

Introducing Usability Requirements in a Test/Model-
Driven Web Engineering Method1

Esteban Robles Luna1,2, Julián Grigera1, Gustavo Rossi1,2, José Ignacio Panach3,
Oscar Pastor3

1LIFIA, Facultad de Informática, UNLP, La Plata, Argentina

{esteban.robles, julian.grigera, gustavo}@lifia.info.unlp.edu.ar
2Also at Conicet

3Centro de Investigación en Métodos de Producción de Software
 Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia, Spain
{jpanach, opastor}@pros.upv.es

Abstract. The success of web applications is constrained by two key features:
usability and fast evolution. Current web engineering approaches follow a "uni-
fied" development style which tends to be unsuitable for applications that needs
to evolve fast. In this paper, we show how to address usability requirements in
an agile test/model driven web engineering method. Usability requirements are
contemplated from the very beginning of each cycle by creating a set of mea-
ningful tests that drive the development of the application and ensure that no
functionality is altered unintentionally through development cycles. The ap-
proach is illustrated with an example in the context of the WebML / WebRatio
suite.

1 Introduction

It is not new that Web applications require short development cycles with constantly
changing requirements, and must also be extremely usable to satisfy customers. The
success of this kind of software strongly depends on fulfilling these two conditions.
This combination constraints the current trend towards Model-Driven Web Engineer-
ing (MDWE) approaches [13, 3, 7, 9, 20] which include automatic or semi-automatic
code derivation from conceptual models, thus minimizing coding errors and making
the software development faster. However, MDWE approaches tend to use “unified”
rather than agile styles for development, lacking the appeal of other approaches like
extreme programming (XP) [11] or Test-Driven Development (TDD) [2].

TDD uses small cycles to add behavior to the application. Each cycle starts by ga-
thering requirements in the form of use cases [10] or user stories [11] that describe
the expected behavior of the application informally. Next, the developer abstracts

1 This work has been developed with the support of MEC under the project SESAMO
TIN2007-62894 and co-financed by FEDER

concepts and behavior and concretizes them in a set of meaningful test cases. Those
tests should fail on their first run, showing that the application does not meet the re-
quirements yet. In order to fix this problem, the developer writes the necessary code
to pass the tests and runs them again until the whole test suite passes. The process is
iterative and continues by adding new requirements. In these cycles, the developer
can refactor [8] the code when it is necessary. Studies have shown that TDD reduces
the number of problems found in the implementation stage [18] and therefore its use
is growing fast in industrial settings [14].

Fig 1: Summary of the approach

We have recently defined an approach which injects a test-driven development
style into a model-driven development life cycle [19]. The basic idea is to apply the
principles of TDD to a MDWE approach. In this manner, tests are run over the appli-
cation, but if they fail, changes are applied to the models and not to the code. The
application can be generated again from these models thanks to automatic transforma-
tions, and tests can be run again, continuing with the cycle. We have also defined the
concept of navigation unit testing to extend the well-known concept of unit testing to
the navigation realm. Navigation Unit tests check that a User Interaction Diagram
(UID) is satisfied in the application by testing an interface mockup first and the de-
rived prototype later. A summarized schema of the approach confronted with “con-
ventional” TDD is presented in Fig 1.

In this paper, we show how to deal with usability requirements in the approach de-
scribed above. Usability requirements are requirements that capture the characteristics
to build a usable system for the user. We illustrate the idea with two usability re-
quirements that have functional implications, in other words, usability requirements
that affect the system arquitecture. Following requirement guidelines of the literature
[12], a list of usability characteristics that must be considered in an MDWE process
are identified and a set of test cases are generated from them. These tests will lead the
modeling of usability requirements in the same way that traditional TDD leads the
coding phase of functional requirements. The main contributions of the paper are the
following:
• We present a systematic way to deal with usability requirements incrementally.

• We propose using black box interaction tests as essential elements for driving the
development phase and validating usability requirements in a web application.
The structure of the paper is the following: In Section 2 we summarize the back-

ground of our proposal. In Section 3 we present our approach, and using a proof of
concept we explain how we map usability requirements into test models, and how the
cycle proceeds after generating the application. In Section 4 we briefly review some
related work and in Section 5 we conclude and present some further work.

2 Background

Our proposal synergizes two different research approaches: first, the specification of
usability requirements in a Model-Driven Development (MDD) schema and second
the introduction of TDD in MDWE approaches. We briefly discuss the two of them:

2.1 Specifying Usability Requirements
There is a type of usability recommendations that are related to the system architec-
ture. These recommendations involve building certain functionalities into the soft-
ware to improve user-system interaction. A big amount of rework is needed to in-
clude these features in a software system, unless they are considered from the first
stages of the software development process. The idea of dealing with usability from
the early stages was developed by authors as Bass [1]. Those works propose includ-
ing the usability when the system architecture is designed.

The best way of ensuring that usability is taken into account in the architecture de-
sign is dealing with it from the requirements capture step. These requirements lead
the architecture design. In the literature, there are several works to capture usability
requirements. For example, by means of i* models [28] or by means of the concept
called usability patterns [21]. According to the proposal of Bass, we have proposed in
previous works [17], a method to include usability features with functional implica-
tions in any MDD approach. The idea is to include new Conceptual Primitives in the
Conceptual Model that represents all usability features.

2.2 Bridging TDD and MDWE
Model-Driven approaches favor the construction of software by handling abstract
models, thus raising the abstraction level over plain source code writing, and leading
to less error-prone applications. On the other hand, agile approaches and their itera-
tive, short-cycled way of development, result in a very appealing methodology when
it comes to cope with fast change and evolution; both typical of web applications. We
propose a combined methodology that takes the best of both approaches, by introduc-
ing MDD as part of a TDD cycle. The process has the same structure as TDD, but
several artifacts have been adapted/added to fit in MDD approaches. The main differ-
ences with traditional TDD include: using models (for business, navigation and pres-
entation) instead of code writing, gathering requirements with HTML mockups to
improve communication with stakeholders and developing tests to drive the model
development using a black box testing approach taking advantage of mockups. The

approach includes automated tests that validate functional and usability requirements
and deal with Web refactoring interventions.

3 An Overview of Our Approach

Our approach is based on tests that are written before the application is developed.
Tests specify usability requirements in advance so they drive the development phase
and later validate that the application satisfies them. As a first step, we partially cap-
ture user requirements (Sections 3.1 and 3.2), focusing on expected behavior of the
application as well as usability concerns. We next state these requirements as tests
(Section 3.3), and since they are written before the application is developed, we spe-
cify them against UI mockups (stub html pages used to convey application’s aspects
with the stakeholders). A running application is then derived using a MDD tool (Sec-
tion 3.4), and tests are run against that application. Because tests are written against
mockups, they may not pass due to small differences between the XHTML mockups
and the markup generated by the MDWE tool. Consequently, tests must be adapted to
reflect the final generated layout (Section 3.5). Some usability aspects may appear
after the application has been developed or even deployed. Those changes involve
dealing with existing functionality which may involve refactoring (Section 3.6). As in
TDD, the whole method is repeated with all use cases until a full-featured prototype
is reached.

We illustrate the approach using TDDStore, a simplified online bookstore. Specifi-
cally, we will validate some usability requirements in the checkout process. This
process will be carried out by the user in order to finish a purchase. In the following
subsections we illustrate the checkout process from capturing requirements to vali-
date the usability requirements with tests.

3.1 Introducing Usability Requirements

Our work focuses on usability requirements with impact on the architectural design.
This set of usability requirements are referred to as Functional Usability Features
(FUFs) [12]. Examples of these FUFs are providing cancel, undo and feedback facili-
ties. Each FUF has a set of subtypes called Usability Mechanisms. Each Usability
Mechanism is a different variety of the usability feature. For example the FUF called
Feedback is composed by several Usability Mechanisms, for example: (1) System
Status Feedback: it informs the user about the internal system state; (2) Interaction
Feedback: it informs the user that his request is being processed.

In order to capture the requirements for the Usability Mechanisms, we have used a
set of guidelines defined by Juristo [12]. This approach consists of packaging guide-
lines that empower developers to capture usability requirements without depending
on a usability expert. These guidelines help developers to understand the implications
of usability requirements in system architecture and know how to elicit and specify
usability features for a system. They have served as a basis for identifying which is-
sues should be discussed with stakeholders during the elicitation process.

The checkout process is a somewhat complex process that needs to be followed by
the user. Billing address, delivery address, a summary of the purchase and person
details must be fulfilled in order to finish the purchase. A well known usability me-
chanism called Step by step could be applied to break a big, clumsy form, into small
and easy to understand steps. This mechanism helps the user to do tasks that require
different steps with user input. The application of Step by step results in a wizard.
From Juristo’s FUF guidelines [12], we have extracted the usability characteristics
that the analyst must specify in the conceptual model in order to specify the functio-
nality of the mechanism. Each usability characteristic represents a system property
that must be specified by the analyst. Table 1 shows the characteristics that the ana-
lyst must specify for the Step by step mechanism and their value in the checkout ex-
ample

Table 1. Usability requirements for Step by step and Abort operation

Step by step
Characteristic Value specified by the analyst in the checkout example

Service selection This mechanism will be applied to the checkout action
Steps division

Step description Each step must contain a short description
Visual aspect The user has specified the widgets to fill in each step
Remaining steps The system must inform about the number of remaining steps

3.2 Modeling Functional Requirements

In order to gather navigation, business and usability requirements from our stake-
holders, we use two kinds of artifacts: User Interaction Diagrams (UIDs) and UI
mockups. UIDs serve as a partial, high-level navigation models, providing abstract
information about interface features. On the other hand, UI mockups help to agree
with the client on broad aspects of the application look and feel. This is a very conve-
nient way for interacting with stakeholders and gathering quick feedback from them.
We also gain two additional benefits from UI mockups: we can perform our usability
specifications tests against them and they will be used to create the application’s UI.
In Fig 2 we show two mockups of the checkout process:

Fig 2. UI mockups for steps 2 and 3 of the checkout process.

3.3 Defining Tests

Following our approach, usability requirements should also be specified as tests that
ensure usability application. These tests will validate usability requirements at any
stage of the application development. Moreover, they help during application growth,
ensuring that usability characteristics are not altered. To illustrate this stage, we will
take the earlier mentioned requirement (divide checkout into steps) as example. In
this test, we follow the checkout process filling each node with the necessary infor-
mation and making assertions about UI and node elements. Using Selenium [22] on
Java, the following test validates that the checkout process is divided into the steps
previously mentioned (Section 3.1 and 3.2). As all MDWE tools derive
XHTML/CSS/ Javascript code, Selenium code is agnostic of the MDWE tool used.
This test will drive the development phase of this usability requirement and it looks
like we show next:

public class CheckoutTestCase extends SeleneseTestCase {

public void testSuccessfulCheckout() throws Exception {
(01) selenium.open("file:///dev/bookstore/Mockups/books-list.html");
(02) selenium.clickAndWait("/ul[@id='products']/li[1]/div[1]/div[@id='product-info']/a");
(03) selenium.assertLocation("/cart*");
(04) assertEquals("The Digital…", selenium.getText("/ul[@id='selected-products']/li[1]/span[1]"));
(05) selenium.clickAndWait("checkout");
(06) selenium.assertLocation("/checkoutStepShippingAddress");
(07) selenium.type("shipping-address", "Calle 58"); selenium.select("country", "label=Argentina");
(08) selenium.clickAndWait ("//input[@value='product confirmation>>']");
(09) selenium.assertLocation("/checkoutStepBillingAddress");
(10) selenium.type("billing-address", "Calle 48”); selenium.select("country", "label=Argentina");
(11) selenium.clickAndWait ("//input[@value='product confirmation>>']");
(12) selenium.assertLocation("/checkoutStepProductConfirmation");
(13) assertEquals("The Digital…", selenium.getText("/ul[@id='selected-products']/li[1]/span[1]"));
(14) selenium.clickAndWait ("//input[@value='credit card data >>']");
(15) selenium.assertLocation("/checkoutStepCreditCardData");
(16) selenium.type("first-na", "Esteban"); selenium.type("last-na", "Robles Luna");
(17) selenium.type("card-number", "4246234673479");
(18) selenium.select("exp-year", "label=2011"); selenium.select("exp-month", "label=Apr");
(19) selenium.clickAndWait ("//input[@value='confirmation >>']");

(20) selenium.assertLocation("/checkoutSucceed");
(21) assertEquals("Checkout succeed”, selenium.getText("/div[@id='message"));

}
}

The test opens the book list page (1) and adds an item to the shopping cart (2).

Then we assert that the book has been added and proceed to the checkout process (3-
5). Shipping information (6-8) and billing information (9-12) are filled and con-
firmed. Products are confirmed by asserting that product’s name (13-15). Credit card
data is filled (16-19) and then we confirm the process has succeeded by looking at the
text displayed in a div element (20-21).

3.4 Deriving Design Models

In order to generate incremental prototypes of the application, we have used WebRa-
tio [23], a WebML-based MDWE tool. We have specified the different models (busi-
ness, navigation and presentation) that will allow to derivate the application. In order
to show the specific aspects of our approach, we focus mainly on the navigational
(hypertext) model, being the distinctive model in Web applications. Besides, we want
to emphasize the differences between typical TDD and TDD in MDWE applications
and show how changes in usability requirements may affect navigation.

A first data model is derived using the UIDs as a starting point, identifying the ent-
ities needed to satisfy the specified interactions, e.g. by using the heuristics described
in [20]. As Web Ratio supports the specification of ER models at this stage of the
development, the application behavior will be specified later, in the so-called logic
model. As for the navigational model, we show it with the checkout example. Ac-
cording to the test written in the previous section, we need to create a step-by-step
checkout. Fig 3 shows this interaction in a WebML interaction model.

Fig 3. Checkout process WebML diagram.

WebRatio is now ready to generate the application. Once we have a running proto-
type, we can adapt the tests (see section 3.5) and run them to check whether the mod-
els (and therefore the application) conform with the requirements or not.

Finally, we adjust the presentation of the application. WebML does not define a
presentation model; instead, it is considered as a document transformation from a
WebML specification of a page into a specific language page like JSP. In another
methodology, mockups and UIDs would be used to specify the presentation model as

well. Since we already had mockups for our current UID, we just slice up the mock-
up, and use it as an XHTML template in WebRatio. We can run the tests again to
ensure interaction is not corrupted while the template is being modified.

3.5 Testing Usability specifications

After building the models, we need to make sure that the implementation generated
from them is valid according to usability requirements specification. As previously
mentioned, if we try to run the tests as they are written, they will fail because they
still reference mockups files and the location of several DOM elements may have
changed (in terms of an XPath expressions [26]). In both cases tests should be
adapted to work with the current implementation as shown in [19]. In the first case,
URLs in the tests should be readdressed to the actual location of the generated proto-
type. On the second case, the adaptation is easy to perform using a tool like XPather
plugin [27] for Mozilla browser. Next we re-run the test and verify whether it suc-
ceeds.

3.6. Refactoring to improve Usability

Usability requirements can also appear after the application has been deployed due to
user tests ran at this time. In our example, the user might want to abort the operation
during the checkout process. To support this functionality, we can include Abort op-
eration, a usability mechanism used to cancel the execution of an action [12]. There-
fore, it can be added to each step of the checkout process. As first step for including
Abort operation, we have to detect usability requirements. From the usability re-
quirements guidelines of this mechanism, we have extracted the characteristics that
the analyst must specify in the conceptual model. The process of requirement capture
is done providing a value for each one of the characteristics of Abort operation (Table
2).

Table 2. Usability requirements for Abort operation

Abort operation
Characteristic Value specified by the analyst in the checkout example

Service selection This mechanism will be applied to the checkout action
Visual aspect The abort operation will be triggered by a Cancel button in each step of

the wizard

In this case we have a test that validates the checkout process (Section 3.5). As the

process involves many steps, we should validate that the abort operation works suc-
cessfully on every step. Whether the user is in the first step or in the last one, the ab-
ort operation must cancel the process and remain all products in the shopping cart.

In order to handle this new usability requirement, we need to adapt existing artifacts
to satisfy it. Following the process, we start by adding the new cancel button to the
existing mockups on every step of the wizard.

Next, we add tests to validate the checkout process and verify that the buttons exist
and behave as expected: canceling the process and navigating back to the shopping
cart node. In our case, the checkout process is divided into four steps, so we need to
validate that the abort operation works as expected on every one. In order to make the
test works, we follow the checkout process to reach the node under test, next click the
abort button in order to assert that the location has changed to the shopping cart. Fi-
nally, we have to check that the product is still present on the shopping cart. In the
next piece of code, we show a short version of the tests to validate the abort opera-
tion:

public class CheckoutTestCase extends SeleneseTestCase {

public void testAbortInShippingAddress() {
 this.setupShoppingCartAndStartCheckoutProccess();
 this.clickAbortAndCheckLocation();
}
public void testAbortInBillingAddress() {
 this.setupShoppingCartAndStartCheckoutProccess();
 this.fillShippingAddress();
 this.clickAbortAndCheckLocation();
}
public void testAbortInProductConfirmation () {
 this.setupShoppingCartAndStartCheckoutProccess();
 this.fillShippingAddress(); this.fillBillingAddress();
 this.clickAbortAndCheckLocation();
}
public void testAbortInCreditCard() {
 this.setupShoppingCartAndStartCheckoutProccess();
 this.fillShippingAddress(); this.fillBillingAddress(); this.confirmProducts();
 this.clickAbortAndCheckLocation();
}
public void clickAbortAndCheckLocation () {

 selenium.click("abort-checkout");
 selenium.waitForPageToLoad("30000");

 selenium.assertLocation("/cart*");
 assertEquals("The Digital…", selenium.getText("/ul[@id='selected-products']/li[1]/span[1]"));

}
}

Next, the process continues adapting the models in WebRatio. To do so, we add the

necessary links and navigation control for the cancel step functionality. Then, we
derive the application and run the tests against it. Tests could be also adapted if We-
bRatio doesn’t fit location and layout issues. If so, we should adapt them in the same
way we did in section 3.5. If tests still fail, then we need to tweak the models and
derivate the application again until all tests pass.

4 Related Work

The aim of this paper is to put together the advantages of using agile approaches in
Web application development [15] and MDWE approaches in Web application de-
velopment. Most Web Engineering methods like WebML, UWE, OOHDM, OOWS
or OOH do not support agile approaches. In particular, this paper focuses on the agile

approach called Test-Driven Development where tests are developed before the code
in order to guide the system development. Some works propose generating these tests
automatically, for example the work of Bryc [30], while in other works tests are done
manually [14]. Both techniques are valid for our proposal.

We state that usability must be included in the TDD process from the requirements
capture step. Several authors, as Juristo [12], have dealt with usability as a require-
ment. Juristo has defined a set of Functional Usability Features that are related to sys-
tem architecture. The requirements of these features are captured by means of guide-
lines. These guidelines include questions that the analyst must ask to end-users in
order to adapt the features to users’ requirements. Lauesen [16] also includes usability
in the requirements capture, discussing six different styles of usability specification
and showing how to combine them in a complex real-life case to meet the goals. Fi-
nally, it is important to mention the work of Cysneiros [4], who has defined a cata-
logue to guide the analyst through alternatives for achieving usability. The approach
is based on the use of the i* [28] framework, having usability modeled as a special
type of goal. The difference between our proposal and the aforementioned works is
the context of use. We deal with usability requirements in a TDD process using an
MDWE approach, while mentioned authors deal with usability requirements in a tra-
ditional software development process.

As for including TDD in a Model-Driven Development (MDD) process, it is im-
portant to mention the proposal of Zhang [29]. Zhang has defined a process that in-
volves automatic testing through simulation and using executable models. In other
words, this author has defined a process to create tests that must be applied in a simu-
lation of the system. This simulation is obtained by the Conceptual Model which
represents the system abstractly. The disadvantage that we have found in Zhang’s
proposal is that tests are not applied to the final code but a simulation. If the final
code differs from the simulation, test results are not useful.

A similar work that proposes testing the system by means of Conceptual Models
has been developed by Dinh-Trong [5]. This author has defined a technique for test-
ing design models that are expressed in the Unified Modeling Language (UML) [24].
Test cases are generated using information from class diagrams and sequence dia-
grams. Our proposal is different to the work of Dinh-Trong. We state that tests must
check the generated code because they are closer to the user. Therefore, users can
participate in the test definition. However, Dinh-Trong proposes testing the system by
means of design models, where users cannot take part for ignorance.

Finally, other authors have proposed testing the system in the code generated from
a Conceptual Model, as we propose. The work of Wieczorek [25] is included in that
group. This author proposes a black-box testing that uses structural and behavioral
models, described in UML, to automatically generate test cases. After automatically
generating part of code from the Conceptual Model, developers are starting to create
unit tests for the functions that they are going to implement. Changes derived from
testing are applied directly to the code. This fact differs from our proposal, where
changes are directly applied to the Conceptual Model and the code is automatically
generated, making the software development process more efficient.

5 Concluding Remarks and Further Work

We have presented a novel approach for introducing usability requirements in a test
driven model development approach. Usability characteristics are captured using a set
of guidelines described in natural language. In order to fit these kinds of requirements
in the TDD cycle, we add tests that drive the development and check that the generat-
ed application is valid according to such requirements. The approach maintains the
agile style while dealing with usability requirements in an incremental way.

We are currently working on several directions: First, as usability requirements are
repeated through many applications and hence can be catalogued [12], we are creat-
ing template classes for capturing the functionality that has to be tested on each pat-
tern. The idea is to use or extend these classes to replace all the existing lines on the
tests. Using small “testing” classes as first class objects we can compose and improve
the time of testing creation and also raising the level of abstraction. Second, we are
doing some field experiences with usability requirements on RIA applications [6].
For this matter we are analyzing how to validate those requirements in tests and
where they should appear in the TDD cycle. Finally, in order to integrate all these
features, we are working on a tool that generates interaction tests from high level UID
models and UI mockups in a semi-automatic way..

References
1. Bass, L., Bonnie, J.: Linking usability to software architecture patterns through gener-

al scenarios. The journal of systems and software 66 (2003) 187-197
2. Beck, K.: Test Driven Development: By Example (Addison-Wesley Signature Series),

2002
3. Ceri, S., Fraternali, P., Bongio, A. Web Modeling Language (WebML): A Modeling

Language for Designing Web Sites. Computer Networks and ISDN Systems, 33(1-6),
137-157 June (2000).

4. Cysneiros, L.M., Kushniruk, A.: Bringing Usability to the Early Stages of Software
Development. International Requirements Engineering Conf. IEEE(2003) 359- 360

5. Dinh-Trong, T.T., Ghosh, S., France, R.B.: A Systematic Approach to Generate Inputs
to Test UML Design Models. 17th International Symposium on Software Reliability
Engineering (2006) 95-104

6. Duhl, J. Rich Internet Applications. A white paper sponsored by Macromedia
and Intel, IDC Report, 2003

7. Fons J., P.V., Albert M., and Pastor O: Development of Web Applications from Web
Enhanced Conceptual Schemas. ER 2003, Vol. 2813. LNCS. Springer (2003) 232-245

8. Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D. 1999. Refactoring: Im-
proving the Design of Existing Code. Addison-Wesley Professional.

9. Gómez, J. and Cachero, C. 2003. OO-H Method: extending UML to model web inter-
faces. In information Modeling For internet Applications, P. van Bommel, Ed. IGI
Publishing, Hershey, PA, 144-173.

10. Jacobson, I, Object-Oriented Software Engineering: A Use Case Driven Approach,
ACM Press, Addison-Wesley, 1992.

11. Jeffries, R. E., Anderson, A., and Hendrickson, C. 2000 Extreme Programming In-
stalled. Addison-Wesley Longman Publishing Co., Inc.

12. Juristo, N., Moreno, A.M., Sánchez, M.I.: Guidelines for Eliciting Usability Functio-
nalities. IEEE Transactions on Software Engineering, Vol. 33 (2007) 744-758

13. Koch, N., Knapp, A.. Zhang G., Baumeister, H.: UML-Based Web Engineering, An
Approach Based On Standards. In Web Engineering, Modelling and Implementing
Web Applications, 157-191. Springer (2008).

14. Maximilien, E. M. and Williams, L. 2003. Assessing test-driven development at IBM.
In Proceedings of the 25th international Conference on Software Engineering (Port-
land, Oregon, May 03 - 10, 2003). International Conference on Software Engineering.
IEEE Computer Society, Washington, DC, 564-569.

15. McDonald, A., Welland, R.: Agile Web Engineering (AWE) Process: Multidiscipli-
nary Stakeholders and Team Communication. Web Engineering, Springer US 2003,
ISBN: 978-3-540-40522-1, 253-312.

16. Lauesen, S.: Usability Requirements in a Tender Process. Computer Human Interac-
tion Conference, 1998, Australia (1998) 114-121

17. Panach, J.I., España, S., Moreno, A., Pastor, Ó. Dealing with Usability in Model
Transformation Technologies. ER 2008. Springer LNCS 5231, Barcelona (2008) 498-
511

18. Rasmussen, J.: Introducing XP into Greenfield Projects: lessons learned. IEEE Softw,
20, 3 (May-June 2003) 21- 28

19. Robles Luna, E.; Grigera, J.; Rossi, G.: Bridging Test and Model Driven Approaches
in Web Engineering. Still to be published….

20. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications using
OOHDM. In Web Engineering, Modelling and Implementing Web Applications, 109-
155. Springer (2008).

21. Seffah, A., Mohamed, T., Habieb-Mammar, H., Abran, A.: Reconciling usability and
interactive system architecture using patterns. Journal of Systems and Software 81
(2008) 1845-1852

22. Selenium web application testing system. http://seleniumhq.org/
23. The WebRatio Tool Suite. http://www.Webratio.com.
24. UML: http://www.uml.org/ Last visit: April 2009
25. Wieczorek, S., Stefanescu, A., Fritzsche, M., Schnitter, J.: Enhancing test driven de-

velopment with model based testing and performance analysis. Testing: Academic and
Industrial Conf Practice and Research Techniques, TAIC PART ’08 (2008)82-86.

26. XML Path Language (XPath). http://www.w3.org/TR/xpath
27. XPather - XPath Generator and Editor. https://addons.mozilla.org/en-

US/firefox/addon/1192
28. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements

Engineering. In: IEEE (ed.): IEEE Int. Symp. on Requirements Engineering (1997)
226-235

29. Zhang, Y.: Test-driven modeling for model-driven development. IEEE Software 21
(2004) 80-86

30. Bryc, R.: Automatic Generation of High Coverage Usability Tests. Conference on
Human Factors in Computing Systems (CHI), Doctoral Consortium. ACM, Portland,
USA (2005) 1108-1109

