interaction Model is de-
fined in two levels: 1) an abstract level that describes the 
interaction independently of concrete interface aspects; 2) 
a concrete level that defines interaction details for a con-
crete platform. This decision is compatible with the pre-
vious works in the field. 

Two models are proposed to model interaction at abstract 
level: the User Model and the Abstract Interface Model. 
These models contribute to more expressiveness to the 
OO-Method Presentation Model. A small example has 
been used as a basic proof of concept. Currently, we are 
studying how a first draft of the Abstract Interaction 
Model, could be generated from the requirements capture 
phase (España 2006). 



Another interesting contribution is the interaction compo-
nents presented in the Abstract Interface Model:  Basic 
Interaction Components and Interaction Patterns. Both 
concepts complement OO-Method to cover more interac-
tion possibilities. On the one hand, BICs can be used to 
define a user interface quickly or to represent interaction 
that Interaction Patterns does not cover. On the other 
hand, the set of IPs represents complex interactions that 
have been extracted from real implemented applications 
developed with OlivaNOVA and customer requirements. 
Therefore, IPs could be a useful guide to solve similar 
problems in other model-based software development 
methods. As future work, the set of IPs could be extended 
if new interactions, which can be abstracted as patterns, 
are detected. To achieve this task, an empirical evaluation 
is planned to be done in order to detect possible lack of 
expressiveness. 

With the purpose of producing high-quality user inter-
face, the Interaction Model must include usability aspects 
defined in the ISO/IEC 9126-1 (ISO/IEC 9126, 2001). As 
future research, usability features must be included to 
guarantee that generated systems are quality systems. 
Once the Interaction Model has been validated with an 
empirical evaluation and the ISO/IEC 9126-1, the final 
step is to include the new Interaction Model inside the 
OO-Method software generation process. As a conse-
quence, the OO-Method Model Compiler will be able to 
generate the user interface that implements the Abstract 
Interaction Model. 

References 
UML: OMG, UML. Unified Modeling Language, version 

2.1.1. http://www.uml.org/#UML2.0. Accessed 28 Jun 
2007. 

MDA: OMG, MDA. Model Driven Architecture Guide. 
Juny 2006, http://www.omg.org/docs/omg/03-06-
01.pdf. Accessed 28 Jun 2007. 

Pastor, O., Gómez, J., Insfrán, E. Pelechano, V. (2001) 
The OO-Method Approach for Information Systems 
Modelling: From Object-Oriented Conceptual Model-
ing to Automated Programming. Information Systems, 
26(7) 507–534. 

España, S., Panach, I., Pederiva, I., Pastor O. (2006). 
Towards a Holistic Conceptual Modelling-based Soft-
ware Development Process. ER 2006, Arizona.pp. 437-
450. 

ISO/IEC 9126-1 (2001), Software engineering - Product 
quality - 1: Quality model. 

Mori, G., Paterno, F. and Santoro, C. (2004) Design and 
Development of Multidevice User Interfaces through 
Multiple Logical Descriptions. IEEE Transactions on 
Software Engineering. 

Vanderdonckt, J., Q. Limbourg, et al. (2004). USIXML: a 
User Interface Description Language for Specifying 
Multimodal User Interfaces. Proceedings of W3C 
Workshop on Multimodal Interaction WMI'2004, So-
phia Antipolis, Greece. 

Silva, P.P.d. and N.W. Paton, User Interface Modeling in 
UMLi. IEEE Software, 2003. 20(4): p. 62-69. 

Molina, P.J., Meliá, S., Pastor, O. (2002): Just-UI: A User 
Interface Specification Model. In: Proc. of 4th Int. 
Conf. on Computer-Aided Design of User Interfaces 
CADUI’2002. Kluwer Academic Press, Dordrecht 63–
74. 

CARE: Care Technologies: http://www.care-t.com Ac-
cessed 3 July 2007. 

WISDOM: Nunes, N. J. y J. F. e. Cunha (2000). "Wis-
dom: a software engineering method for small software 
development companies." Software, IEEE 17(5): 113-
119.  

UMLi: da Silva, P. P. d. and N. W. Paton (2003). "User 
Interface Modelling in UMLi " IEEE Softw. 20 (4 ). 
pp. 62-69. 

OOHDM: Schwabe D., Rossi G., and Barbosa. S. (1996) 
Systematic Hypermedia Design with OOHDM. In 
ACM Conference on Hypertext, Washington, USA. 

WebML: Ceri, S. Fraternali, P., Bongio, et al. (2003). 
Designing Data-Intensive Web Applications.Morgan 
Kaufman. 

WSDM: De Troyer, O. and Casteleyn, S. (2003) Model-
ling Complex Processes from web applications using 
WSDM. In IWWOST 2003. Oviedo, Spain. pp 1-12. 

OOWS: Fons J., P. V., Albert M., and Pastor O. (2003). 
Development of Web Applications from Web En-
hanced Conceptual Schemas. ER 2003, LNCS. Sprin-
ger.pp. 232-245. 

Constantine, L. Canonical Abstract Prototypes for Ab-
stract Visual and Interaction Design. in 10th Interna-
tional Workshop on Design, Specification and Verifi-
cation of Interactive Systems (DSV-IS). 2003. Madei-
ra, Portugal. Springer Link. 

Giner, P., V. Torres, and V. Pelechano. Building Ubiqui-
tous Business Process following an MDD Approach. in 
XII Jornadas de Ingeniería del Software y Bases de Da-
tos . 2007 (Pending Publication). Zaragoza, Spain. 

Valverde, F., et al. A MDA-Based Environment for Web 
Applications Development: From Conceptual Models 
to Code. in 6th International Workshop on Web-
Oriented Software Technologies (Pending Publication). 
2007. Como (Italy). 

 

 

 

 


