
Improvement of a Web Engineering Method through
Usability Patterns1

José Ignacio Panach, Francisco Valverde, Óscar Pastor

Department of Information Systems and Computation
Technical University of Valencia

Camino de Vera s/n, 46022 Valencia, Spain.
{jpanach, fvalverde, opastor }@dsic.upv.es

Phone: +34 96 387 7000, Fax: +34 96 3877359

Abstract. Usability is a feature of software quality that has traditional signifi-
cance in the Human Computer Interaction (HCI) community. Recent works that
have been proposed by the Software Engineering (SE) community are intended
to improve the usability of software applications. This paper combines aspects
that are defined in both these communities to produce usable web applications.
To achieve this goal, a well-known strategy to improve usability is used: usabil-
ity patterns. However, many usability patterns and guidelines could only be ap-
plied when the final system is implemented. In this work, STATUS patterns
have been chosen because they solve usability issues at conceptual level. The
main purpose of this paper is to improve the usability of Web Applications
automatically generated by OOWS (a model-based web engineering method)
applying the STATUS patterns.

Keywords: Web engineering, Web usability, MDA, model-driven engineering,
automatic code generation, usability patterns, Presentation Model.

1 Introduction

Usability has become increasingly important in web engineering methods, even more
important than in conventional desktop applications [6]. Some works have proposed
methods for measuring usability, like Olsina’s work [11]. Moreover, recent works in-
corporate usability as part as an MDA [9] development process [1].

Following this last emergent research line, this paper is focused on how to deal
with the required usability aspects of web applications that are generated automati-
cally in a model-driven web development process. Specifically, the objective is to im-
prove usability in OOWS [5] (Object Oriented Web Solutions) web engineering
method. OOWS has an automatic code generation process based on the MDA para-
digm that produces a web application from its corresponding web conceptual schema.

OOWS is complemented by OlivaNova [3], the industrial tool that implements the
methodology called OO-Method [12]. OOWS generates the code corresponding to the

1 This work has been developed with the support of MEC under the project DESTINO

TIN2004-03534 and cofinanced by FEDER

specific, web oriented user interface, preserving the business logic layer and the per-
sistence layer generated by OlivaNova.

Currently, there are several web engineering methods that model the web interac-
tion in an abstract way and distinguish between navigation and interface like OOWS
does. Some of these methods are WebML [4], OOHDM [14] or OOH [2]. The inter-
action aspects related to usability are considered in all these web engineering methods
by means of a specific model or a quality framework. However their proposed ap-
proaches to usability are coupled with the particular method. Therefore, applying the
same concepts to another web engineering method is a difficult task.

To solve this problem the use of patterns is proposed in this work. A usability pat-
tern suggests an abstract solution to a usability problem without taking into account
platform constraints.

Several authors have written about usability patterns, like Welie [17], who makes
an explicit distinction between the user’s perspective and the designer’s perspective.
Tidwell [16] defined other patterns that are very similar to the patterns proposed by
Welie. She proposes using patterns to help the design of the Conceptual Model behind
the interface. Moreover, some authors, such as Kimberly Perzel [13], have been work-
ing to define usability patterns for applications oriented to the World Wide Web.
However, none of the mentioned above approaches implements a true Model Com-
piler, meaning that the specification of the usability aspects is done at the modeling
step, and is properly converted into the required software components through the
corresponding transformation process.
Therefore, the main contribution of this paper is to include the usability of web appli-
cations generated with OOWS as an essential aspect to be considered. This fact is mo-
tivated by the experiences provided by users of Web applications generated by
OOWS. With the purpose of solving OOWS usability problems, we have selected a
set of usability patterns defined in a European project called STATUS (SofTware Ar-
quitectures That support USability) [15]. For this purpose, the current OOWS Presen-
tation Model (the part of the Conceptual Model that models the interaction between
the user and the system) is extended. This usability improvement can be divided into
two steps: 1) to select the STATUS patterns that solve the OOWS usability problems,
and 2) to enrich the OOWS Presentation Model with the required expressiveness to
model the functionality of the patterns that are not currently supported.

 To accomplish these goals, the paper is structured as follows. Section 2 presents
the usability problems in web applications generated by OOWS and which STATUS
pattern provides a solution. Section 3 shows an extension of the OOWS Conceptual
Model to incorporate the functionality of the usability patterns that OOWS does not
currently support. Finally, section 4 presents the conclusions.

2 Analysis of OOWS Usability

STATUS patterns are defined in Juristo et al [8] as a set of generic solutions to solve
common usability issues. The solution for each problem is described by means of
several UML Diagrams (Class Diagram and Sequence Diagram) that can be applied
in a specific methodology. The use of these patterns provides two main advantages:

• The usability mechanism is described in an abstract way from an object-oriented
perspective. As a consequence, applying a STATUS pattern to OOWS is a task that
can be easily performed.

• The solution proposed in the pattern is neither designed for a particular method nor
a specific software platform (Web, Desktop etc.). The same principles can be ap-
plied in another Web Engineering methods
As OOWS and OO-Method are based on UML, the solution described by the

STATUS pattern can be easily introduced inside the software development process.
Since the set of STATUS patterns is very extensive, this paper is only focused on two
STATUS patterns that, due to their functionality, proposes a solution to the usability
problems that have been detected. The usability problems are related to data entry
mistakes when users try to perform an operation in an OOWS Web Application. In
addition, in order to make the most appropriate choice, the usability recommendations
on data entry stated in [10] have been followed.

2.1 User Input Errors Prevention: Structured Text Entry

The main objective of this pattern is to anticipate possible mistakes caused by invalid
user actions. To do this, the pattern proposes the use of different input mechanisms
and default values. Several widgets can perform the same task, even though their vis-
ual representations are different. The goal of the usability analyst is to choose the cor-
rect widget for a concrete input data. Currently, OOWS does not allow the user or the
analyst to choose the widget type, for example “list boxes” for a concrete set of values
or “edit masks” to insert data in a specific format.

Another way to avoid user errors is to provide default values to the user that can be
changed when they are not appropriate. OOWS supports this functionality by means
of the OO-Method Structural Model. However, frequently, the list of possible values
in a widget may depend on the values inserted in other widgets, thereby creating de-
pendency relationships between widgets. OOWS does not have any primitives to
model this behaviour.

2.2 Wizard: Step by Step

This pattern helps users to execute a complex action that requires several steps. Using
this pattern, the analyst can define a wizard that will help users with complex actions
that require them to introduce information in several steps. The fact of splitting the
operation into different steps improves the user guidance. This functionality cannot be
modelled in OOWS yet.

3 Improving the OOWS Presentation Model: A Case of Study

This section explains how the OOWS Presentation Model can be improved with us-
ability patterns whose functionality is not currently supported. The solution proposed
is to use UML stereotyped elements in order to abstract STATUS patterns functional-

ity. These new UML elements are introduced inside the OOWS Presentation Model
extending the current conceptual primitives. Since many web engineering methods are
based on UML, this approach can be used to define new usability concepts into their
models. A prototype of model compiler that includes the functionality of Step by Step
and Structured Text Entry patterns is used to generate the code of the case study.

Fig. 1. a)Service Reservation Interface before applying usability patterns; b) SPU for car
reservation service

To test the advantages of the proposed usability patterns, we have developed a case
study based on an on-line car rental service. This paper focuses on the reservation
service to simplify. A part of the current automatically generated web interface is
shown in Figure 1a.

To support both patterns, the Service Presentation Unit (SPU) primitive has been
introduced into the OOWS Presentation Model. The purpose of the SPU is to model
how the interface that executes a service (usually a web form) will be shown to the
user. Each SPU is related to a service defined in the Structural Model and is com-
posed of the set of correspondent arguments. Figure 1b shows the SPU for the case
study presented here. In the following subsections, we detail the conceptual primitives
that the SPU has to model our service interface.

 3.1 Supporting the “Step by Step” pattern

This paper defines an Argument Group represented as a stereotyped UML Class.
Thanks to this primitive, it is possible to model how the service arguments are
grouped in a SPU. The sequence, in which each group of arguments should be intro-
duced, is represented by means of arrows. Moreover, each Argument Group can in-
clude a text description to inform the user. Briefly, an Argument Group represents a
Wizard step (Figure 1b).

At the implementation level, the result is a set of web pages (a Wizard) to collect
the argument values. In the proposed case study four Argument Groups are defined:
Delivery information; Car Selection; Personal Data; Payment Options.

3.2 Supporting the “Structured Text Entry” Pattern

With the current OOWS Presentation Model, it is not possible to delimit the correct
set of values for an argument or its input mechanism. The compiler takes into account
the data type of an argument to render an appropriate widget. To solve this problem,
three mechanisms have been added to the Service Presentation Unit:
• Argument Widget: It specifies the widget type that will receive the value. This

primitive is defined in the attribute type for a particular argument. If no widget
type has been defined, the default widget (Text) is used to input any kind of alpha-
numerical string. In our case study (Figure 1b), the delivery and return dates are
typed as Calendar, the car categories are rendered as checkboxes and phone and
credit cards are masks.

Fig. 2. a) List On Demand input Widget; b) Argument Car Model related to Category

• List on Demand: A List On Demand is a type of dropdown list with an input text
whose values are retrieved dynamically. When the user writes a string, a list of in-
stances which matches the text written will be shown. This primitive is used in the
arguments “Delivery Place” and “Return Place” show in Figure 1b. An example of
the interface generated from this primitive is shown in Figure 2a.

• Related Argument: It is useful to restrict the values that the user can insert in a
widget depending on the values that the user has previously inserted in other wid-
gets. For example, if the user has selected the desired car category, only the car
models that are related to that category must be shown. Figure 1b shows this primi-
tive in the arguments “model” and “rate”. Figure 2b shows the final interface.

4 Conclusions

This research work presents a usability improvement of web applications built with an
automatic code generation process. The proposed solution has the following steps:
1. Choice of STATUS usability patterns. STATUS usability patterns have been se-

lected because these patterns can be incorporated in the architecture of the system
throughout the entire software development process. As a consequence, this is a
suitable approach to improve usability in another web engineering methods.

2. Selection of a subset of STATUS patterns. Of all the STATUS patterns, this pa-
per is centered only on the patterns whose functionality has been considered to be
more appropriate for web usability according to [10] and users’ experiences.

3. OOWS Conceptual Model Extension. Two STATUS Patterns, Step by Step and
Structured Text Entry, are introduced into OOWS as UML elements.

A prototype version of the new Model Compiler has been developed in order to in-
troduce the changes in the OOWS Presentation Model. As an example of an applica-
tion of this approach, this paper presents a little case study that includes the usability
patterns presented. Users feedback verifies that the new web interface is more usable
than previous one because it has been generated using the new conceptual primitives.

As future research, the rest of the STATUS patterns that are not currently sup-
ported by OOWS must also be considered. In addition, the Conceptual Model should
include a set of metrics to measure the usability before generating the system. Finally,
an empirical evaluation of usability, with industrial web applications generated by
OOWS, will be carried out to validate the usability improvement of the generated
code.

References

[1] Abrahao, S., Insfrán, E. (2006). Early Usability Evaluation in Model-Driven Architecture
Environments. 6th IEEE International Conference on Quality Software (QSIC 2006), Bei-
jing, China.

[2] Cachero, C., Genero, M., Calero, C., Meliá, S. (2006). Quality-driven Automatic Transfor-
mation of Object-Oriented Navigational Models. Second International Workshop on Qual-
ity of Information Systems (QoIS'06). ER2006 Workshops., Tucston, Arizona.

[3] Care Technologies: http://www.care-t.com Last visited: Feb-2007.
[4] Ceri, S., Fraternali, P., Bongio, A. (2000). Web Modeling Language (WebML): a modeling

language for designing Web sites. WWW9 Conference, Amsterdam,.pp. 137 - 157.
[5] Fons J., P. V., Albert M., and Pastor O. (2003). Development of Web Applications from

Web Enhanced Conceptual Schemas. ER 2003, LNCS. Springer.pp. 232-245.
[6] Hitz, M., Leitner, G., Melcher, R. (2006). Usability of Web Applications. Web Engineering,

Wiley.
[7] ISO/IEC 9126-1 (2001), Software engineering - Product quality - 1: Quality model.
[8] Juristo, N., López, M., Moreno, A., Sánchez, I. (2003). Improving software usability

through architectural patterns. International Conference on Software Engineering. Work-
shop "Bridging the Gaps Between Software Engineering and Human-Computer Interac-
tion". Portland, USA.

[9] MDA: http://www.omg.org/mda Last visited: Feb-2007.
[10] Nielsen, J. (2006). Prioritizing Web Usability, New Riders Press; 1 edition.
[11] Olsina, L., Rossi, G. (2002). A Quantitative Method for Quality Evaluation of Web Sites

and Applications. IEEE Multimedia Magazine.pp. 20-29
[12] Pastor, O., Gómez, J., Insfrán, E. Pelechano, V. (2001) The OO-Method Approach for In-

formation Systems Modelling: From Object-Oriented Conceptual Modeling to Automated
Programming. Information Systems, 26(7) 507–534.

[13] Perzel, K., Kane, D. (1999). Usability Patterns for Applications on the World Wide Web.
PloP'99 Conference.

[14] Schwabe D.,R.G., and Barbosa. S. (1996). Systematic Hypermedia Design with OOHDM.
In ACM Conference on Hypertext. In ACM Conference on Hypertext, Washington, USA.

[15] STATUS Project: http://is.ls.fi.upm.es/status. Las visit: Feb-2007.
[16] Tidwell, J. (2005). Designing Interfaces, O'Reilly Media.
[17] Wellie, M., Traetteberg, H. (2000). Interaction Patterns in User Interfaces. PLoP 2000,

Allerton Park Monticello, Illinois, USA.

