
Method to Define User Interfaces in the
Requirements Analysis Phase

Junko Shirogane
Division of Psychology and

Communication, Tokyo Woman’s
Christian University
junko@lab.twcu.ac.jp

Jose Ignacio Panach
Escola Tècnica Superior

d’Enginyeria, Departament
d’Informàtica, Universitat de

València
joigpana@uv.es

Oscar Pastor
Centro de Investigación en Mètodos

de Producción de Software,
Universitat Politècnica de València

opastor@dsic.upv.es

ABSTRACT
Many requirements for quality in use are elicited in the late
development phase. However, if requirements are elicited in
the late development phase, the development may return to
the previous phase or some requirements cannot be realized
due to costs and schedules. To reduce these cases, we pro-
pose amethod to elicit the requirements in the requirements
analysis phase. First, software developers analyze the user
characteristics (UCs) of the target users and specify impor-
tant quality characteristics (QCs) for quality in use and UI
design items based on the relationships among UC, QC, and
UI design items. Because UI design items are considerations
to develop UIs, the specified UI design items are elicited as
UI requirements. Thus, when important QCs are specified,
UI requirements can be easily elicited by tracing the rela-
tionships from QCs to UI design items.

KEYWORDS
User interface, Quality in use, Requirements analysis, Qual-
ity characteristics

ACM Reference Format:
Junko Shirogane, Jose Ignacio Panach, andOscar Pastor. 2018.Method
to Define User Interfaces in the Requirements Analysis Phase. In
EICS ’18: ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems, June 19–22, 2018, Paris, France. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3220134.3220137

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EICS ’18, June 19–22, 2018, Paris, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5897-2/18/06. . . $15.00
https://doi.org/10.1145/3220134.3220137

1 INTRODUCTION
User interfaces (UIs) are strongly related to quality in use.
Many requirements for UIs are elicited in the late devel-
opment phase [19] because users try to use the prototypes
or actual software to identify issues with UIs in this phase.
However, even if UI requirements are elicited in the late de-
velopment phase, there are cases where the development
must return to a previous phase or some requirements can-
not be satisfied. To resolve these problems, it is necessary
to elicit the UI requirements in the requirements analysis
phase. In many cases, UI requirements are related to quality
in use, which strongly depends on individual users. UI de-
signs are based on the quality in use. Howusers feel about UI
designs is assumed by the user characteristics (UCs). There
are various types of UCs, whose values come from users.
That is, the combinations of type-value sets of UCs repre-
sent individual users.
Quality in use consists of quality characteristics (QCs)

[11][20]. QCs represent various aspects of the quality in use.
The combinations of type-value sets of UCs affect whether
QCs are satisfied. However, important QCs may differ from
the combinations. In addition, strategies to improve quality
in use determine UI designs. These strategies include which
QCs are important and how to satisfy the QCs. UI designs
are realized by combining various items. That is, UI design
items are combined to satisfy quality in use.
Herein we propose a method to elicit the UI requirements

in the requirements analysis phase. In our method, the re-
lationships between UCs and QCs of quality in use and the
relationships between the QCs and UI design items are clar-
ified. Meanwhile, developers analyze the target users. Based
on these relationships and UC analysis, important QCs for
the target users are specified. This allows that UI design
items could be identified. Then these UI design items are
elicited as UI requirements. The scope of our method is to
support elicitation of UI requirements using the relation-
ships based on the UCs of target users, while the analysis
of target users can be performed by existing methods.

EICS ’18, June 19–22, 2018, Paris, France J. Shirogane et al.

2 RELATEDWORKS
To develop usable UIs, variousmethods have been proposed.
For example, Mejia-Figueroa et al. proposed a method to
specify appropriate UI patterns [17]. They analyzed UCs in
terms of users’ senses (eyesight, hearing, and touch), cogni-
tive functions (memory and attention), and motor functions
(parts of body). Meanwhile, software was considered to be
a set of functions and tasks, where tasks were considered
to be a set of actions. Users’ abilities to execute a task were
analyzed. Then they specified UI patterns based on analy-
ses of UCs and task execution abilities. Additionally, Oh et
al. proposed a method to develop UIs based on users’ cul-
tural backgrounds [21]. They analyzed cultures using task
models, specified appropriate colors and texts, and gener-
ated UIs in mobile environments. Although these methods
analyze UCs to develop UIs, the target types of UCs are lim-
ited.
A method has been proposed to elicit requirements based

on users’ activity data [2]. First, the target end users were
specified and data were collected by observing end users’
activities. The collected data were classified into behaviors
and environments. Next, users’ desires related to the sys-
tem were extracted. Then situation flows were generated
as 3-tuple {d , A, E} on time t . d indicated the predicted end
user’s desire,A indicated the end user’s action set to achieve
a goal corresponding to d , and E indicated the environmen-
tal context value. Finally a transition structure for the situa-
tions was generated and requirements were elicited. Li et al.
developed a modeling language for non-functional require-
ments (NFRs) [16]. In their modeling language, quality was
treated as NFR, together with universality, gradability and
agreement. Universality was the degree of requirement sub-
jects (such as websites) that should satisfy the target NFR,
while gradability was the degree of NFR satisfaction that a
requirement subject should satisfy. Agreement was the de-
gree of subjective satisfaction. NFRs were described like a
goal model [24]. However, these methods did not consider
UCs.

3 BASIC CONCEPTS
The quality in use depends on feelings of the individual user
due to different experiences and preferences. To develop UIs
with a high quality in use, UCs must be analyzed and UIs
must be implemented by considering the analysis results of
UCs. That is, UI design itemsmust be selected based on anal-
ysis. However, the abstraction levels of someUI design items
are too low to be associated directly with UCs. Meanwhile,
the quality in use is defined as several concrete QCs [11]
[20]. QCs are satisfied by UI design items. Quality in use
depends on the user. Consequently, important QCs must be
specified based on the UCs of the target users.

When the UCs of the target users are analyzed and impor-
tant QCs are specified, UI design items (UI requirements)
that should be implemented are elicited. To realize this, it
is necessary to clarify the relationships between UCs and
QCs as well as the relationships between QCs and UI de-
sign items. Since QCs are not always independent and their
scopes overlap, the relationships among QCs must be clari-
fied. For example of expert users, QC “efficiency” is impor-
tant. UI design item “Input support” can satisfy this QC. “Im-
plement auto-complete functions of text” can satisfy “Input
support”.

4 RELATIONSHIPS OF QC, UC, AND UI DESIGN
ITEMS

When the UCs of the target users are analyzed, our method
specifies important QCs of quality in use based on the anal-
ysis and elicits UI design items that should be implemented
as UI requirements. Thus, we previously clarified the rela-
tionships among the QCs of quality in use, between UCs
and QCs, and between QCs and UI design items. Although
we provided these relationships to elicit UI requirements,
if QCs, UCs, and UI design items that are not targets are
used, software developers must clarify their relationship.
Our method can be applied based on the developers’ rela-
tionships.

Relationships among QCs
First, we clarified the relationships among QCs of quality in
use.We adopt QCs of ISO/IEC 25010:2011 (Systems and soft-
ware engineering -Systems and software Quality Require-
ments and Evaluation, SQuaRE) [11]. SQuaRE is also a well-
known international standard. The QCs of quality in use are
defined by two quality models in SQuaRE: the quality in use
model and the product quality model. The quality in use
model consists of five QCs, where three of them have sub-
QCs. Two other QCs, such as effectiveness and efficiency do
not have sub-QCs. In the product quality model, QCs related
to quality in use are defined as six sub-QCs in the QC “us-
ability”. In our method, important QCs for the target users
are selected from the sub-QCs in all QCs in both models.
Since effectiveness and efficiency do not have sub-QCs, they
are also selected as important QCs.
To clarify the relationships among QCs, we construct the

relationships among QCs [12][13]. Figures 1, 2, and Table 1
show parts of the results. In Fig. 1, a solid arrow indicates the
QC and the sub-QC, while an dotted arrow indicates that the
QC of the ending point is satisfied if the QC of the starting
point is satisfied. In Fig. 2, if boxes of QCs overlap, their
scopes overlap. In Table 1,↙ indicates that the QC for the
quality in use model is satisfied if the QC for the product
quality model is satisfied.

Method to Define User Interfaces in the Requirements Analysis Phase EICS ’18, June 19–22, 2018, Paris, France

Table 1: Relationships between QCs in the quality in use model and the product quality model

QC “usability” of product quality
Appropriateness Learnability Operability User error User interface Accessibility
recognizability protection aesthetics

Q
uality

in
use

Effectiveness ↙ ↙ ↙
Efficiency ↙ ↙ ↙ ↙
Satisfa- Usefulness ↙ ↙ ↙ ↙
ction Trust ↙ ↙

Pleasure ↙
Comfort

Table 2: Selected relationships between UCs and QCs

UC Considerations to UI design Important QC
Type Value Condition
Disability Blind Cannot see texts and Support devices (e.g., braille display), • Accessibility

images support tools (e.g., screen reader), • Operability
operation by only keyboard • User error protection

Skill Novice Low experience of Understandability and undo function are • Operability
using the target system important, dialog type interface is suitable • User error protection

Expert High experience using Efficiency is important (minimum messages of • Efficiency
the target system warnings and confirmations, and only • Operability

user-selected help) • User error protection

Figure 1: Relationships among QCs in the quality in use
model

Figure 2: Relationships among QCs in the product quality
model

Relationships between UCs and QCs
Important QCs differ from the UCs of target users. UCs con-
sist of various types such as age, sex, computer proficiency,
and work [22] [5]. After concrete values are assigned to the
UCs by analyzing the target users, important QCs can be
specified. Thus, we clarify the relationships between sets of
UC types and values (UC type-value sets) and QCs.
Many references describe the types, available values, and

conditions of users on the values of UCs and the considera-
tions to UI designs for UC type-value sets [10][8][8][22][23][15].
Hereinwe analyze these descriptions, QCmeanings, and the
relationships among QCs in Section 4 and we associate UC
type-value sets with QCs. In addition, the relationship lev-
els of QC for UC type-value sets depend on the conditions.
Thus, the relationship levels (five levels) are assigned to con-
ditions and QCs. Table 2 provide illustration of the results.

Relationships between QCs and UI design items
The QCs of quality in use are satisfied by designing UIs. In
other words, UI design items are combined to satisfy the
quality in use. Various UI design items at different abstrac-
tion levels have been proposed. Examples of UI design items
with high abstraction levels are described in references [8][14][4],
while UI design guidelines [18][9][6] are examples of low

EICS ’18, June 19–22, 2018, Paris, France J. Shirogane et al.

Table 3: Selected relationships between QC and UI design items

QC UI design item (In (): Contribution level)

High
Abstractionlevel←−−→ Low

Effifiency Efficiency of Limit amount of user operations (2) Make auto-save available (4)
operation Input support (2) Implement auto-complete

functions of text (4)
Do not divide input fields (3)

UI by skill Use wizard (Note: for skill - novice users) (4)
levels Short cut key (Note: for skill - expert users) (5) Assign short-cut keys to menu

Use well-known short-cut keys (5)
Operability Operation by Make some operation methods available for a task (4)

users’ intents Make UIs customizable (3) Make bars customizable (4)
Permit users to change data color
and theme (3)

Figure 3: Image of relationships amang UC, QC, and UI design items

abstraction levels. Although it is difficult to directly asso-
ciate UI design items with low abstraction levels and QCs,
UI design items with high abstraction levels can be consid-
ered as solutions satisfying QCs, while UI design items with
low abstraction levels can be considered as solutions real-
izing UI design items with high abstraction levels. That is,
UI design items with high abstraction levels are associated
with low abstraction levels like goal models, and QCs are
associated with the UI design items with high abstraction
levels.
Thus, we collected UI design items from various refer-

ences and guidelines, analyzed their meanings, and associ-
ated them. Since the abstraction levels of these UI design
items are for more than two levels, UI design items are as-
sociated as hierarchies. The contribution levels of UI design
items with low abstraction levels are assigned. The contri-
bution level means how much a UI item with a low abstrac-
tion level helps realize a UI design item with a high abstrac-
tion level. Additionally, the target UC type-value sets are
specified for some UI design items. Thus, these target UC

type-value sets are added to the UI design items as notes.
Table 3 provide illustration of these results.

5 STRATEGY TO ELICIT UI REQUIREMENTS
To elicit the UI requirements, software developers must ini-
tially analyze target users and specify the UC type-value
sets and user conditions corresponding to the sets based on
the relationships between the UCs and conditions in Sec-
tion 4. Then the target UC type-value sets and conditions
must be extracted from Table 2. Although the relationships
represent available conditions for the UC type-value set, the
condition levels depend on the actual users. Thus, develop-
ers also specify the relationship levels of the actual users
to the related UC type-value sets. We assume that there are
five relationship levels.
Figure 3 shows an image of the relationships between UC

type-value sets and the conditions. This figure is created by
representing the UC type-value sets and the conditions of
the extracted relationships as nodes, which are connected
using edges. The numbers assigned on the edges between

Method to Define User Interfaces in the Requirements Analysis Phase EICS ’18, June 19–22, 2018, Paris, France

the UC type-value sets and conditions show the relationship
levels.
Second, software developers extract the corresponding re-

lationships of QCs and UI design items for the above rela-
tionships of UCs and QCs from Table 3. Similar to the rela-
tionships between UC and QC, QC and UI design items are
represented as nodes that are connected by edges. Figure 3
shows an image of the relationships among conditions, QCs,
and UI design items.
Third, the relationship levels between QC and UI design

items are determined. Although relationships between QCs
and UI design items are clarified in Section 4, the relation-
ship levels of UI design items to satisfy QCs depend on the
relationships between the conditions and QCs, especially
for UI design items where the UC type-value sets are added
as notes. Thus, the relationship levels are assigned to the UI
design items based on the relationships between conditions
of the UC type-value sets and QCs. The numbers on the
edges between QCs and UI design items and among the UI
design items are the relationship levels in Fig. 3. The num-
bers without [] are the relationship levels, while the num-
bers in [] are the contribution levels described in Section 4.
Finally, amodel of the relationships amongUC type-value

sets, their conditions, QC, and UI design items like in Fig. 3
is complete, and the UI design items are elicited as UI re-
quirements. For a UI design item, the sum of the numbers
of relationships and the contribution levels on all edges that
trace from a UC type-value set to a UI design item are cal-
culated. Each UI design item has a sum value. A large sum
value indicates a strong connection of the UI design item to
QC and UI type-value sets.

6 EVALUATION
To confirm the effectiveness of our method, we developed
an application and performed evaluations by subjects.

Procedure
We analyzed the UCs of the subjects as the target users. The
subjects were students in Universitat de Valencia (Spain)
studying information science. Based on the analysis of their
UCs, we developed a calendar application onAndroid smart-
phones and evaluated the quality in use of the application.
We selected a calendar application because the subjects had
smartphones and sufficient domain knowledge.
First, we implemented a questionnaire, which 41 subjects

completed, to analyze their UCs. Then we created a per-
sona [3]. Analysis of the persona revealed five important
QCs based on Section 4: effectiveness, efficiency, usefulness,
operability, and user error protection. Hereafter, “important
QCs” and “other QCs” indicate these five important and all
other QCs, respectively. Next we elicited UI requirements
based on Section 4.

Finally, we evaluated the quality in use of the applica-
tion and analyzed the results statistically. The evaluation
involved 28 subjects, all of whom were involved with the
persona creation step. Subjects operated the target applica-
tion on their own smartphones along with the given tasks,
and then answered a questionnaire. The tasks were to cus-
tomize the colors and event/to-do types, create new events,
and view existing events. The questionnaire involved two
parts: (1) important QCs when choosing a calendar applica-
tion, and (2) satisfaction of the QCs for the target applica-
tion. For each part, the questions were answered on seven-
level scale of “not important” - “important”, “strongly dis-
agree” - “strongly agree”, and “not satisfied” - “satisfied”,
respectively. Additionally, there were free comments about
the target application. For Parts (2), subjects could answer
“not applicable” to questions inapplicable to the target ap-
plication.
To analyze this evaluation, we classified QCs into two

groups: important QC (important group) and otherQC (other
group). The confidence interval was 95% for all statistical
analysis.

Evaluation results of important QCs
Figure 4 shows the averages of the answers to important
QCs. We applied the T-test [7] to the students’ answers of
the important group and the other group. By the T-test, av-
erages of students’ answers of important group ant the other
group were compared. These two groups differed signifi-
cantly (t = 3.860, df = 316, p < .05). That is, subjects an-
swered that the QCs of the important group were more im-
portant than the QCs of the other group.
In addition,multiple comparisons analyzed individual im-

portant and other QCs [1]. Significant differences between
important QCs and other QCs include: effectiveness - en-
vironmental risk mitigation, efficiency - environmental risk
mitigation, usefulness - environmental risk mitigation, op-
erability - economic risk mitigation, health and safety mit-
igation, and environmental risk mitigation, and user error
protection - environmental risk mitigation.

Figure 4: Results of important QCs (Average)

EICS ’18, June 19–22, 2018, Paris, France J. Shirogane et al.

Evaluation results of QC satisfaction
Figure 5 shows the averages of the answers to the satisfac-
tion of QCs for the target application (Part (2)). The T-test
indicated that important and other groups significantly dif-
fered (t = 2.476, df = 438, p < .05). That is, subjects consid-
ered that the important QCs were satisfied more than the
other QCs. Individual QCs did not significantly differ in the
multiple comparisons.

Figure 5: Results ofQC satisfaction for the target application
(Average)

Discussion
For the important QC analysis results of Part (1), the av-
erage of the subjects’ answers to all QCs of the important
group was 5.62. The QCs of the other group with individual
averages greater than 5.62 were “trust” and “accessibility”.
The QC of “trust” had the highest average, indicating that
the subjects verified that the calendar application was suit-
able for their intent. There are two reasons to explain why
“trust” was important for most subjects. First, many peo-
ple frequently use a calendar application as part of daily ac-
tivities. Second, obstacles may occur if the application does
not work as intended. Meanwhile, the QC of “accessibility”
tends to focus on users with disabilities and elderly users.
Because the QC of “accessibility” also targets other users,
the subjects might consider that it is important. To analyze
whether the QC is an important QC, the characteristics of
the target application must be included in the analysis of
important QC, and UCs must be analyzed in more detail.
However, considering these findings and the T-test holisti-
cally, important QCs were more important for the subjects
as a whole, confirming that our method can specify impor-
tant QCs.
For QC satisfaction of Part (2), the average of the subjects’

answers to all QCs in the important group was 4.05, while
only one QC (“learnability”) in the other QC group had an
average of more than 4.05. As described above, since sub-
jects were familiar with calendar applications, they might
be able to easily understand the operations of the target ap-
plication. In addition, individually important QCs did not

significantly differ from other QCs in the multiple compar-
isons. However, subjects’ answers to the important group
significantly differed from the other group according to the
T-test. That is, the target application realized important QCs
more than other QCs by UI design items, confirming the ap-
propriateness of relationships between QCs and UI design
items.
On the whole, our method elicited important QCs and UI

requirements, allowing the target application to be devel-
oped appropriately. Thus, the effectiveness of our method is
confirmed.

7 THREATS TO VALIDITY
In this paper, the target users of our methods were univer-
sity students using a calendar application. However, UCs de-
pend on the users. Thus, different target users may elicit dif-
ferent important UC and UI requirements. Similarly, the tar-
get application also affects which QCs are important. Differ-
ent target users or a different target application may change
the evaluation results in Section 6.
We used 95% as the confidence interval to analyze the

evaluation results statistically. Although this value is com-
mon in statistical analysis, whether significant differences
between important and other groups/QCs are judged may
change if another value is used as the confidence interval.

8 CONCLUSION
To reduce returning to a previous development phase or not
considering UI requirements, we propose a method to elicit
UI requirements in the requirements analysis phase. Our
method provides the relationships among UCs, QCs, and UI
requirements in advance. Then software developers analyze
the UCs of target users, specify important QCs, and elicit UI
design items to be considered as UI requirements based on
the relationships. If necessary, the relationships that devel-
opers create can be used in the elicitation. We applied our
method to a calendar application on Android smartphones,
and evaluated its effectiveness. The evaluation consisted of a
questionnaire that asked the subjects about important QCs,
evaluations of quality in use for the target application in
terms of QCs, and a questionnaire for QC satisfactions of the
target application. Although individual important QCs did
not significantly differ from other QCs, as a group, impor-
tant QCs significantly differed from the other QCs, confirm-
ing that our method can effectively elicit UI requirements.
Future works include:

• Applying and evaluating our method by subjects
• Specifying important QCs by analyzing the applica-
tion.
• Proposing methods to generate UI prototypes

Method to Define User Interfaces in the Requirements Analysis Phase EICS ’18, June 19–22, 2018, Paris, France

ACKNOWLEDGEMENT
Wewould like to thank the students in Universitat de Valen-
cia (Spain) for answering questionnaire and evaluating our
application. This paper has the support of Generalitat Valen-
ciana through project IDEO (PROMETEOII/2014/039) and
Spanish Ministry of Science and Innovation through project
DataME (ref: TIN2016-80811-P).

REFERENCES
[1] Yosef Hochberg and? Ajit C. Tamhane. 2009. Multiple Comparison

Procedures. Wiley.
[2] Nimanthi L. Atukorala, Carl K. Chang, and Katsunori Oyama. 2016.

Situation-Oriented Requirements Elicitation. In Procs. of IEEE 40th An-
nual Computer Software and Applications Conference.

[3] Alan Cooper, Robert Reimann, David Cronin, and Christopher Noes-
sel. 2014. About Face: The Essentials of Interaction Design. Wiley.

[4] Scott Faranello. 2016. Practical UX Design. Packt Publishing.
[5] Elizabeth Goodman, Mike Kuniavsky, and Andrea Moed. 2012. Ob-

serving the User Experience: A Practitioner’s Guide to User Research.
Morgan Kaufmann.

[6] Google. 2015. User Interface Guidelines. Retrieved
11 Jan., 2017 from https://developer.android.com/
guide/practices/ui_guidelines/index.html. (2015).

[7] Scott Hartshorn. 2017. Hypothesis Testing: A Visual Introduction To
Statistical Significance. Independently published.

[8] Ichiro Hirata and Toshiki Yamaoka. 2013. A logical design method
for user interface using GUI design patterns. In Proceedings of the
15th international conference on Human-Computer Interaction: human-
centred design approaches, methods, tools, and environments, Vol. Part
I.

[9] Apple Inc. 2017. Human Interface Guidelines. Re-
trieved 11 Jan., 2017 from https://developer.apple.com/
ios/human-interface-guidelines/overview/ themes/. (2017).

[10] ISO. 2006. ISO 20282-1:2006, Ease of operation of everyday products –
Part 1: Design requirements for context of use and user characteristics.

[11] ISO/IEC. 2011. ISO/IEC 25010:2011, Systems and software engineering –
Systems and software Quality Requirements and Evaluation (SQuaRE)
– System and software quality models.

[12] ISO/IEC. 2016a. ISO/IEC 25022:2016, Systems and software engineering
– Systems and software quality requirements and evaluation (SQuaRE)
– Measurement of quality in use.

[13] ISO/IEC. 2016b. ISO/IEC 25023:2016, Systems and software engineering
– Systems and software Quality Requirements and Evaluation (SQuaRE)
– Measurement of system and software product quality.

[14] Jeff Johnson. 2014. Designing with the Mind in Mind, Second Edition:
Simple Guide to Understanding User Interface Design Guidelines. Mor-
gan Kaufmann.

[15] Michal Levin. 2014. Designing Multi-Device Experiences: An Ecosystem
Approach to User Experiences across Devices. O’Reilly Media.

[16] Feng-Lin Li, JohnMylopoulos, Renata S. S. Guizzardi, Giancarlo Guiz-
zardi, Alexander Borgida, and Lin Liu. 2014. Non-functional Require-
ments as Qualities, with a Spice of Ontology. In Procs. of 22nd IEEE
International Conference on Requirements Engineering.

[17] Andres Mejia-Figueroa, Maria de los Angeles Quezada Cisnero, and
J. Reyes Juarez-Ramirez. 2016. Developing Usable Software Appli-
cations for Users with Autism: User Analisys, User Interface Design
Patterns and Interface Components. In Procs. of 4th International Con-
ference in Software Engineering Research and Innovation.

[18] Microsoft. 2015. Windows 10 User experience guidelines for Universal
Windows Platform (UWP) apps.

[19] Takako Nakatani, Shouzo Hori, Michio Tsuda, Mari Inoki, Keiichi
Katamine, and Masaaki Hashimoto. 2009. Towards a Strategic Re-
quirements Elicitation - A proposal of the PRINCE Model. In Procs.
of the 4th International Conference on Software and Data Technologies
(ICSOFT2009).

[20] Jacob Nielsen. 1994. Usability Engineering. Morgan Kaufmann.
[21] Jung-Min Oh and NamMee Moon. 2012. Towards a cultural user in-

terface generation principles. Multimedia Tools and Applications 63, 1
(2012).

[22] Michael Richter and Markus Flueckiger. 2016. User-Centred Engineer-
ing: Creating Products for Humans. Springer.

[23] Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Steven Jacobs,
Niklas Elmqvist, and Nicholas Diakopoulos. 2017. Designing the User
Interface: Strategies for Effective Human-Computer Interaction, Global
Edition. Pearson Education Limited.

[24] Axel van Lamsweerde. 2004. Goal-oriented requirements enginering:
a roundtrip from research to practice [enginering read engineering].
In Procs. of 12th IEEE International Conference on Requirements Engi-
neering.

