
AU
TH
OR

Microservices-Aware Business Process Modelling⋆

Rene Noel1,2[0000−0002−3652−4645], Sergio España1,3[0000−0001−7343−4270],
Jose Ignacio Panach4[0000−0002−7043−6227], and Oscar Pastor1[0000−0002−1320−8471]

1 Valencian Research
Institute for Artificial Intelligence, Universitat Politècnica de Val̀encia, Valencia, Spain

{rnoel@vrain.upv.es}
2 Escuela de Ingenieŕıa Informática, Universidad de Valparáıso, Valparáıso, Chile

3 Information and Computing Sciences, Utrecht University, Utrecht, the Netherlands
4 Escola Tècnica Superior d’Enginyeria, Universitat de Val̀encia, Val̀encia, Spain

Abstract. Microservices Architecture (MSA) is the de facto software archi-
tecture approach for highly scalable software systems. Organisations must
design their structure and processes around business outcomes to reap MSA’s
benefits. Also, MSA requires the domainmodel for eachmicroservice to bemin-
imal and avoid coupling with other microservices’ domain entities. However,
such coupling might already occur during the design of the business process
and then propagate along the development life cycle. The first opportunity
to prevent coupling occurs while designing collaborations between different
participants (organisational units, such as development teams) since assigning
business responsibilities defines how much domain knowledge each participant
must handle. This paper proposes a method to design business process models
so the domain managed by each process participant matches the size and com-
plexity required for MSA domain design, enabling the seamless use of MSA.
We reviewed nine code repositories to characterise the size and complexity of
MSA domain models and proposed a metamodel conceptualising the optimal
microservice domain model. Then, taking as input BPMN’s Choreography
diagrams describing interactions among participants, we propose (i) to specify
the structure of the messages interchanged by the choreography participants,
(ii) a set of process modelling guidelines to avoid domain coupling by prevent-
ing coarse interactions and heavy domain-savvy process participants, and (iii)
a set of transformation guidelines to systematically derive the MSA domain
model from the message structures. This contribution aims to help business
process designers envision the domain complexity each process participant
handles and prevent coupling business domains during process design. We
provide a detailed example showing the approach’s feasibility and discuss the
proposal’s implications, benefits and limitations.

Keywords: Microservices · Business Process Modeling · Choreography Mod-
eling · Model-Driven Development

⋆ Sergio España is supported by a Maŕıa Zambrano grant of the Spanish Ministry of
Universities, co-funded by the Next Generation EU European Recovery Plan. This
Research is supported by the Spanish State Research Agency and the Generalitat
Valenciana under the project PID2021-123824OB-I00



AU
TH
OR

2 Noel et al.

1 Introduction

Microservice architecture (MSA) [31] has become a de facto standard for designing
highly scalable software. It supports designing an application as a set of small and
loosely coupled services, which operate independently and communicate with each
other with lightweight mechanisms [20]. Field research shows that software develop-
ment teams which design, develop, test, and operate software services supporting a
small part of a larger business domain (e.g. microservices), with independence from
other teams, deliver software more efficiently [13]. However, to achieve such decoupling
in the business domain, it is necessary to start by designing a structure of teams
around business outcomes with well-defined and minimal interactions among them
[27, 6]. Since the interactions between teams are scattered across different business
processes, it is challenging to identify couplings.

BPMN choreography diagrams [24] offer a solution for having a whole perspective
of multiple collaborating participants. In BPMN collaborations, different organisations
are represented as separate pools, and their collaborations are represented as message
flows among them. Choreography diagrams focus on the collaboration among partic-
ipants, specifically on the information shared through messages. In this way, complex
processes can be modelled in multiple collaboration diagrams, but choreography
diagrams allow reason about the sequence of the collaborations and what information
manages each participating organisation. The decentralised nature of choreographies
reduces the gap between requirements and implementation [9], increases the degree of
independence of participants handling the interactions [5], and supports microservice
composition [28].

In this paper, we present a business process modelling method that is aware of the
business domain dependencies among organisation units and, thus, the supporting
microservice architecture. The design of the method addresses three research questions:
RQ1 - What is the reasonable range of domain complexity of a microservice?, RQ2 -
How can business processes be designed so they facilitate the design of micro-services
of a reasonable complexity?, and RQ3 - What is the feasibility of the proposed design
approach?. We propose 1. To model the organisation’s inner units as different collab-
orating participants in a choreography diagram, 2. To specify the structure of fields
of the messages they share, and 3. To transform the structure of the messages into
participants’ domain models and to warn the modeller about possible complexity
issues. Following the design science methodology [30], we investigated the domain
complexity of microservices and designed the method using Situational Method
Engineering (SME) [17]. We assembled existing modelling methods and techniques for
modelling business processes [24], specifying the structure of the messages shared by
process participants [15], and for microservice design [12]. We illustrate the feasibility
of the approach with a single case mechanism experiment and discuss the proposal
in the light of earlier literature.

The article continues as follows. Section 2 presents the problem investigation,
detailing the review of code repositories for characterizing the domain complexity
in microservice implementations. Section 3 presents the proposed method, including
the modelling guidelines and transformation algorithms. Section 4 presents a single



AU
TH
OR

Microservices-Aware Business Process Modelling 3

mechanism experiment showing the feasibility of the approach. Section 5 discusses im-
plications and limitations in light of previous literature. Section 6 concludes the paper.

2 Problem Investigation: Domain Complexity inMicroservices

We herein define the problem following the guidelines by Wieringa in [30]. The
problem’s context relates to organisations with software-based services as their main
value offer, needing to grow rapidly and react to environmental changes. The main
stakeholders are business process analysts and software engineers. The business process
analysts split the business domain into business processes, while the software engineers,
particularly software architects, split the system into microservices. In this context,
business process analysts typically aim to design modular processes and minimise
the dependencies between the participants (e.g., teams, areas, departments). In turn,
the goal of software engineers is to design loosely coupled software services to foster
software scalability and delivery performance. The problem addressed by our work
regards poor business process design, which hinders the growth and reaction capability
of the organisation. Particularly, we aim to minimise the chances of designing (i)
business processes that require intensive coordination of several participants for their
implementation and (ii) business processes that delegate huge portions of domain
knowledge to a few participant teams, affecting their performance due to high cognitive
load. These two problems hinder the implementation of microservice architectures [20].

We consider that the root cause of the above-mentioned problem is that business
process analysts have little insight into what domain information is handled by the
participants. Our solution approach is to include domain information during busi-
ness process modelling and provide guidance for avoiding excessive domain coupling
between participants or overcharging participants with too much domain knowledge.
We have investigated the reference microservice implementations to specify these
quantifiers more precisely and discover what appropriate domain complexity is to
be managed by business process participants.

processes to be implemented in a microservices architecture (MSA).Their goal is
model the organisational behaviour as a set of business processes that has the following
characteristics: (i) they jointly express the behaviour within the scope of the develop-
ment project, (ii) each model focuses on a single organisational unit (in BPMN terms)
or participant (in MSA terms), (iii) the behaviour within each model is simple enough
to be supported by a single microservice, (iv) there is minimal redundancy and cou-
pling among the process models, to simplify later architecting and programming tasks.
The problematic phenomena they face is an unintended domain coupling during the
business process design; that is, analysts design business processes whose participants
manage a domain that is more complex than the recommended for implementing
microservices. This is translated in a coupled structure of software development teams,
hindering software development efficiency [13]. We reviewed code repositories of soft-
ware systems having an MSA. As a mean to make the repositories comparable and to
ensure they have followed best design practices, we selected repositories following the
domain-driven design paradigm. Domain-driven design (DDD) is a software develop-
ment approach that modularises a business domain into distinct bounded contexts, of-



AU
TH
OR

4 Noel et al.

ten aligned with microservices, and applies specific design patterns to ensure each mod-
ule is well-defined and cohesive [12]. The software industry has adopted DDD to split
the business domain into bounded contexts; that is, highly cohesive, low-coupled parts
that share the same domain language. DDD also proposes object-oriented design pat-
terns to structure bounded contexts in modules that provide a microservice that han-
dles the life cycle of a single, relevant domain entity. Inside each module, DDD proposes
design patterns to characterise domain classes: Entities are classes relevant across the
organisation for which have an identification data field, Value Objects represent classes
with invariant attributes relevant for a particular transaction, not having an identifica-
tion field, and Aggregate Roots is a subtype of entity which aggregates other entities
and value objects. Among other patterns, DDD also proposes Service, which exposes
the module’s business logic to other modules, and Repository, which manages the per-
sistence of the module’s domain entities. Overall, we consider DDD the most rigorous
approach to tackle domain complexity in MSA and thus find it suitable for our research.

In a convenience sampling approach, we have considered the code repositories
reviewed by Rademacher [26] to design a UML profile for DDD and added two
more recent ones. Our review addresses the question: RQ1 - What is the reasonable
range of domain complexity of a microservice?. We identified the most complex
microservice modules inside each code repository. For each module, we identified the
packages containing the domain model classes (usually named model or domain) and
inspected the code, matching the classes with the DDD patterns. Following DDD, the
complexity of the domain is centred in the aggregate root classes, so we counted 1. The
independent aggregate roots in the module, and 2. The number of nested aggregate
roots. To ensure we correctly identified the aggregate roots in the module, we also
counted the number of services by counting the service implementations in the service
package of the modules. According to DDD, the number of Services should match the
number of aggregate roots. Table 1 shows the findings, which we comment on below.

Table 1. Summary of the analysis results of domain-driven microservice architecture code
repositories. (NoM: Number of Modules, MAR: Number of aggregate roots of the largest
module, MNAR: Maximum number of nested aggregate roots of the largest module). Find
more details in the technical report [22].

Alias Lang Dates active kloc NoM MAR MNAR

eShopContainers C# 04/09/2016 - 27/10/2021 176.8 5 1 1
micro-company Java 27/03/2016 - 10/07/2020 127.1 4 1 1
Lakeside Mutual Java 21/02/2021 - 19/04/2021 157.0 3 1 1
Pit Stop C# 24/09/2019 - 24/04/2023 97.4 5 1 1
mspnp C# 02/05/2021 - 06/07/2022 4.1 5 4 *2
WeText C# 27/03/2016 - 15/11/2017 41.9 2 1 1
FTGO Java 10/09/2017 - 29/09/2018 25.5 6 3 1
sivalabs Java 18/02/2018 - 16/04/0202 6.8 3 1 1
ttulka Java 01/11/2020 - 06/03/2023 13.0 4 1 1



AU
TH
OR

Microservices-Aware Business Process Modelling 5

From the code review, we identified the following characteristics of a reasonable
domain complexity for a microservice:

– Aggregate roots have no nested aggregate roots. This means that aggregate roots
are composed of entities and value objects but not other aggregate roots. An
exception is msnp project, which has two levels of aggregates, but it is just for
logging the events produced by the second level aggregate.

– Modules have a single aggregate root. Exceptions to this are the mspnp and FTGO
projects. The mspnp the delivery module handles four aggregates, but all of
them aggregate value objects or enumerations and no other entities. Additionally,
the domain is accessed through two closely related services: one for tracking
the delivery and one for notifying changes in the delivery status. In the FTGO
project, the delivery module contains three aggregates, but similarly to mspnp,
the aggregates contain value objects or common classes and no other entities. All
of them are accessed through a single service.

We acknowledge that there might be cases where increasing the microservice do-
main complexity can be justified by the business complexity. However, the results rep-
resent common practice and inform the design of our method. We have conceptualised
the above findings in the package DDD of the method metamodel presented in Figure
2. The DDD pattern conceptualisations are based on the UML profile for DDD pat-
terns by Rademacher et al. [26], while the relationships and multiplicities are reasoned
inductively from the code repository review findings. For simplicity, we use stereotypes
to represent each pattern concept’s corresponding UML class diagram elements.

3 Microservice-aware business process modelling

In this section, we address the research question RQ2 - How can business processes
be designed so they facilitate the design of micro-services of a reasonable complexity?.
An overview of our proposal is depicted in Figure 1 using the MAP notation. Ellipses
denote the method’s intentions, while arrows denote the strategies to achieve such
intentions. The dashed arrows highlight the contributions of our proposal. The method
starts with the business process modelling intention achieved by choreography, which
implies the use of BPMN’s choreography diagrams. Choreography diagrams depict the
interactions between process participants, and can be designed from scratch or derived
from the message interchanges between the participants of BPMN’s collaboration
diagrams.

The message structure specification intention achieved by choreography analysis
supports the definition of the detailed structure of fields for the messages interchanged
in each choreography task. The method contributes with a set of guidelines to specify
such structures, keeping in mind the complexity of the domain model. After specifying
the message structure, the method user can refine the business process modelling by
domain-driven modularisation. The method contributes with guidelines for modular-
ising the participants in the BPMN model in case message structure specifications
reveal that one or more participants handle a large portion of the domain model.



AU
TH
OR

6 Noel et al.

Having specified the message structures, the method user can continue with
microservice domain modelling by message structure transformation. In this case,
the method contributes with a model-to-model transformation algorithm that takes
the choreography diagram and the message structures as input to generate UML
class diagrams, one for each participant, representing their respective domain models.
The generated classes are stereotyped using the pattern language of DDD. Though
the derivation of class operations is not considered, it could be achieved following
a procedure similar to the proposed in [11].

3.1 Method Metamodel

The metamodel presented in Figure 2 supports the proposed method, which integrates
three methods and techniques. On the one hand, the BPMN package contains the main
elements of the collaboration and choreography diagrams from the BPMN 2.0 specifi-
cation [24]. It is noteworthy that BPMN.ChoreographyTask is associated with the
BPMN.MessageFlow of a BPMN.Collaboration thus supporting the choreog-
raphy task analysis step of our proposal; however, although BPMN.MessageFlow
has an associated BPMN.Message, BPMN does not define how to specify messages.

On the other hand, the MS package presents the metamodel of the Message Struc-
ture technique, initially introduced in [11]. We connectedMS.MessageStructure
with BPMN.Message to support the message structure specification step of our
proposal. We are aware that BPMN supports defining a message through XSD;
the proposed metamodel aims to highlight the concepts behind the MS technique
regardless of technological support. As can be seen, message structures can specify
MS.DataFields, but also more complex structures such as MS.Aggregations
of fields or other structures, as well as MS.Iterations to support multiple
instances of a structure, e.g., the items of an order. A special type of field is
MS.ReferenceField, which allows referencing existing structures defined in the
same message or other messages, e.g., an order item can reference a product created
on a different message. Importantly, MS.ReferenceFields could shed light on
coupling domain concepts between different participants, so its use must be carefully
assessed.

Finally, the package DDD presents a proposed conceptualisation of the pattern
language of the domain-driven design [12] approach for designing microservices.
According to DDD, organisation units that share a common business vocabulary

Fig. 1. Method requirements map.



AU
TH
OR

Microservices-Aware Business Process Modelling 7

define a DDD.BoundedContext. Inside a bounded context, there can be many
microservices, which are grouped in DDD.Modules. Each module contains a portion
of the business domain that is managed by the microservice, which is organised into
DDD.AggregateRoots that are entities that group and manage the content and
the life cycle of other DDD.Entities and DDD.ValueObjects in a way that
ensures data integrity. Aggregate roots define a boundary, so its constituents are not
directly accessible to external clients. DDD.Entities are classes the business is
interested in tracking throughout its life cycle so they have an identifier attribute,
while DDD.ValueObjects group invariant data that are purposeful for the ser-
vice logic but not for other services. DDD considers other classes for exposing and
persisting the domain (DDD.Repository,DDD.RepositoryImplementation,
DDD.Service, and DDD.ServiceImplementation, among others), that are
directly associated with a DDD.AggregateRoot.

Fig. 2. Method metamodel integrating metamodel fragments of BPMN Choreography,
Message Structures, and a proposed conceptualisation of microservice patterns. The full
BPMN metamodel can be found in [24]; Message Structures metamodel is available in [15].



AU
TH
OR

8 Noel et al.

Fig. 3. Intention achievement guidelines for message structure specification through chore-
ography task analysis.

3.2 Guidelines Specification

As depicted in Figure 1, the proposed method integrates business process modelling,
message structure specification, and microservice domain modelling through three
strategies: choreography task analysis, domain-driven modularisation, and message
structure transformation. To specify how to achieve the intentions using the proposed
strategies, we use the SMEs’ intention achievement guidelines (IAG). An IAG spec-
ification provides support for describing the guidelines to go from one intention to
another using a specific strategy [17].
Guidelines for Choreography Task Analysis: The motivation for these guidelines
is to exploit the business knowledge gathered during the business process design to
elicit what information each participant should know when collaborating
in a choreography. Below, we describe the guidelines IAG 1.1 to IAG 1.4 for
specifying message structures in choreography diagrams. The guidelines reference
the metamodel elements depicted in Figure 2. In Figure 3, we provide an example
of how to specify the message structure for a message in a choreography task and
representations for the three guidelines.

IAG 1.1: For each BPMN.ChoreographyTask in the choreography diagram, elicit
the structure of the initiating message (e.g. through stakeholder interviews, system
archaeology, or any other requirements elicitation technique [25, chapter 3.3]) and then
specify it using MS.MessageStructures (see [15] for detailed instructions).
IAG 1.2: Specify message structures considering that each MS.MessageStructure
can contain a single MS.Aggregation within the first level of the message. Amessage



AU
TH
OR

Microservices-Aware Business Process Modelling 9

with more than one aggregation could denote that a choreography task is performing
more than one business interaction, which should be separated into different tasks and,
thus, different messages.
IAG 1.3: Specify message structures considering that a message should have
MS.ReferenceFields only for referencing MS.Aggregations that are part of the
domain of the target participant. A message referencing MS.Aggregations which are
unknown for the target participant would couple the target participant with the domain
of other participant. We recommended providing the identifier field of the aggregation
and leaving the receiver participant to decide to get the rest of the information from
the other participants.
IAG 1.4: A message should not contain more than two levels of nested aggregations
or reference fields. A message with multiple levels of nested aggregations denotes (i) the
domain managed by the target participant is complex and (ii) the initiating participant
must know more about the structure of the receiving participant’s domain than is
advisable, according to DDD.

Guidelines for Domain-Driven Modularisation: These guidelines aim to help
analysts redesign business process models so the domain managed by each process
participant matches the desired size and complexity for the microservices domain
design. The guidelines inform the business process modelling activity with the mi-
croservice domain modelling practices elicited in the problem investigation, taking the
message structure specifications as input. The guidelines are motivated by the fact
that the information received by a participant across its interactions reveals
how much of the business domain the participant handles. A participant
managing a large portion of the domain threatens the modularisation of the business
processes, hampering the low coupling and cohesion of the microservices design [13].
The guidelines are based on our conceptualisation of microservices domain modelling
(see Section 2). The guidelines are illustrated in Figure 4.

IAG 2.1: Different organisational units (OUs) (e.g., areas, departments, development
teams) must be modelled as separate participants in the fashion proposed by earlier
research that uses BPMN within microservice developments [28]. This means OUs
must be modelled as pools in the BPMN collaboration diagram, not as pool lanes.
IAG 2.2: If even considering the previous guideline, a participant receives many
messages, it should be separated into different participants. A participant receiving
many messages means it concentrates a great part of the business domain, hindering
the implementation of MSA, as it is assumed that the participant has a common
memory (e.g. database) for persisting the received messages. As seen in Table 1, the
maximum number of modules in the reference implementation is six (one per domain
entity). Splitting a participant would re-configuring the organisational structure and
strategy. A method to do so is proposed in [23].
IAG 2.3: In case two participants share messages having nested aggregations or
reference fields (thus, it is impossible to follow IAG 1.3 and IAG 1.4), the collaboration
should be separated into two or more collaborations. The collaboration could be
coupling more than one business transaction and thus yielding complex aggregations
within the same microservice. As seen in Table 1, a module’s typical number of nested
aggregate roots is one.



AU
TH
OR

10 Noel et al.

Fig. 4. Intention achievement guidelines for business process modelling through domain-
driven modularisation.

Guidelines for Message Structure Transformation: these guidelines aim to help
analysts glimpse the complexity of the domain that each participant in the business
process model is handling. Each domain model contains a set of classes derived from
the message structures, which are stereotyped according to the microservice domain
design patterns elicited during the problem investigation in Section 2. The guidelines
take the set of messages received by each participant as input. The guidelines are based
on the systematic derivation of class diagrams from message structures, proposed in
[16], and have been adapted to the context of DDD and MSA. We have specified
the Message Structure Transformation guidelines in two flavours. In the technical
report [22], we offer a textual specification similar to the earlier guidelines. Herein, we
specify them with three algorithms. Algorithm 1 describes the overall approach for
generating the domain models for the participant’s microservices. Algorithm 2 details
the transformation of message structures into domain classes using the DDD patterns.
Finally, Algorithm 3 assesses the complexity of the generated domain models based on
the findings from the code reviews presented in Section 2. Within the algorithms, the



AU
TH
OR

Microservices-Aware Business Process Modelling 11

Fig. 5. Example of the application of intention achievement guidelines for microservice
domain modelling through message structure transformation.

comments provide the definition for the guidelines (e.g., #IAG 3.3.1 Create an
entity from a message structure, which can be traced to their imperative
description in the technical report. Figure 5 illustrates the transformation.



AU
TH
OR

12 Noel et al.

Algorithm 1. Intention achieving guidelines for message structure transformation.

Require: Inputs: Models BPMN with the choreography diagram and MS with the companion message structures,
and an empty domain model DDD.
Require: newBoundedContext(d) creates and returns a new bounded context in the domain model d.
Require: receivedBy(m, p) returns true if message m is received by participant p, or false otherwise.
Require: processComplexStructure(cs,bco) is defined in Algorithm 2. Creates a domain class from the complex
structure cs in the bounded bco. Returns the domain class created from the complex structure.
Require: getIsolatedEntities(bco) returns all the domain classes in the bounded context bco without participating
on aggregation or association relationships.
Require: prototypeAggregateRoot(e) creates and returns a new aggregate root with the name and attributes
of the entity e passed as parameter.
Require: newModule(bco, n)creates a new Module with the name n in the bounded context bco.
Require: moveDomainAggregation(c, m) moves the domain class c and all its directly and indirectly related
classes to module m.
Require: assessDomainModel(DDD) is defined in Algorithm 3. Assesses the complexity of the domain model
DDD by checking if aggregate roots have other aggregate roots as components.

1 for all par ∈ BPMN.Participant:
2 #IAG 3.1 Create a bounded context for each participant
3 bco = newBoundedContext(DDD)
4 #IAG 3.2 Process each message structure received by the participant
5 for all mst in MS.MessageStructure where receivedBy(mst, par):
6 #Recursively generate domain classes from initial complex structure
7 initialDomainClass = processComplexStructure(mst.initial_complex_structure, bco)
8 #IAG 3.6 Transform isolated entities into aggregate roots
9 for all ent in getIsolatedEntities(bco):

10 ar = prototypeAggregateRoot(ent)
11 ent.delete()
12 #IAG 3.7 Create modules from aggregate roots.
13 for all ar_top in bco.AggregateRoot where ar_top.container = NULL :
14 mod = newModule(bco, ar_top.name)
15 moveDomainAggregation(ar_top, mod)
16 #Asssess whether aggregate roots have other aggregate roots as components
17 assessDomainModel(DDD)
18 return DDD



AU
TH
OR

Microservices-Aware Business Process Modelling 13

Algorithm 2. processComplexStructure(com st, bc) - Recursively process complex structure com st creating
a domain class dc in the bounded context bc. Returns a domain class dc.

Require: Inputs: com st a complex structure of a message structure, bc: The bounded context in which the
domain classes created from the complex structure will be created.
Require: newEntity(b, n) creates and returns a new entity in the bounded context b, named n.
Require: newValueObject(b,n) creates and returns a new value object in the bounded context b, named n.
Require: newAggregateRoot(b,n) creates and returns a new aggregate root in the bounded context b, named n.
Require: newAttribute(e, n, t) creates a new attribute in entity e, with name n and data type t.
Require: typeToDomain(d) is a user-defined function mapping the message structure field domains used during MS
specification into attribute data types (e.g. number → integer, text → string, date → datetime, money → double)
Require: newDomainLink(s, t, a, n, m, c) creates an association between from class s to class t, with from-
Multiplicity n and toMultiplicity m. The type of association a could be association, aggregation, or composition.
Require: warning(m) shows a the warning message m to the user.

1 for all sub_st in com_st.direct_items :
2 #Check for identifier data fields and select them
3 ide = select sub_st where specialisation_type = data_field and is_identifier = True
4 #Check for reference fields and select them
5 ref = select sub_st where specialisation_type = reference_field
6 #Check for any first-level aggregations and select them
7 agg = select sub_st where specialisation_type = aggregation or complex_substructure
8 domainClass = null
9 #IAG 3.3 Create domain classes from message structures

10 if ide ≠ ∅ and ref = ∅ and agg = ∅ then
11 #IAG

3.3.1 Create an entity from a message structure with an identifier and only data fields.
12 domainClass = newEntity(bco, com_st.name)
13 if ide = ∅ and ref = ∅ and agg = ∅ then
14 #IAG 3.3.2 Create a value object from a message structure with only data fields.
15 domainClass = newValueObject(bco, com_st.name)
16 if ide = ≠ ∅ and (ref ≠ ∅ or agg ≠ ∅) then
17 #IAG 3.3.3 Create an aggregate root object from a message

structure with an identifier field. Inner structures are processed recursively below.
18 domainClass = newAggregateRoot(bco, com_st.name)
19 #IAG 3.3.4 warn about possible modelling problems
20 if domainClass = null then
21 warning(’Please check if an identifier data field is needed for’ + com_st.name)
22 #Add data fields in the structure as attributes to the created domain class
23 for all fie in sub_st where fie.specialisation_type = data_field :
24 typ = typeToDomain(fie.domain)
25 newAttribute(domain_class, name = fie.name, type = typ)
26 #IAG 3.4, IAG 3.5 Process inner structures of aggregate roots recursively
27 if ide ≠ ∅ and (ref ≠ ∅ aor agg ≠ ∅) then
28 #IAG 3.4.1 Aggregations
29 for all inner_agg in com_st.direct_items where specialisation_type = aggregation :
30 #Recursively process the inner aggregations and creates 1 to 1 composition links
31 nextDomainclass = processComplexStructure(inner_agg, bc)
32 domainLink = newDomainLink(domainClass, nextDomainClass, com, 1, 1, bc)
33 #IAG 3.4.2 Iterations
34 for all inner_it in com_st.direct_items where specialisation_type = iteration :
35 #Recursively process inner iterations. Create a 1 to many composition
36 nextDomainclass = processComplexStructure(inner_it, bc)
37 domainLink = newDomainLink(domainClass, nextDomainClass, com, 1, m, bc)
38 #IAG 3.4.3 Reference Fields not extending aggregations
39 for all inner_rfie in com_st.direct_items where specialisation_type = reference_field :
40 referencedSt = inner_rfie.domain
41 #Reference field not extending the structure: create association
42 if inner_rfie.extends = False then
43 nextDomainclass = processComplexStructure(referencedSt, bc)
44 domainLink = newDomainLink(domainClass, nextDomainClass, asso, 1, 1, bc)
45 else
46 #IAG 3.4.4 Reference field extending a structure: add fields
47 for all dfs in com_st.direct_items where specialisation_type = data_field :
48 typ = typeToDomain(dfs.domain)
49 newAttribute(referencedSt, name = dfs.name, type = typ)

Algorithm 3. assessDomainModel(DDD) - Checks the complexity of the domain models in DDD. Returns
a list of warnings w dc.

Require: Inputs: Model DDD with the microservices domain model produced by the transformation in Algorithm 1.
Require: warning(m) shows a the warning message m to the user.

1 for all bco ∈ DDD.BoundedContext :
2 for all mod ∈ bco.Module :
3 for all ar in mod.DomainClasses where specialisation_type = AggregateRoot :
4 #Check whether aggregate roots contain other aggregate roots
5 sub_ar = select ar.parts where specialisation_type = AggregateRoot
6 if sub_ar ≠ ∅ then
7 warning("Aggregate root" + ar.name + "contains

other aggregate roots. Check if they can be separated into different operations.")



AU
TH
OR

14 Noel et al.

4 Preliminary Treatment Validation

To address RQ3 - What is the feasibility of the proposed design approach?, we present
a single case mechanism experiment.

As part of the increasing popularity of the sharing economy, we have experienced
a rise in private car rental initiatives, also known as peer-to-peer car sharing. For
this fictional case, we have drawn inspiration from carsharing business models, where
the company offers a platform that manages a virtual fleet made up of vehicles from
participating car owners, who charge a fee to rent out their cars when they do not plan
to use them. Participant renters can rent available cars at affordable prices. In our
case, we consider the existence of salespersons facilitating the rentals. For brevity and
understandability, rather than aiming to define a case of realistic size and complexity,
we intend to define the minimal case that illustrates the method and its guidelines well.

Figure 6 presents the fragment of the business process that is relevant to this
single-case mechanism experiment. A customer who has been in contact with a
salesperson closes the deal to rent a specific car on a given date. The customer is
offered the chance to rate the attention of the salesperson; the Quality Department
will use this information to define key performance indicators on service quality.
The salesperson contacts the car owner to inform him/her about the rental request.
Additionally, a delivery clerk (freelancers who work part-time for the company) also
receives the message, so they know where to pick up the car from, where to deliver
it, and what additional services they need to ensure (e.g. a maxi-cosi seat adapter
for a baby, in-depth cleaning before delivery). Upon delivery at the specified location,
the customer must confirm the delivery.

Following guideline IAG 1.1, we specify one initiating message with a representa-
tive name (e.g. Sale closure). Each initiating message is further specified with a
message structure. For brevity, we only present the message for the first choreography;
the rest can be found in the technical report [22]. As shown in Table 2, there is
only a single MS.InitialAggregation (RENTAL), complying with IAG 1.2.
Since there are no reference fields to aggregations outside the domain of the Sales
Department (BPMN.TargetParticipant), the message structure also complies
with guideline IAG 1.3. No nested structures are specified, complying with IAG 1.4.

Regarding guidelines for business process modelling through domain-driven modu-
larisation, the BPMN.TargetParticipants of the BPMN.ChoreographyTasks
in Figure 6.A represent three different organisational units: Sales Department, De-
livery, and Quality Department, according to IAG 2.1. All the participants receive
no more than two messages, so IAG 2.2 is also fulfilled. The message structures have
been designed with no nested aggregations, as seen in Table 2, to meet IAG 2.3.

Figure 6.B shows the result of microservice domain modelling by message struc-
ture transformation. Next, we explain the application of the guidelines IAG 3.1
to 3.7 for the BPMN.ChoreographyTask Close Car Rental in Figure 6.A, and
for the structure of it message Rental specified in Table 2. Following IAG 3.1, the
MSA.BoundedContexts Sales Department, Delivery, and Quality are created from
the target BPMN.Participants in Figure 6.A. The target participant Car Owner is
excluded for not being part of the organisation. From IAG 3.2, the BPMN.Messsage
Rental is associated with the MSA.BoundedContext Sales Department while Rat-



AU
TH
OR

Microservices-Aware Business Process Modelling 15

ing is associated with Quality Department. The messages Delivery Request and
Delivery Confirmation are associated with the bounded context Delivery.

We use the message structure in Figure 2 for the remaining guidelines. For the set
of guidelines IAG 3.3, addressing the MS.InitialAggregation, IAG 3.3.3 can

Fig. 6. A. Choreography diagram for the single-case mechanism experiment; B. Domain
model resulting from applying the guidelines for Microservice Domain Modelling by message
structure transformation.

Table 2. Message structure of the choreography task Close Car Rental Deal.

Field Op Id Domain Example

RENTAL =
< Rental number + g id number 202300345

Agreement date + i date 24-05-2023
Salesperson ID + i text prat002
Customer ID + i text 8857657-Z
Car plate number + i text 465679-FGT
Car price + i money 25.00 e/day
Pick-up date + i date 15-08-2023
Return date + i date 31-08-2023
CAR PRICE =
< Car rental price > + d money 400.00 e
SERVICE LINES =
{ SERVICE LINE =
< Service ID + i text mx

Service price >} + i money 2.00 e/day
TOTAL PRICE =
< Total price > > d money 432.00 e



AU
TH
OR

16 Noel et al.

be applied to RENTAL since it has theMS.DataField Rental Number marked as
identifier and nested MS.Aggregations, producing the MSA.AggregateRoot
RENTAL. For the set of guidelines IAG 3.4 addressing the internal elements of
the message structure, IAG 3.4.2 applies to the MS.Iteration SERVICES, pro-
ducing the MSA.Entity SERVICE. In this case, the multiplicity is 0..* from the
created class to the MSA.aggregateRoot class redRENTAL. Guidelines IAG
3.4.3 and IAG 3.4.4 do not apply to the example. Guideline IAG 3.5 cannot be
applied since there is no nested MS.Aggregations, MS.ReferenceFields or
MS.Iterations inside the second level elements previously studied, in compli-
ance with IAG 2.3. Guideline IAG 3.6 cannot be applied to the message struc-
ture in Table 2; however, as depicted in Figure 6.B, the MSA.AggregateRoot
DELIVERY and RATING were created as MSA.Entity since they do not have
nested MS.Aggregations MS.Iterations or MS.ReferenceFields. Finally,
the IAG 3.7 guides us to move each MSA.AggregateRoots and related classes
inside a newMSA.Module. In the example, the MS.AggregateRoot RENTAL is
moved inside the MSA.Module RENTAL, similarly, DELIVERY and RATING are
moved into their respective MSA.Modules.

5 Discussion

Results in the light of earlier literature. From the point of view of deriving
domain models from business process models or requirements specifications, our work
can be framed as a model transformation approach. This is quite conventional in the
area of model-driven engineering, where transformation guidelines or rules are com-
mon. Some methods provide guidance for creating a UML class diagram, either taking
a use a use case model as the sole input [8] or extending the requirements models with
sequence diagrams [18], activity graphs [19], or information flow specifications [14, 29].
Requirements expressed as user stories have also been used to derive Class Diagrams
either automatically [7, 21] or manually [3]. Other methods use BPMN Collaborations
as a starting point [4]. This paper is inspired by [16], where the authors define guide-
lines to derive UML class diagrams from Communication Analysis specifications. Not
only has this approach been experimentally validated [10], but it has inspired other
authors in their own empirical research [1, 4, 2]. We have opted for modelling business
processes as BPMN Choreography since they are similar to Communication Analysis
process models but have wider adoption in industry and academia. Furthermore,
while all approaches mentioned above are aimed at developing centralised, monolithic
information systems, we have adapted the guidelines to MSA and DDD.

Limitations and future work. There are some limitations in the method we
propose herein that require further research. Firstly, we do not cover MSA services;
so far, these need to be defined by the domain analyst after deriving the domain
models in order to complete the specification of the MSA. However, services required
for managing the lifecycle of domain classes and complex transactions can be derived
from the approach proposed in [11]. We are also aware that some complex business
domains require more than two levels of aggregation nesting; for instance, an order
that is structured in destinations, each of which has one or several order lines (see



AU
TH
OR

Microservices-Aware Business Process Modelling 17

[16]). This would require more than two levels of entities in the corresponding MSA
domain model, something so far not allowed in our guidelines (see IAG 2.2) since it
contradicts the good industrial practices in DDD. We plan to empirically investigate
cases of such complexity and nuance our guidelines. An obvious trade-off of our
proposal is that it requires domain analysts to learn and apply modelling languages
they might not be currently familiar with. Also, we expect that the quality of the
output domain models is affected by the quality of the input models, but an empirical
sensitivity analysis is needed to confirm this and measure the size of the effect.

6 Conclusions

This study introduces a method to integrate business process modelling with mi-
croservices architecture (MSA) through BPMN choreography diagrams and the
Message Structure technique. We provide a systematic approach to derive UML class
diagrams for MSA domain models by addressing domain complexity and minimising
coupling. The guidelines and algorithms designed facilitate the design of business
processes that align with MSA principles, ensuring modularity and scalability. The
single case experiment demonstrates the feasibility of our approach, highlighting its
potential to enhance the efficiency of MSA development teams. Future work will
involve empirical validation to refine our guidelines and assess their effectiveness in
various business contexts. This method offers a promising direction for organisations
seeking to optimise their software architecture and business process integration.

References

1. Al-Fedaghi, S.: Communication-oriented business model based on flows. International
Journal of Business Information Systems 15(3), 325–337 (2014)

2. Berkhout, M., Leewis, S., Smit, K.: Translating business process models to class
diagrams. In: BLED 2020. p. 21 (2020)

3. Bragilovski, M., Dalpiaz, F., Sturm, A.: Guided derivation of conceptual models from
user stories: A controlled experiment. In: REFSQ 2022. pp. 131–147 (2022)

4. Brdjanin, D., Banjac, G., Banjac, D., Maric, S.: An experiment in model-driven
conceptual database design. Software & Systems Modeling 18, 1859–1883 (2019)

5. Butzin, B., Golatowski, F., Timmermann, D.: Microservices approach for the internet
of things. In: ETFA 2016. pp. 1–6 (2016)

6. Conway, M.E.: How do committees invent. Datamation 14(4), 28–31 (1968)
7. Dahhane, W., Zeaaraoui, A., Ettifouri, E.H., Bouchentouf, T.: An automated

object-based approach to transforming requirements to class diagrams. In: WCCS 2014.
pp. 158–163 (2014)

8. D́ıaz, I., Sánchez, J., Matteo, A.: Conceptual modeling based on transformation
linguistic patterns. In: International Conference on Conceptual Modeling. pp. 192–208.
Springer (2005)

9. Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin, R.,
Safina, L.: Microservices: yesterday, today, and tomorrow. In: Present and ulterior
software engineering, pp. 195–216. Springer (2017)

10. España, S., Ruiz, M., González, A.: Systematic derivation of conceptual models from
requirements models: a controlled experiment. In: RCIS 2012. pp. 1–12 (2012)



AU
TH
OR

18 Noel et al.

11. España, S.: Methodological integration of Communication Analysis into a model-driven
software development framework. Ph.D. thesis, Universitat Politècnica de Val̀encia (2011)

12. Evans, E., Evans, E.J.: Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional (2004)

13. Forsgren, N., Humbpotifle, J., Kim, G.: Accelerate: the science of lean software and
DevOps building and scaling high performing technology organizations. IT Revolution
Press (2018)

14. Fortuna, M.H., Werner, C.M., Borges, M.R.: Info cases: integrating use cases and
domain models. In: RE 2008. pp. 81–84 (2008)

15. González, A., Ruiz, M., España, S., Pastor, Ó.: Message structures: a modelling
technique for information systems analysis and design. In: WER 2011 (2011)

16. González, A., España, S., Ruiz, M., Pastor, O.: Systematic derivation of class diagrams
from communication-oriented business process models. In: EMMSAD 2011. pp. 246–260
(2011)

17. Henderson-Sellers, B., Ralyté, J., Ågerfalk, P., Rossi, M.: Situational method engineering.
Springer (2014)

18. Insfrán, E., Pastor, O., Wieringa, R.: Requirements engineering-based conceptual
modelling. Requirements Engineering 7, 61–72 (2002)

19. Kösters, G., Six, H.W., Winter, M.: Coupling use cases and class models as a means
for validation and verification of requirements specifications. Requirements engineering
6, 3–17 (2001)

20. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term.
https://martinfowler.com/articles/microservices.html (2014), (Ac-
cessed on 06/20/2023)

21. Lucassen, G., Robeer, M., Dalpiaz, F., Van Der Werf, J.M.E., Brinkkemper, S.:
Extracting conceptual models from user stories with visual narrator. Requirements
Engineering 22, 339–358 (2017)

22. Noel, R., España, S., Pastor, O., Panach, J.I.: From Choreography Diagrams
to Microservice Architecture Domain Models: Technical Report (Jun 2024).
https://doi.org/10.5281/zenodo.11624682, https://doi.org/10.5281/zenodo.
11624682

23. Noel, R., Panach, J.I., Ruiz, M., Pastor, O.: Stra2bis: A model-driven method
for aligning business strategy and business processes. In: Proceedings of the 41st
International Conference on Conceptual Modeling (ER’22). Springer, Cham (2022)

24. OMG: Business Process Model and Notation (BPMN) version 2.0.2. Tech. rep., Object
Management Group (2013)

25. Pohl, K., Rupp, C.: Requirements engineering fundamentals. Rocky Nook (2016)
26. Rademacher, F., Sachweh, S., Zündorf, A.: Towards a uml profile for domain-driven

design of microservice architectures. In: SEFM 2017. pp. 230–245 (2017)
27. Thoughtworks: Inverse conway maneuver. https://www.thoughtworks.com/

es-es/radar/techniques/inverse-conway-maneuver (2016), (Accessed on
11/09/2021)

28. Valderas, P., Torres, V., Pelechano, V.: A microservice composition approach based on
the choreography of BPMN fragments. Information and Software Technology 127 (2020)

29. de la Vara, J.L., Sánchez, J.: System modeling from extended task descriptions. In:
SEKE 2010. pp. 425–429 (2010)

30. Wieringa, R.J.: Design science methodology for information systems and software
engineering. Springer (2014)

31. Zimmermann, O.: Microservices tenets. Computer Science-Research and Development
32(3), 301–310 (2017)


