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Abstract. Data collection and analysis are key artifacts in any software engi-
neering experiment. However, these data might contain errors. We propose a 
Data Quality model specific to data obtained from software engineering exper-
iments, which provides a framework for analyzing and improving these data. 
We apply the model to two controlled experiments, which results in the discov-
ery of data quality problems that need to be addressed. We conclude that data 
quality issues have to be considered before obtaining the experimental results.  
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1 Introduction 

Empirical Software Engineering collects data for predictions, discoveries, or to de-
termine the effectiveness and impact of use in new techniques and strategies [14]. 
Data collected during the experimental activities becomes the primary source to ob-
tain the experimental results. These results are assumed to be trusted, and the research 
community as well as the professionals use them to make decisions. However, the 
quality of the data used in the software engineering experiments is seldom questioned 
or analyzed, as Data Quality (DQ) issues have not received the attention it deserves in 
this area [16]. Thus, the quality of the experimental results could be unknown [13,14]. 

DQ research area has focused basically on defining different DQ aspects, as well as 
on proposing techniques, methods and methodologies for measuring and dealing with 
DQ problems [3,4], [7]. In many research areas, data producers and consumers have 
recognized DQ issues as an important matter that needs to be considered and attended 
[5], [8].  

The importance of the DQ used by empirical studies has been recognized and stud-
ied in the last few years [13,14,15,16,17,18], [30,31]. According to Liebchen, there 
seems to be an increase over time in the amount of works that consider DQ issues, 
suggesting that the community is giving more attention to DQ [14]. In the few cases 
that DQ is considered, the analysis of the quality of the data is normally ad-hoc; i.e. 
nor a systematic neither a repeatable method is used. In order to change this situation, 
we propose a framework adapted specifically to this field of study: Experiments in 



Software Engineering (ESE). To achieve this, we develop a DQ model and a system-
atic, disciplined and structured approach (that uses this model) in order to analyze and 
improve DQ in ESE that involves humans as subjects. Our DQ model defines DQ 
metrics that are based on techniques proposed in the DQ area [3,4,5,6,7]. 

 In this work, we apply our DQ model to the data of two controlled experiments. 
We present the application of the model as well as the results obtained by applying 
the proposed DQ metrics. We found that data used by ESE present DQ problems that 
need to be addressed before obtaining the experimental results.  

The paper is structured as follows. Section 2 presents a DQ meta-model as the con-
ceptual base for our model. Section 3 describes the experiments we used to evaluate 
our model. Section 4 presents the DQ model and metrics. Section 5 shows the appli-
cation of a DQ metric. Section 6 presents the results obtained by applying the defined 
DQ metrics to the experiments presented. Finally, section 7 compares related work, 
and section 8 presents the conclusions. 

2 Background: Data Quality Meta-model 

DQ is generally defined as “fitness for use” [9], [14,15], if data is suitable for its use 
or purpose. As the use of the data depends on every context, its quality will be evalu-
ated in function of its specific purpose [4]. DQ is a multifaceted concept, as it is de-
fined as a function of the dimensions it describes. Each dimension represents a differ-
ent aspect (or facet) of DQ [3,4,5,6,7].  

Our approach is based on a DQ meta-model [32] that includes the following con-
cepts: a quality dimension is a concept that captures one facet of DQ, a quality factor 
represents a particular aspect of a DQ dimension. A dimension is seen as the join of 
factors having the same aim. A quality metric is a quantifiable instrument that defines 
the way a quality factor is measured, and will indicate the presence of a DQ problem. 
Finally, a measurement method is a process that implements a metric. As the same 
factor can be measured with different metrics, the same metric can be implemented 
with different methods. DQ measurement can be done at different levels of granulari-
ty: cell (attribute value for a given tuple), tuple, column, table or even database. 

We have chosen the most widely referenced DQ dimensions and their definitions 
according to [3,4,5,6,7]: 

• Accuracy. Specifies how accurate and valid the data is. It indicates if a correct 
association between the Information System (IS) states and the real world objects 
exist. Three quality factors are proposed. Semantic accuracy refers to how close is 
a real world value to its representation in the IS. Syntactic accuracy indicates if a 
value belongs to a valid domain. Precision refers to the detail level of the data. 

• Completeness. Specifies if the IS contains all the important data, with the required 
scope and depth. It indicates the IS capacity to represent all the significant states of 
the reality through two factors. Coverage refers to the portion of real world objects 
that are represented in the IS, while density refers to the amount of missing data. 

• Consistency. Specifies if the semantic rules are satisfied in the IS. An inconsisten-
cy exists when more than one state in the IS is associated with the same object in 



the real world. There are different kinds of integrity restrictions. Domain re-
strictions refer to rules about the attributes values. Intra-relation restrictions re-
fer to rules that must be satisfied by one or more attributes in the same relation, 
while in the inter-relation rules the attributes entailed are from different relations. 

• Uniqueness. Specifies the duplication level of the data through two factors. Dupli-
cation occurs when the same entity is duplicated exactly, while contradiction oc-
curs when the entity is duplicated with contradictions. 

• Representation. Considers the consistent and concise representation of the data in 
the IS, and the extent in which data is always represented in the same format and 
structure. We consider the factors data format and data structure. 

• Interpretability. Refers to the documentation and metadata available in order to 
correctly interpret the meaning and properties of the IS. We consider two factors, 
ease of understanding and metadata.  

3 Experiments Description 

In order to validate the DQ model defined in this work through a proof of concept, we 
have applied the DQ model to data collected from two executed experiments in Soft-
ware Engineering. These experiments are briefly presented in this section. 

The experiments aim to compare the Model-Driven Development (MDD) para-
digm [12] versus a traditional software development method. MDD proposes focusing 
all analysts’ effort on building a conceptual model that abstractly represents the sys-
tem. The code is automatically generated through transformation rules. In a traditional 
development method, the code is manually implemented. The following variables are 
defined: Software Quality: degree of success after applying test cases; Effort: time 
spent to develop the system; Productivity: quality-effort ratio; Satisfaction: range of 
values from 1 to 5 (1: totally unsatisfied, 5:totally satisfied). 

Subjects of the experiment are master students from the Technical University of 
Valencia. We have 2 sessions of 2 hours per development method (MDD and tradi-
tional) and 2 problems (P1 and P2) to develop a Web application from scratch.  

The experiment starts with a demographic questionnaire that subjects have to fill in 
on paper to identify their background. Next, we apply the traditional development 
treatment to all the subjects. The experimenter records the start and end session times, 
and then calculates how much time each subject spent to develop the system (per 
session and total). Once the session has finished, each subject must fill in a satisfac-
tion questionnaire. Finally, experimenters check the quality of the systems developed 
through test cases and write down the results. Each test case is defined as a sequence 
of items. We consider that a test case is fulfilled when every item is passed. The test 
cases as well as the items result have two possible values: success (1) or failure (0). 
All the data collected during the experiment is recorded in spread sheets. Finally, the 
process is repeated to apply the MDD treatment.  

The experiment was carried out twice with the same design. The base experiment 
was executed in 2012 with 26 subjects, while the replication in 2013 had 20 subjects. 
In the replication, we extend the problems to increase the difficulty. This new version 



of the problems is divided into 3 exercises (parts) such a way the first exercise is the 
same problem used in the base experiment and exercise 2 and 3 are extensions. At the 
end of each exercise, subjects have to write down on a paper the time spent to finish 
it. The experimenter then copies these data in the spread sheets. 

4 Data Quality Model for Software Engineering Experiments 

A DQ model represents DQ concepts (such us dimensions, factors and metrics) and 
the relation between them, which are defined for a specific domain. We define a DQ 
model for the ESE domain, you can find DQ models for other domains in [10,11]. 
This model provides a framework for the analysis and assessment of DQ. Fig. 1 
shows how our DQ model is defined from the DQ meta-model presented in Section 2.  
 

 
Fig. 1. DQ model defined and its application 

Our model defines a set of DQ metrics that can be applied to ESE data, and are 
based on the DQ concepts presented in Section 2. They are shown in Table 1. We 
define the metrics by induction, as they are applied to specific experiments (from the 
particular) and adjusted such a way they could be applied to any ESE data collection 
(to the general). This model is the result of successive refinements to previous devel-
oped models [1,2]. DQ problems are classified as follows. 

• Data Errors (DE): correspond to errors in the data that (whenever possible) need 
correction.  

• Questionable Value (QV): in this case it is not possible to assure if the DQ prob-
lem corresponds to a real data error (examples of these are outliers). It is necessary 
to compare data and reality in order to know if a data error exists. 

• Improvement Opportunities (IO): correspond to suggestions of aspects that could 
be improved in order to prevent the occurrence of a DQ problem in the future.  

Due to space restrictions, it is not possible to present every metric. In the next sec-
tion, we show the definition and results of a particular DQ metric of our model. We 



choose the metric “Inter-relation Integrity rules” (M14), as it corresponds to a DQ 
aspect that is not generally addressed in ESE data. In Section 6 we present the results 
of the application of the whole DQ model to the experiments. 

Table 1. DQ Metrics 

DQ Dimension DQ Factor DQ Metric Id 

Accuracy 

Syntactic Accuracy 
Out of Range Value M1 
Lack of Standardization M2 
Embedded Value M3 

Semantic Accuracy 
Inexistent Record M4 
Incorrect Record M5 
Out of Referential Value M6 

Precision Lack of Precision M7 

Completeness Density Null Value M8 
Omitted Information M9 

Coverage Omitted Record M10 

Consistency 

Domain Integrity Domain Integrity Rule M11 

Intra-relation Integrity Intra-relation Integrity Rule M12 
Unique Value M13 

Inter-relation Integrity Inter-relation Integrity Rule M14 
Invalid Reference M15 

Uniqueness Duplication Duplicate Record M16 
Contradiction Contradictory Record M17 

Representation Data Structure Data Structure M18 
Data Format Data Format M19 

Interpretability Ease of understanding Ease of understanding M20 
Metadata Metadata M21 

5 Data Quality Metric Example: Inter-relation Integrity Rule 

This metric is implemented through integrity rules involving attributes that belong to 
different relations, and that must be satisfied in the database. Its measurement is de-
fined as the verification of rules satisfaction in the data. The result unit is a Boolean 
value, indicating if the object measured presents a DQ problem (0) or not (1). Its 
granularity is at cell level. 

In order to apply this metric to the experiments, rules are defined with the experi-
ment responsible. We define 6 rules for the base experiment and 9 for the replication, 
but only 3 are presented here. 

1. Test case result will be 1 (success) if and only if each of its items result is 1. Oth-
erwise, the test case result will be 0. 

2. Total execution time is the sum of the time spent in the two working sessions. 



3. Time spent in making the first exercise has to be less or equal than the total execu-
tion time (only for the replication). 

We measure the three cases presented through formulas implemented in a spreadsheet 
that verifies rules satisfaction. “Rule 1” was not satisfied in any of the experiments. In 
the base experiment, we found 2 test case records where one of its items result was 0 
but the test case result was 1. We discovered that the item involved was not consid-
ered to calculate the final result, so it was not necessary to take corrective actions.  

In the replication experiment, we found 2 test case records whose items results did 
not exist, but the test case result had a value (1 or 0). Both cases correspond to data 
errors. The subjects had not implemented the functionality being tested, so the test 
case result should have been a null value. This DQ problem impacts on the experi-
mental results obtained (regarding the variable software quality). 

“Rule 2” was satisfied in both experiments. “Rule 3” was only applied to the repli-
cation experimental data, where it was not satisfied. We found 6 records where the 
time spent in making the first exercise was longer than the total execution time. In 4 
cases, it did not exist one of the session time values. Note that these cases were also 
found by the metric “Omitted Information”. Thus, the total execution time only con-
sidered the time of one session, making the exercise time longer. This data error has 
to be corrected because it impacts on the results obtained (regarding the variable ef-
fort). In the remaining cases, the difference was by less than 3 minutes.   

6 Results 

Table 2 shows the DQ value obtained for each metric applied. It is calculated as the 
aggregation of the DQ values obtained by applying the metric to the corresponding 
data. We applied 16 out of the 21 DQ metrics that are defined in the model (Table 1). 
We validated with the experiment responsible that the application of the remaining 5 
metrics was not necessary for these experiments. Whereas in the base experiment the 
metrics were applied on 47 different domain objects, in the replication they were ap-
plied on 59. The amount of measurements is higher in the second case because more 
data are collected. As a result of applying our model, we found that in the base exper-
iment 9 of the metrics showed the presence of a DQ problem that needs attention. 
These DQ problems correspond to 13 different objects. In the replication 10 metrics 
showed the presence of DQ problems, corresponding to 17 objects. Only 7 of the DQ 
problems found are common to both cases. 

When possible, an automatic measurement method is applied (68% in the base ex-
periment and 75% in the replication), through the implementation of formulas in a 
spreadsheet. When the measurement is subjective or it involves the comparison with 
data extracted from the real world, a manual method is used (26% in the base experi-
ment and 22% in the replication). Remaining metrics 6% and 3% respectively, were 
not implemented since they require a great amount of time from the experimenters. 

We propose preventive actions for every case in which a DQ problem was found in 
order to prevent its occurrence in future experiences. We then classified the DQ prob-
lems found. Table 2 shows which metrics correspond to each classification.  



• Data Errors (DE). In the base experiment, we found data errors for 4 of the 9 met-
rics. However, no corrective actions were taken. This is because the data affected 
by the quality problems were not used as a base to obtain the experimental results.  
In the replication, we found 4 data errors. For 2 of them corrective actions were 
taken (1 described in the previous section). In the remaining cases it was not possi-
ble to apply corrections because real data was omitted and could not be known. 

• Questionable Value (QV). We found questionable values for 2 of the metrics in the 
base experiment and 2 in the replication. These cases correspond to unusual values. 
We did not identify any possible corrective actions after validation with the exper-
iment responsible. 

• Improvement Opportunities (IO). We propose specific improvement opportunities 
for 3 subjective metrics in the base experiment and for 4 subjective metrics in the 
replication, all referred to the data structure, format and storage. 

Table 2. Results of applying the DQ Metrics to the experiments  

DQ 
Metric Id 

DQ Value 
- Base 

DQ  
Problem 

# Data - 
Base 

DQ Value  
- Repl. 

DQ  
Problem 

# Data  
- Repl. 

M1 0.968 QV 7 0.988 QV 5 
M2 0.941 DE 8 1.000   
M3 0.692 DE 16 1.000   
M5 1.000   1.000   
M7 1.000   1.000   
M8 1.000   0.959 DE 9 
M9 1.000   0.800 DE 9 

M10 0.996 DE 1 0.933 DE 4 
M11 1.000   1.000   
M12 0.971 QV 3 0.963 QV 3 
M14 0.857 DE 20 0.926 DE 13 
M16 1.000   1.000   
M18 Regular IO  Regular IO  
M19 Acceptable   Regular IO  
M20 Regular IO  Regular IO  
M21 Regular IO  Regular IO  
 
As Table 2 shows, the quantity of data with a DQ problem is low. This might be 

mainly because of the low amount of data collected during the experiment. However, 
the experimental results could anyway be affected due to the DQ problems found, 
regardless of the amount of data.  

We can see some differences between the results obtained in each case, even 
though collected data are almost the same. While in the base case no corrective ac-
tions were taken, in the replication we found errors in data used to obtain the experi-
mental results that needed correction. Contrary to the replication, in the base case the 
DQ analysis was carried out after the experimental statistical analysis. Thus, as the 
amount of data is low, the experimenters could have applied some manual corrections 



during the analysis. However, this “ad-hoc” method cannot assure that the DQ prob-
lems will be found, as it depends on the person who is making the analysis (his 
knowledge and abilities), as well as on the complexity and amount of data. Neither 
has been established a systemic way to perform the DQ analysis, so it cannot be re-
peated in future experiences.  

Another difference is in the metric with the lowest DQ value. While the first case 
corresponds to data entered by the subjects (M3), the second one is an omission in a 
calculation that made the experimenter. Moreover, the improvement in the metrics 
M2 and M3 is because preventive actions were taken during the replication. 

The results obtained show that the application of the DQ model proposed to the 
experimental data allows the identification of DQ problems that could otherwise be 
ignored. Even though the data analyzed is of low complexity, the application of the 
DQ metrics uncovers the existence of bad quality data, as showed in the example 
presented. It is important to analyze and improve the quality of the data used, so that 
the experimental results can be trusted. 

7 Related Work 

The importance of the quality of data used by empirical studies has been acknowl-
edged and assessed in the last years [13,14,15,16,17,18], [30,31], mostly due to the 
impact that it may have on the decisions taken. Some papers explicitly emphasize the 
importance of DQ in empirical software engineering datasets, as data imperfections 
can have unwanted impact on the data analysis and might lead to false conclusions 
[14], [16], [25]. However, we did not find in the literature any study that specifically 
analyses the quality of the data which source is a controlled experiment in Software 
Engineering, as we present in this work.  

On the other hand, the results of a systematic literature review carried out by Lieb-
chen and Shepperd [14,15] show that only 1% of analyzed papers explicitly consider 
noise or DQ as an issue, not necessarily proposing solutions. Even though the majori-
ty of the publications in the review recognize its importance (138 out of 161), little 
work has been done to deal with DQ problems. Liebchen also suggests the develop-
ment of unified DQ protocols for the empirical software engineering community, 
since none of the works found proposes or applies one. Our DQ model aims to ad-
dress this absence, by proposing a DQ framework including the definition of DQ 
metrics that could be applied to ESE, in order to assess and improve its quality. 

Bachman [13], [17], [28] analyzed DQ characteristics of closed and opened soft-
ware projects source, finding that all projects contain DQ issues. These issues may 
have a major impact on empirical software engineering research results. Bachman 
defines a DQ framework and metrics to evaluate and analyze DQ software projects, 
but he does not state that it could be applied to experimental data. 

Three literature reviews were carried out in this particular topic, showing interest 
and concern about how researchers are dealing with DQ problems [13,14], [30]. They 
all conclude that empirical software engineering community should pay more atten-
tion to this issue, which has long been neglected according to the results 



We also found another set of related works that analyze the quality in software en-
gineering historic datasets [19,20,21,22,23,24], [26,27], [29]. In these works, software 
project, process and product data are collected, stored, and then used to analyze strat-
egies and methodologies, construct heuristics or prediction models, or apply statistical 
techniques. The works found also agree on the great significance of assessing the 
quality of the data used, as they have an impact on the obtained results. 

8 Conclusions 

We present a DQ model that can be applied to ESE data. This model defines DQ met-
rics as the instrument to measure the quality of the data and identify DQ problems. 
We show how to apply the DQ metrics defined in two controlled experiments. We 
found that experimental data has DQ problems, and that they can impact on the results 
of the experiment.  

Our model allows us to predefine metrics for DQ in ESE, being an important con-
tribution to both DQ and ESE communities. The introduction of a DQ analysis previ-
ous to the experimental statistical analysis motivates the consideration of DQ aspects 
that are not normally addressed by ESE researchers and could otherwise be neglected.  

Our ultimate goal is to define a DQ model such that it can be useful for any ESE. 
As future work we will apply our approach to other experiments with a higher number 
of subjects and data. This way, our systematic approach will probably find a higher 
amount of DQ problems. As a result of these new applications we aim to adjust 
(again) our DQ model and achieve its generalization for the ESE domain.  
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