
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

GigMaleBPMN: Generation of Graphical
Components from the BPMN Model using Machine

Learning

1st Marco_Antonio De_La_Cruz
Universidad Peruana de Ciencias

Aplicadas, Prolongación Primavera
2390, Lima 15023 - Perú
u201422580@upc.edu.pe

4th José Ignacio Panach
Escola Tècnica Superior d'Enginyeria,
Departament d’Informàtica Universitat

de València,
Avenida de la Universidad, s/n, 46100,

Burjassot, València, Spain.
joigpana@uv.es

2nd Luis_Miguel Estrada
Universidad Peruana de Ciencias

Aplicadas, Prolongación Primavera
2390, Lima 15023 - Perú
u20181d335@upc.edu.pe

3rd Eduardo Díaz
Universidad Peruana de Ciencias

Aplicadas, Prolongación Primavera
2390, Lima 15023 - Perú

pcsijord@upc.edu.pe

Abstract— The BPMN model allows organizations to depict
business processes. However, this model does not capture the
functional behavior of the system to generate graphical
components. This article proposes a method for generating
graphical components from a BPMN model using Machine
Learning. The method is structured in four steps: (1) creating a
BPMN model, (2) using Machine Learning to identify the
elements of the BPMN model and indicate which graphical
components should be used, (3) manually developing
wireframes in Balsamiq based on the identified BPMN elements,
and (4) using Machine Learning to identify the graphical
components of the wireframes, enabling the automatic
generation of graphical components and code. To enhance
understanding, an illustrative example was developed using the
method. The results prove that this approach allows for the
automatic generation of graphical components using Machine
Learning from a BPMN model.

Keywords—BPMN, Machine Learning, Wireframes, Graphics
components.

I. INTRODUCTION

A BPMN model (Business Process Model and Notation)
is used to describe and model an organization's internal
processes, allowing for understanding of its internal
procedures in a graphical format and standardized
communication. [1]. A BPMN model includes basic elements:
events, tasks, gateways and flows, artifacts, sub processes, and
others [2]. Additionally, there are two types of tasks that are
commonly used: user tasks (involving user interaction with
the software) and service tasks (linking to a web service or an
automated application) [3]. However, BPMN models do not
allow capturing the functional behavior of the system to
generate graphical components [4]. BPMN models are
developed by business analysts, who are not the ones involved
in the design of the graphical components. As a result, the final
implementation is not entirely correct [5]. Therefore,
developing a BPMN model alone is not sufficiently useful for
creating graphical components, as the developer would spend
more time understanding the business process rather than
designing the graphical components [6].

On the other hand, there are tools that allow generating
graphical components from a BPMN model, such as Bizagi
[7], Aura Portal [8], Bonitasoft [9], E-citiz Studio [10], where

other conceptual models are used to complement the BPMN
model. However, the widespread problem in the presented
works falls on the strong dependency that the methods have
when extending BPMN models for generating graphical user
interfaces.

Likewise, the use of Machine Learning is increasingly
prevalent in society [11], [12], [13], due to the various
disciplines where its techniques can be applied [14] and the
accuracy with which it performs a specific activity. In fact,
techniques for object detection within an image are commonly
applied in tasks where a minimum error percentage is needed
[15]. Therefore, Microsoft Azure supplies diverse services to
use different Machine Learning techniques, such as Computer
Vision [16] or Custom Vision [17], specialized services in
image recognition techniques [18]. Furthermore, there are
works that use Machine Learning to generate graphical
components, such as [19], [20], [21], allowing them to
recognize images and generate graphical components.

The contribution of this work is the development of a
method called GigMaleBPMN, which stands for "Graphical
Interface Generator using Machine Learning and BPMN" This
method enables the automatic generation of graphical
components from a BPMN image using Machine Learning
techniques. The method is structured into four steps: (i)
creating the BPMN model in the Bizagi tool, (ii) identifying
the BPMN elements using Machine Learning techniques to
determine which graphical components should be developed,
(iii) creating wireframes [22] based on the BPMN elements
using the Balsamiq tool [23], and (iv) identifying the graphical
components from the wireframes using Machine Learning
techniques to automatically generate graphical components.
These graphical components can be generated in JavaScript,
Angular, React, and Vue [24] using the Google Material
Design system [25]. The main objective is the ability to save
time and money for organizations by quickly generating
graphical components automatically [26]. Additionally,
designers often create low-fidelity wireframes before
designing graphical components, as it allows them to have a
software artifact resembling graphical components in a short
amount of time [27].

The rest of the paper is structured as follows. Section 2
presents related works to our proposal. Section 3 presents the

method proposed by the researchers for generating graphical
components from a BPMN model using Machine Learning.
Section 4 supplies an illustrative example. Finally, Section 5
presents some conclusions and future work.

II. STATE OF THE ART

In this section, we review works related to the generation
of graphical components from a BPMN model using Machine
Learning techniques. To achieve this, we conducted a
Targeted Literature Review (TLR), a non-systematic,
comprehensive, and informative bibliographic review, to
gather relevant references. The semantic question related to
this topic is translated into the following syntactic query used
as a search string in the Scopus digital library [28]:

“BPMN” AND (“Machine Learning” OR “user interface”
OR “graphical components”). The articles will be classified
into two groups: (i) Generation of graphical components from
a BPMN model, and (ii) Use of Machine Learning techniques
in the generation of graphical components. The inclusion
criteria are: (1) Generation of graphical components from a
BPMN model, and (2) Use of Machine Learning techniques
to generate graphical components. The exclusion criteria are:
(1) Unrelated topics to the BPMN model, (2) Approaches that
do not generate graphical components from a BPMN model,
and (3) Approaches that do not generate graphical components
using Machine Learning techniques. The first search yields
110 scientific articles. After applying the inclusion and
exclusion criteria, a sample of 8 articles has been considered.
The following are the accepted and grouped articles from the
search:

A. Generation of graphical components from a BPMN
model

Díaz et al. [29] [6] present a method to generate graphical
components from BPMN models. The first research is based
on the analysis of eighteen real BPMN projects and five
BPMN patterns to decide transformation rules from BPMN
models to graphical components. The method uses a list of
stereotypes for the transformation rules with more than one
design alternative. The main problem is the strong
dependency between BPMN models and class diagrams. One
limitation is the focus on a limited set of stereotypes, and
further studies would be necessary to evaluate the
effectiveness of the tool with a larger set of stereotypes and
more complex BPMN models.

Brambilla et al. [30] focuses on the use of the WebRatio
BPM (Business Process Model) tool for designing web
applications based on business processes. It is based on the
model-driven development approach and uses model
transformations to automatically generate web applications
from business process models. The method involves the
extension of three main components of the WebRatio tool
suite: the model editor, the code generator, and the runtime
libraries.

Lei Han et al. [31] proposes a framework for the automatic
derivation of user interfaces from BPMN models. The method
used is based on creating business process models with added
roles and data relationships, which are then used to create user
interfaces. The main problem faced by the proposed method
is its heavy reliance on the quality of the first system
requirements specification. Additionally, this approach
focuses on the design phase and does not supply guidance on
how to implement the resulting system. Therefore, it may be

necessary to complement it with other approaches to achieve
an effective system implementation.

Gonzalez et al. [32] derives software analysis and design
from BPMN models. The method is based on applying
correction, completion, automation, and optimization patterns
to BPMN models to create analysis and design models in the
Unified Modeling Language (UML) [33], using the use of a
rule engine like Drools [34] to implement model
transformations. Its main problem is the complexity and
heterogeneity of BPMN business process models, which
makes their correction and optimization challenging.

To summarize related Works considered in this sub-
section,, we can state that they generated graphics components
from BPMN models [29], [6], [30], [31], [32]. The widespread
problem in all of them is that the quality of the generated
interfaces depends on the quality of the extended or
transformed BPMN model, as well as the first specification of
system requirements. Additionally, most of the works have
limitations in terms of complexity. Therefore, our proposal is
based on generating graphical components without extending
the BPMN model, using Machine Learning techniques that
have been trained under certain conditions.

B. Use of Machine Learning techniques in the generation of
graphical components

Moran et al. [19] focuses on automating the transformation
of graphical components into source code for mobile
applications. For this purpose, it relies on three tasks:
detection, classification, and assembly. The method consists
of integrating these steps: (i) computer vision [35] to detect
the logical components of the GUI from the sketch, (ii)
automated dynamic analysis along with software repository
mining techniques to accurately classify different components
according to their domain, such as toggle buttons, among
others, (iii) a data-driven nearest neighbor-based algorithm
[36] to achieve the assembly of the graphical components'
structure.

Nguyen et al. [20] addresses the problem of automatically
generating the user interface (UI) code for mobile applications
from screenshots or conceptual drawings. For this purpose, the
author created the technique called Reverse Engineer Mobile
Application User Interfaces (REMAUI), which uses Machine
Learning techniques such as computer vision and optical
character recognition (OCR) [37], to identify elements of the
user interface, such as images, text, containers, and lists, from
an input image.

Chen et al. [21] uses a neural translator to convert a design
image into a skeleton of graphical components. They
combined advancements in computer vision and automatic
translation into a unified neural network framework [38]. The
proposed method is based on learning visual features in
graphical part images, encoding the spatial arrangement of
these features, and the automated generation of skeletons.
Additionally, an automated graphical component exploration
method is developed to gather large-scale user interface data
from real applications, which is used to train the neural
translator.

As a conclusion on Works considered in this sub-section,
we can state that there is proposal on Machine Learning
techniques [19], [20], [21] for the automatic generation of
graphical components. However, the main issue with all of
them is that if the detection or classification of the graphical

components from the user's sketch is not correct, the result
may be affected in terms of fidelity or functionality.

III. METHOD TO TRANSFORM FROM BPMN MODEL TO

GRAPHICAL COMPONENTS

This section presents the development of the
GigMaleBPMN method, which stands for "Graphical
Interface Generator using Machine Learning and BPMN", it
allows the generation of graphical components from a BPMN
model using Machine Learning with the use of advanced
image and text detection algorithms. This method is divided
into four steps, with each step explained in the following
subsections:

(1) Elaborate BPMN model: The analyst creates the
BPMN model using the Bizagi tool.

(2) Identify BPMN elements using Machine Learning: The
resulting BPMN model serves as input for using Microsoft
Azure's Machine Learning to detect different elements of the
BPMN model and decide which graphical component needs
to be developed.

(3) Wireframes development: The analyst designs the
wireframes (visual representation of the graphical
components) that will incorporate the BPMN elements. The
Balsamiq tool [23] is used for creating the wireframes.

(4) Generate graphical components: The result of the
wireframes serves as input for using Microsoft Azure's
Machine Learning to detect the elements of the developed
wireframes. This enables the generation of graphical
components in JavaScript technologies such as Angular,
React, or Vue.

Fig. 1. Steps of the GigMaleBPMN method.

Figure 1 shows the four steps of the GigMaleBPMN
method. Step 1 involves developing the BPMN model in the
Bizagi tool. In Step 2, the GIG (Graphical Interface Generator)
tool, developed by the researchers using Microsoft Azure
services, is used to name the BPMN elements and show which
graphical components should be developed. In Step 3, the
analyst creates wireframes for each BPMN element using the
Balsamiq tool. In Step 4, the GIG tool allows for the automatic
identification of elements in the wireframes to generate
graphical components such as forms, textboxes, check
buttons, list boxes, combo boxes, and others.

A. Step 1: Elaborate BPMN model

In this first step, the BPMN model is developed by the
analyst. This model has the business processes, which are
represented with BPMN elements such as lanes, events, tasks
(user tasks, service tasks, and others), gateways (exclusive,
parallel, and others), subprocesses, and other elements [7].
The modeling tool that will be used for creating the BPMN
model is Bizagi (v. 11.2.5) [7] which is one of the most widely
used by organizations [39]. Figure 2 shows an example of a
BPMN model depicting the purchase order generation
process. The "Purchase Department" lane has the service task
called "Create Purchase Order" and the user tasks "Send Order
to ERP" and "Update ERP", as well as parallel gateways and
an exclusive gateway.

Fig. 2. Example of a BPMN Model on the Purchase Order Generation
Process.

B. Step 2: Identify BPMN elements using Machine
Learning

For each BPMN model built in step 1, the BPMN elements
must be identified using Machine Learning provided by
Microsoft Azure's Custom Vision and Computer Vision tools.
For this step, the Graphical Interface Generator (GIG) tool
was developed, and its development process is as follows:

(i) User registration is required in the Microsoft Azure
Custom Vision portal, which allows managing multiple
projects and using services such as Machine Learning
training:

(ii) In the Microsoft Azure service section, forty images of
BPMN models were added (these BPMN models are from
real-world projects in educational, business, technology,
healthcare, and other contexts), highlighting their BPMN
elements. One BPMN model was selected to assign labels to
the BPMN elements. These labels will be used for the
Microsoft Azure tool to recognize each BPMN element. The
following BPMN elements were labeled: (a) user task was
assigned the label "user-task," (b) service task was assigned
the label "service-task," (c) exclusive gateway was assigned
the label "exclusive-gateway," (d) parallel gateway was
assigned the label "parallel-gateway." This will allow naming
each BPMN element. Figure 3 shows the labeling of the
elements in a BPMN model:

Fig. 3. Labeling of the BPMN elements image.

(iii) The Microsoft Azure Custom Vision tool has a
"Train" option, which is used to train all the images of the
loaded BPMN models, where a labeled BPMN model is
trained. Training involves executing a Machine Learning
algorithm provided by Microsoft Azure to predict which
BPMN elements have the labels in the image. Custom Vision
uses machine learning algorithms, including Convolutional
Neural Network (CNN) [40], to train a model that can
recognize the registered labels. During training, the training
time and neural network connections are adjusted to optimize
its generalization ability and correct classification [17].

(iv) After training the tool, the REST API service [41]
needs to be integrated. In our case, using the Java language,

we use HTTP Request [41] for prediction to recognize the
BPMN elements. The response, in this case, is returned in
JSON code [42], providing data such as: (i) label name, (ii)
probability (a numerical value showing the accuracy
percentage with the BPMN elements trained by the Azure
platform), (iii) positions of the BPMN elements found in the
image. Figure 4 shows the schema of the JSON query result
for predicting an image with a BPMN model. It includes
"tagname" as the label name, "probability" as the probability
percentage compared to what the tool has been trained on, and
"boundingbox" as the position and size of the detected section
in the overall image.

Fig. 4. JSON result of the Custom Vision API query for detecting
components in a BPMN model image.

On the other hand, in Computer Vision, Optical Character
Recognition (OCR) [16] techniques based on Machine
Learning allow extracting printed or handwritten text from
images [16]. To use this service on the Microsoft Azure
platform, an instance needs to be created in the Computer
Vision service, which supplies the necessary credentials for
making queries to the REST API. Here's an example of the
syntax for the link: "https://{instance-
name}.cognitiveservices.azure.com/vision/v3.2/ocr?language
=es&detectOrientation=true&model-version=latest", where
the image is sent (in this case, images with previously detected
task texts) along with the subscription key provided when
creating the instance. Figure 5 shows the model, that contains
the text detected in each image classified by its label type.

Fig. 5. JSON result of the word detection in the BPMN model image using
Computer Vision API.

When the object detection is complete, it returns a JSON
response to the GIG tool's requesting service, which has
several objects with different properties such as tagName,
boundingBox (left, top, width, and height), and probability.

With this information, the BPMN element detection flow can
continue.

Figure 6 shows the flow, where the GIG tool makes an
HTTPS request to the Microsoft Azure services, and
Microsoft Azure returns a JSON code of the detected
elements.

Fig. 6. Flow showing the interaction between the GIG tool and Microsoft
Azure.

The identified BPMN elements will be the descriptions of
user tasks, service tasks, exclusive gateways, and parallel
gateways, which will supply the resulting graphical
components that need to be developed.

C. Step 3: Wireframes development

After the GIG tool names the BPMN elements such as user
tasks, service tasks, exclusive gateways, and parallel gateways
from the BPMN model, this step 3 continues with wireframe
development. The wireframes are created using the Balsamiq
tool, which allows the integration of graphical components in
a simple and user-friendly manner [23]. For wireframe
creation, it is important to use only the following graphical
components: Textbox, Block Text, Combo box, Title,
Checkbox, Button, Data Table, Label, as other components
are not included in the scope of this work.

Subsequently, for each detected BPMN element from the
BPMN model, the user should create wireframes of the
suggested graphical components from step 1, and these
wireframes should be saved in JPG or PNG format. Figure 7
shows an example wireframe developed in the Balsamiq tool,
featuring graphical components such as labels, input search,
and buttons:

Fig. 7. Example of a wireframe developed in the Balsamiq tool.

D. Step 4: Generate graphical components

With the wireframes developed in step 3, the next step is
to upload the wireframes in PNG or JPG format so that the
GIG tool can recognize the graphical components of the

wireframe. The GIG tool needs to be configured, and this
process was conducted as follows:

(i) In the Microsoft Azure service area of the GIG tool,
forty wireframes in PNG or JPG format were added with their
graphical components.

(ii) An image of a wireframe holding graphical
components was selected, and labels were assigned to the
following graphical components: (a) "button" for push button,
(b) "label" for titles, (c) "input" for textbox, (d) "table" for data
table, (e) "checkbox" for checkbox, and (f) "select" for combo
box. Figure 8 shows the assignment of labels to the graphical
components, to then continue with the same process from step
2, which is to name elements such as graphical components.

Fig. 8. Label assignment to the graphical components of the wireframe.

(iii) When the graphical components of a wireframe are
detected, it will return a JSON response with information
about that component (element type, dimensions, and label
name). For example, if it recognizes a push button, it will
display the following information: label: "button" and
probability: 95%, which shows the estimated probability that
the object or image belongs to the specified label. Then, the
generation of graphical components can continue.

Finally, with this information, graphical components are
generated based on the identified tasks and gateways from step
2 and the wireframes designed in step 3. The GIG tool allows
downloading the source code in HTML, CSS, and JavaScript
technologies such as React, Vue, and Angular [24].

IV. ILLUSTRATIVE EXAMPLE OF THE GRAPHICAL COMPONENT

GENERATOR FROM A BPMN MODEL

This section presents an illustrative example of the
GigMaleBPMN method. For this example, the BPMN project
from the Bizagi repository called "Purchase Order Creation"
was used. The project proves a flow for registering a purchase
order started by the requested and received by the
administrative manager. This process flow includes various
tasks and gateways used to confirm all necessary steps.

Figure 9 shows that the "Create Purchase Order" user task
starts in the customer lane, responsible for registering the
purchase order data, and continues with the "Require
Authorization" gateway that confirms the order creation. It has
two paths: if it is "Yes," the "Approve Purchase Order" user
task continues, and if it is "No," the "Generate Purchase
Order" service task continues. The latter refers to a record by
the administrator with added data to the earlier registration
made by the purchasing department. It then goes through the
"Payment Method" gateway. If it is paid by credit card, the
"Make Credit Card Payment" task is conducted, and the
process ends. If there is no credit card, the order invoice is
received to try with "Invoice Payment" using cash, concluding

the purchase order process. This BPMN model should be
imported as an image in PNG or JPG format in the next step,
so that it can recognize which graphical components need to
be developed.

Fig. 9. BPMN model of the "Purchase Order" project.

Figure 10 shows the result of applying the tool to process
the imported image of the BPMN from the "Purchase Order
Creation" project. The GIG tool detected the "Create Purchase
Order" user task and the "Generate Purchase Order" service
task. Therefore, wireframes need to be developed, supported
by the UML class diagram used by the analyst to input the
attributes, relating them to each detected task. To import each
wireframe, click on the "Upload Wireframe" option, as you
will not be able to continue if each task does not have its own
wireframe.

Fig. 10. Result of task detection from the BPMN model.

In this example, we used Figure 7, which is the "Register
Purchase Order" task and includes attributes such as user,
subtotal, product, total, and payment type. To develop this
wireframe, the analyst relied on the class diagram to determine
which attributes were necessary. The next step is to try
generating a graphical user interface.

Figure 11 shows the result of the graphical components.
The steps of the GigMaleBPMN method were applied to the
“Purchase Order” BPMN model. Different fields were created
for the identified labels, like Textbox for input, Title for label,
Checkbox for checkbox, Button for button, and Combo box
for select.

Fig. 11. Graphical components of the "Register Purchase Order" user task.

Figure 12 shows the result of the graphical components
detected in the “Generate Purchase Order” service task,
creating six Text boxes, two Combo boxes, two Check boxes,
ten Titles and two Buttons on the page of this Task. Likewise,
the application of the GigMaleBPMN method can generate
projects in frameworks like Angular and Vue, as well as the
React library.

Fig. 12. Graphical components of the "Generate Purchase Order" user task
that the administrator sees.

V. CONCLUSIONS

This article presents the GigMaleBPMN method, which
enables the generation of graphical components from a BPMN
model using Microsoft Azure's Machine Learning techniques.

The GigMaleBPMN method consists of four steps: (i)
creating the BPMN model in Bizagi, (ii) naming BPMN
elements to show which graphical components should be
developed, (iii) developing wireframes based on the
mentioned graphical components in step 2, and (iv) naming
the developed graphical components in the wireframes,
allowing for their generation. The BPMN elements used in the
GigMaleBPMN method are user tasks, service tasks,
exclusive gateways, and parallel gateways. The graphical
components that the GigMaleBPMN method can generate
include Input, Combo box, Text, Checkbox, Button, Data
Table, and Label from the wireframe. The result is graphical
components in source code form for various programming
language technologies such as JavaScript (Angular, Vue, and
React).

The work supplies an illustrative example of the process
using a BPMN project from the Bizagi repository called
"Purchase Order Creation." This example serves to better
understand the process from BPMN element detection to
graphical component generation.

The limitations of this work are as follows: (i) it only
recognizes user tasks, service tasks, parallel gateways, and
exclusive gateways; (ii) only 40 BPMN models were used;
(iii) there is a dependency on using the class diagram when
developing wireframes; (iv) it uses Microsoft Azure's
Machine Learning algorithms.

Future work includes: (i) naming more BPMN elements,
(ii) generating more graphical components, and (iii) naming
BPMN patterns found in BPMN models.

REFERENCES
[1] “BPMN Specification - Business Process Model and Notation.”

https://www.bpmn.org/ (accessed Jun. 09, 2023).

[2] “View the BPMN Quick Guide - BPMN Quick Guide.”
https://www.bpmnquickguide.com/view-bpmn-quick-guide/ (accessed
Jun. 09, 2023).

[3] “BPMN Modeling and Reference Guide Digital Edition | Enhanced
Reader.”

[4] E. F. Cruz and A. M. Rosado Da Cruz, “Deriving integrated software
design models from BPMN business process models,” in ICSOFT 2018
- Proceedings of the 13th International Conference on Software
Technologies, SciTePress, 2019, pp. 571–582. doi:
10.5220/0006852006050616.

[5] E. Díaz, J. I. Panach, S. Rueda, and J. Vanderdonckt, “An empirical
study of rules for mapping BPMN models to graphical user interfaces,”
Multimed Tools Appl, vol. 80, no. 7, pp. 9813–9848, Mar. 2021, doi:
10.1007/s11042-020-09651-6.

[6] E. Díaz, J. I. Panach, S. Rueda, and D. Distante, “A family of
experiments to generate graphical user interfaces from BPMN models
with stereotypes,” Journal of Systems and Software, vol. 173, Mar.
2021, doi: 10.1016/j.jss.2020.110883.

[7] “Bizagi, One Platform; Every Process. User Guide Studio.”
https://help.bizagi.com/bpm-suite/en/index.html?bpmn_shapes.htm
(accessed May 30, 2023).

[8] “Aurora Portal.” http://tiacws.com/aurora/ (accessed Jun. 13, 2023).

[9] “Bonitasoft : Open Source BPM software - Business Process
Management.” https://www.bonitasoft.com/ (accessed Jun. 13, 2023).

[10] “Gestion de e-procédure grâce au BPM e-Citize-Citiz_.”
https://www.e-citiz.com/bpm (accessed Jun. 14, 2023).

[11] “Top 10 Applications of Machine Learning | Daily Life Applications |
Edureka.” https://www.edureka.co/blog/machine-learning-
applications/ (accessed Jun. 20, 2023).

[12] T. H. Hu, L. Wan, T. A. Liu, M. W. Wang, T. Chen, and Y. H. Wang,
“[Advantages and Application Prospects of Deep Learning in Image
Recognition and Bone Age Assessment].,” Fa Yi Xue Za Zhi, vol. 33,
no. 6, pp. 629–634, Dec. 2017, doi: 10.3969/J.ISSN.1004-
5619.2017.06.013.

[13] F. Recknagel, “Applications of machine learning to ecological
modelling,” Ecol Modell, vol. 146, no. 1–3, pp. 303–310, Dec. 2001,
doi: 10.1016/S0304-3800(01)00316-7.

[14] “What is Machine Learning? | How it Works, Tutorials, and Examples
- MATLAB & Simulink.”
https://www.mathworks.com/discovery/machine-learning.html
(accessed Jun. 20, 2023).

[15] P. Bhushan et al., “A Self-Attention Based Hybrid CNN-LSTM
Architecture for Respiratory Sound Classification,” GMSARN
International Journal, vol. 18, no. 1, pp. 54–61, 2024.

[16] “OCR - Optical Character Recognition - Azure Cognitive Services |
Microsoft Learn.” https://learn.microsoft.com/en-us/azure/cognitive-
services/computer-vision/overview-ocr (accessed May 30, 2023).

[17] “What is Custom Vision? - Azure Cognitive Services | Microsoft
Learn.” https://learn.microsoft.com/en-us/azure/cognitive-
services/custom-vision-service/overview (accessed May 30, 2023).

[18] “What are Azure Cognitive Services? - Azure Cognitive Services |
Microsoft Learn.” https://learn.microsoft.com/en-us/azure/cognitive-
services/what-are-cognitive-services (accessed Jun. 20, 2023).

[19] K. Moran, C. Bernal-Cardenas, M. Curcio, R. Bonett, and D.
Poshyvanyk, “Machine Learning-Based Prototyping of Graphical User
Interfaces for Mobile Apps,” IEEE Transactions on Software
Engineering, vol. 46, no. 2, pp. 196–221, Feb. 2020, doi:
10.1109/TSE.2018.2844788.

[20] T. A. Nguyen and C. Csallner, “Reverse engineering mobile
application user interfaces with REMAUI,” in Proceedings - 2015 30th
IEEE/ACM International Conference on Automated Software
Engineering, ASE 2015, Institute of Electrical and Electronics
Engineers Inc., Jan. 2016, pp. 248–259. doi: 10.1109/ASE.2015.32.

[21] C. Chen, T. Su, G. Meng, Z. Xing, and Y. Liu, “From UI design image
to GUI skeleton: A neural machine translator to bootstrap mobile GUI
implementation,” Proceedings - International Conference on Software
Engineering, pp. 665–676, May 2018, doi: 10.1145/3180155.3180240.

[22] “What Is A Wireframe? Your Best Guide.”
https://careerfoundry.com/en/blog/ux-design/what-is-a-wireframe-
guide/#what-is-a-wireframe (accessed Jun. 06, 2023).

[23] “The best wireframe tools in 2023 | Creative Bloq.”
https://www.creativebloq.com/wireframes/top-wireframing-tools-
11121302 (accessed May 30, 2023).

[24] “Angular vs React vs Vue: Core Differences | BrowserStack.”
https://www.browserstack.com/guide/angular-vs-react-vs-vue
(accessed May 30, 2023).

[25] “Material Design.” https://m3.material.io/ (accessed Jun. 10, 2023).

[26] “What is a Graphical User Interface (GUI)? - Definition from
Techopedia.” https://www.techopedia.com/definition/5435/graphical-
user-interface-gui (accessed Jun. 06, 2023).

[27] “Why Wireframes Are Important in the Design Process. | by Proto.io |
Medium.” https://protoio.medium.com/why-wireframes-are-
important-in-the-design-process-de4e773e611 (accessed Jun. 06,
2023).

[28] “Scopus preview - Scopus - Welcome to Scopus.”
https://www.scopus.com/home.uri (accessed May 30, 2023).

[29] E. Diaz, J. I. Panach, S. Rueda, and O. Pastor, “Towards a Method to
Generate GUI Prototypes from BPMN.”

[30] M. Brambilla, S. Butti, and P. Fraternali, “WebRatio BPM: A Tool for
Designing and Deploying Business Processes on the Web.”

[31] J. Cao, X. Liu, and K. Ren, Eds., Process-Aware Systems, vol. 602. in
Communications in Computer and Information Science, vol. 602.
Singapore: Springer Singapore, 2016. doi: 10.1007/978-981-10-1019-
4.

[32] E. Aïmeur, U. Ruhi, and M. Weiss, Eds., E-Technologies: Embracing
the Internet of Things, vol. 289. in Lecture Notes in Business
Information Processing, vol. 289. Cham: Springer International
Publishing, 2017. doi: 10.1007/978-3-319-59041-7.

[33] “OMG | Object Management Group.” http://www.omg.org/ (accessed
Jun. 13, 2023).

[34] B. Dong, Y. Sun, W. Chen, X. Xu, and Y. Zhang, “Dynamic
environment monitoring system of digital twin computer room based
on Drools inference engine,” p. 7, Feb. 2023, doi: 10.1117/12.2667222.

[35] A. AlShehhi and R. Welsch, “Artificial intelligence for improving
Nitrogen Dioxide forecasting of Abu Dhabi environment agency
ground-based stations,” J Big Data, vol. 10, no. 1, Dec. 2023, doi:
10.1186/S40537-023-00754-Z.

[36] K. Yun et al., “Development and validation of explainable machine-
learning models for carotid atherosclerosis early screening,” J Transl
Med, vol. 21, no. 1, Dec. 2023, doi: 10.1186/s12967-023-04093-8.

[37] K. Okarma and P. Lech, “A method supporting fault-tolerant optical
text recognition from video sequences recorded with handheld
cameras,” Eng Appl Artif Intell, vol. 123, Aug. 2023, doi:
10.1016/J.ENGAPPAI.2023.106330.

[38] MarschallOwen, ChoKyunghyun, and SavinCristina, “A unified
framework of online learning algorithms for training recurrent neural
networks,” The Journal of Machine Learning Research, vol. 21, pp. 1–
34, Jan. 2020, doi: 10.5555/3455716.3455851.

[39] C. Wongwatkit, A Development of Order Processing System: BPMN
Model.

[40] K. Meshkini, J. Platos, and H. Ghassemain, “An Analysis of
Convolutional Neural Network for Fashion Images Classification
(Fashion-MNIST),” Advances in Intelligent Systems and Computing,
vol. 1156 AISC, pp. 85–95, 2020, doi: 10.1007/978-3-030-50097-
9_10/COVER.

[41] “What is a REST API?” https://www.redhat.com/en/topics/api/what-
is-a-rest-api (accessed Jun. 07, 2023).

[42] “What is JSON.” https://www.w3schools.com/whatis/whatis_json.asp
(accessed Jun. 07, 2023).

