
A Framework to Identify Primitives that Represent Usability
within Model-Driven Development Methods

Jose Ignacio Panach1, Natalia Juristo2, Francisco Valverde3, Óscar Pastor3

1Escola Tècnica Superior d'Enginyeria, Departament d’Informàtica, Universitat de València
 Avenida de la Universidad, s/n, 46100 Burjassot, Valencia, Spain

joigpana@uv.es
2Universidad Politécnica de Madrid, Campus de Montegancedo,28660, Boadilla del Monte, Spain

natalia@fi.upm.es
3Centro de Investigación en Métodos de Producción de Software - ProS

Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
opastor@pros.upv.es

Abstract. Context: Nowadays, there are sound methods and tools which implement
the Model-Driven Development approach (MDD) satisfactorily. However, MDD
approaches focus on representing and generating code that represents functionality,
behaviour and persistence, putting the interaction, and more specifically the usability,
in a second place. If we aim to include usability features in a system developed with a
MDD tool, we need to extend manually the generated code. Objective: This paper
tackles how to include functional usability features (usability recommendations
strongly related to system functionality) in MDD through conceptual primitives.
Method: The approach consists of studying usability guidelines to identify usability
properties that can be represented in a conceptual model. Next, these new primitives
are the input for a model compiler that generates the code according to the
characteristics expressed in them. An empirical study with 66 subjects was conducted
to study the effect of including functional usability features regarding end users’
satisfaction and time to complete tasks. Moreover, we have compared the workload of
two MDD analysts including usability features by hand in the generated code versus
including them through conceptual primitives according to our approach. Results:
Results of the empirical study shows that after including usability features, end users’
satisfaction improves while spent time does not change significantly. This justifies the
use of usability features in the software development process. Results of the
comparison show that the workload required to adapt the MDD method to support
usability features through conceptual primitives is heavy. However, once MDD
supports these features, MDD analysts working with primitives are more efficient
than MDD analysts implementing these features manually. Conclusion: This
approach brings us a step closer to conceptual models where models represent not
only functionality, behaviour or persistence, but also usability features.

Keywords: Model-driven development, usability, conceptual model.

2

1 Introduction

The Model-Driven Development (MDD) paradigm [20] states that all the analysts’ effort
must be gathered in the conceptual model and the system is implemented by means of
transformation rules that can be automated. In other words, the MDD paradigm
distinguishes between conceptual models (where analysts work) and the code that
implements the system (which can be generated with as much automation as possible from
the conceptual model).

Nowadays, there are several tools which implement the MDD paradigm, such as
WebRatio [2], UWE [19], NDT [9] and OO-Method [29][28], among others. All these tools
are very powerful to represent and generate the system functionality, behaviour and
persistency by means of conceptual models. However, in most MDD methods, there is a
lack of expressiveness to represent usability features [1][24]. Nowadays, if these features
are to be included in systems developed by these MDD methods, the generated code needs
to be changed manually. These manual changes involve some disadvantages:
 Changes in the code can be inconsistent with the characteristics expressed in the

conceptual model.
 Every time we regenerate the code from the conceptual model, the manual changes to

the code must be applied.
 Understanding the code to enhance the system usability can be difficult for the analyst.

In order to overcome all these problems, we propose including usability features in a
conceptual model similarly to what it is currently done with functionality, behaviour and
persistency in most MDD methods [18][34]. This proposal is a step forward to incorporate
software systems characteristics not combined to date in MDD methods. Note that the
target audience of our proposal are analysts that work frequently with MDD tools, since
they are the persons that tweak the code to support usability features nowadays. Our
approach does not deal with benefits or disadvantages of the MDD paradigm versus a
traditional method or how to improve the learnability of novice users with MDD tools.

In the past, many SE authors considered usability as a non-functional requirement [7].
Recently, however, some authors have identified several usability features that are strongly
related to functionality [4][11][16]. We focus on these features, since they affect not only
interface but also the architecture, and are hard to deal with unless they are considered from
the early stages of development. The contribution of our work is the definition of a process
to represent functional usability features in a conceptual model in such a way that a model
compiler can automatically generate their code.

The benefits of incorporating functional usability features in a MDD method through
conceptual primitives are [35][36]:
 Unambiguously defined functional usability features. This is an essential characteristic

for performing model-to-model and model-to-code transformations.
 Reduced development effort with respect to including usability features by hand, since

functional usability features are added to the system code by a model compiler.
 Evolutions of usability requirements need to be applied to the conceptual model only.

Therefore, system will be able to evolve more easily.
Our proposal to include usability features is valid for any MDD method. However, it has

been necessary to select a specific MDD method to fully define our proposal. We have
chosen OO-Method [29][28], since it is supported by a commercial tool that is being

3

regularly used to develop real systems by a company (INTEGRANOVA) [6]. Such MDD
tool generates fully functional systems from a conceptual model. Another advantage of the
MDD method used as benchmark for our research is that its conceptual model is abstract
enough to straightforwardly add new primitives that represent usability features.

This paper is the ongoing work of two previous publications: [25] and [26]. [25] offers a
first draft of the idea to represent functional usability features in a conceptual model. The
contribution of this paper with regard to the previous one consists of: (1) A more detailed
definition of the procedure to include functional usability features in a conceptual model;
(2) A proof of concept with different usability features in a real MDD tool. [26] is a poster
that introduces a short description of an experiment to analyze the benefits of including
functional usability features in a system. The contribution of this paper with regard to the
previous one consists of: (1) an exhaustive description of the design, threats and results of
the experiment to know whether or not users’ satisfaction and users’ efficiency improves
after including functional usability features in the systems; (2) a comparison of effort to
include functional usability features in a MDD method manually with the effort to include
them through conceptual primitives.

The paper is structured as follows. Section 2 introduces the usability and MDD
background necessary to understand our proposal. Section 3 describes our proposal for
adding usability features to a MDD method. Section 4 illustrates the application of our
proposal to a specific MDD method. Section 5 discusses an experiment to evaluate user
satisfaction improvement applying our proposal. Section 6 studies the improvement of the
efficiency of analysts working with functional usability features represented as conceptual
primitives versus including them manually. Section 7 describes related work. Finally,
Section 8 presents some conclusions.

2 Background

The MDD paradigm aims to develop software using a conceptual model that abstractly
represents the system under development [20]. This conceptual model is the input for a
model compiler that generates the code implementing the system. Usually, this generation
is performed by transformation rules that are applied automatically. A MDD conceptual
model is divided into different views or models. View stands for the set of formal elements
that describe something that has been built for a purpose. For example, there can be a view
to represent the user interaction, another view to represent system functionality and another
view to represent information persistence. Views are composed of conceptual primitives.
Conceptual primitives are modelling elements that have the capability of abstractly
representing an aspect of the system. Examples of conceptual primitives are class diagram
classes, class attributes and services, etc. The system is generated from the conceptual
model by a model compiler. The level of automation for code generation is more or less
powerful depending on the MDD method.

Usability is a very broad concept. According to ISO 9241-11 [14], usability is “the
extent to which a product can be used by specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a specific context of use”. Human-Computer
Interaction (HCI) literature provides many different recommendations to improve software
system usability. HCI recommendations can be classified into three groups [16]:

4

 Usability recommendations with impact on the user interface (UI). They refer to
presentation issues which imply slight modifications of the UI design (e.g. buttons,
pull-down menus, colours, fonts, layout).

 Usability recommendations with impact on the development process. To follow these
advices the development process needs to be tuned. For example, recommendations
designed to reduce the user cognitive load state that software development should
implicate users.

 Usability recommendations with high impact on architectural design. They involve
building certain functionalities into the software in order to improve user-system
interaction. This set of usability recommendations are referred to as functional usability
features (FUF). Examples of such features are cancel, undo and feedback facilities.
Unless these features are considered from the early stages of the software development
process, it takes a lot of rework to build them into a software system [4]. We focus our
approach on this group of recommendations.

Table 1 shows a summary of FUFs, the mechanisms into which they are divided and
their goals. We have selected four mechanisms to illustrate here our approach (shaded in
grey in Table 1). This choice is based on the usefulness of the mechanisms for the examples
used in this paper.

Table 1. List of FUFs and their mechanisms [17]

Usability
Feature

Usability
Mechanism

Goal

Feedback System Status To inform users about the internal status of the
system

 Interaction To inform users that the system has registered a
user interaction, i.e. that the system has heard
users

 Progress To inform users that the system is processing
an action that will take some time to complete

 Warning To inform users of any action with important
consequences

Undo
Cancel

Global Undo To undo system actions at several levels

Abort Operation To cancel the execution of an action or the
whole application

User Input
Error
Prevention

Structured Text Entry To help prevent the user from making data
input errors

Wizard Step-by-Step

To help users to do tasks that require different
steps with user input and correct such input

User Profile Preferences To record each user's options for using system
functions

 Personal Object Space To record each user's options for using the
system interface

 Favourites To record certain sites of interest for the user
Help Multilevel Help To provide different help levels for users

5

As shown in [17], a full description and elicitation guidelines for each and every FUF
can be found at http://www.grise.upm.es/sites/extras/2/. FUFs were derived from
interaction patterns described in the literature as [40][42][31]. FUFs contribute a detailed
description of how usability features affect the system architecture, whereas interaction
patterns only define how usability features affect the system interface. Another difference
between FUFs and interaction patterns is that FUFs are defined with a terminology that can
be understood easily by end users. In contrast, interaction patterns are usually more
oriented for analysts.

FUFs are expected to be incorporated into the development process as functional
requirements, since usability features that are properly described in the requirements
specification are more likely to be successfully built into the system [11]. As an aid for
analysts, the FUF definition provides guidelines [17] for capturing FUFs requirements and
designing the system. Once FUFs have been incorporated into requirements (following
guidelines), they are manually designed and implemented.

3 Incorporating Usability Functionalities into a Model-Driven
Development Method

Our approach for incorporating FUFs into a MDD method is divided into four steps, as Fig
1 shows:

Fig 1. The four steps of our proposal

MODEL COMPILER

CONCEPTUAL PRIMITIVES

E
X

IS
T

IN
G

 W
O

R
K

MDD METHOD1 2
3

4

U
S

A
B

IL
IT

Y
 F

E
A

T
U

R
E

 X

MoU 1

MoU 2

MoU m

CONFIGURABLE
PROPERTY 1

CONFIGURABLE
PROPERTY Y

NON-CONFIGURABLE
PROPERTY 1

NON-CONFIGURABLE
PROPERTY Z

O
U

R
 P

R
O

P
O

S
A

L

.

.

.

.

.

.

INTERACTION PATTERNS

6

1. Identify the possible modes of use of each usability functionality.
2. Identify the properties that configure each mode of use with regard to usability

requirements.
3. Define conceptual primitives to abstractly represent the mode of use properties.
4. Describe the changes that must be made to the model compiler to implement the

identified properties.
The first and second steps are based on earlier research defining how to deal with FUFs:

interaction patterns, usability guidelines, usability heuristics or any other research defining
how to build usability features into a software development process. The third and fourth
steps depend on a specific MDD method. We focus on OO-Method [29][28] as illustrative
example of MDD method.

With our proposal, an analyst can ensure that functional usability features will be
included in systems. What analysts need to do is select the usability features to include in
the system and select some feature parameters. Note that in the same way as with a manual
implementation, our approach based on primitives does not ensure usability improvements
in every system. These improvements depend on how the analyst models usability features
according to the context of use. In the following, the four steps of our approach are
explained in detail.

3.1 Identification of Modes of Use

The first step for incorporating a usability feature into a MDD method is to identify its
modes of use. Each functional usability feature can achieve its goal by different means,
which we have termed Mode of Use (MoU). Each MoU achieves a specific target, which
is part of the overall goal of the usability feature. Different MoUs that are part of the same
usability feature target the same overall goal without conflicting each other.

For example, the usability mechanism System Status Feedback (from the feature
Feedback) aims to inform the user about the internal system state [8][40]. Using the
information provided by interaction patterns, we have identified that this goal can be
achieved by at least three modes of use: (1) Inform about the success or failure of an
execution (MoU1); (2) Display the information stored in the system (MoU2); (3) Display
the state of relevant actions (MoU3). The first MoU is derived from the interaction pattern
called Modeless Feedback Area [8], which aims to provide feedback that the program has
accepted the command for every action the user takes. The second and the third MoUs are
derived from the interaction pattern called Status Display [40]. This pattern aims to monitor
the state of something that changes. Note importantly that even though the last two MoUs
were generated from the same interaction pattern, the goal of each MoU that we have
generated is different. The second MoU aims to display the state using information stored
in a repository, whereas the third MoU is designed to display the state by indicating which
actions can be triggered at any time.

MoUs can be generated from the information contained in the FUF elicitation guidelines
[17]. For each FUF question (a total of 62) we have needed to consider all possible ways of
achieving the usability goal established by the guidelines. We have obtained 22 MoUs valid
for incorporating the six FUFs shown in Table 1 into any MDD method. The 22 MoU can
be found in [27] and are easily accessible at [23].

7

3.2 Identification of Properties

The second step to deal with functional usability features through the MDD paradigm is to
configure the identified MoUs. We refer to the different MoU configuration options for
satisfying usability functionalities as properties. In this second step, we also identify
properties from interaction patterns.

For example, Inform about the success or failure of an execution (MoU1) is composed
of two properties extracted from the Modeless Feedback Area pattern [8]: (1) Service
selection and (2) Message visualization. The first property is derived from the description
of the interaction pattern that states that every action must inform about its success or
failure. The second property is defined because the pattern also states that how and where
the information is to be displayed needs to be specified.

In some cases, analysts need to adapt properties to the system under development. In
other cases, properties can be configured automatically without any intervention by
analysts. Therefore, MoUs have two types of properties:
 Configurable properties, which require an analyst to make decisions about how they

are to be configured. Based on user requirements, the analyst specifies the most
suitable configuration for these properties. For instance, the Message visualization
property from MoU1 is configurable because for a specific system the analyst needs to
specify how the information will be displayed according to user preferences. Display
the information stored in the system (MoU2) has three configurable properties
extracted from the interaction pattern called Status Display [40]: (1) Dynamic
information to show, (2) Static information to show and (3) Message visualization. The
first property is derived from the description of the pattern that states that the system
must display information about the status that is likely to change over time. The
second property is derived from the need of information that remains constant for each
interaction. The third property is defined to allow specifying all the visualization
possibilities claimed in the pattern description. Display the state of relevant actions
(MoU3) has three configurable properties extracted from pattern Status Display [40]:
(1) Actions selection, (2) Condition to disable and (3) Descriptive text. The first
property is derived from the need of the pattern to specify the actions that require to
display their state. The second property is defined to specify the condition to disable.
The third property is derived from the description of the pattern that recommends
displaying a descriptive text when the action has been disabled.

 Non-configurable properties, which have an unchanging configuration for all
systems. For example, the Service selection property from Inform about the success or
failure of an execution (MoU1) is non-configurable because the ergonomic Immediate
Feedback criterion [5] states that the system must report the success or failure of an
action at the end of each execution. We propose that the MDD method model compiler
is responsible for including non-configurable properties in generated systems. This
approach improves efficiency since the model compiler automatically or semi-
automatically includes non-configurable properties in the system without analyst
intervention.

As for MoUs, we have had to work out properties from FUF elicitation guidelines. We
have generated 57 properties valid for any MDD method. All the 57 properties can be
found in [27], and they are easily accessible through [23]. Of the 57 properties identified
from the FUF list in Table 1, 50 are configurable and 7 are non-configurable.

8

3.3 Definition of Conceptual Primitives

We propose defining configurable properties through conceptual models of a MDD
method. The third step of our approach involves verifying whether or not there are already
conceptual primitives in the MDD method representing a configurable property. If no
conceptual primitive has been set up to represent a configurable property or existing
conceptual primitives are unable to represent some configuration options, the conceptual
model needs to be expanded with new conceptual primitives that ensure the required
expressiveness. Note that how each configurable property is represented in the conceptual
model depends exclusively on the chosen MDD method; there are as many conceptual
models as MDD methods.

As illustrative example, Table 2 shows the primitives needed to represent all the
properties derived from the usability mechanism System Status Feedback. Each primitive is
used to specify a system characteristic.

Table 2. Necessary primitives to represent properties of System Status Feedback

Mode of Use Property Needed primitives
MoU1 Message Visualization -Define an error message text

-Define a success message text
-Define if the message is textual or graphical
-Define the message format
-Define icons that indicate error or success

MoU2 Dynamic information
to show

Define a formula that specifies how to obtain
the dynamic information

Static information to
show

Define static text

Message visualization Define the format that displays both dynamic
and static information

MoU3 Actions selection Define what actions can be disabled
Condition to disable Define the formula that disables an action
Descriptive text Define the text that explains the reason of

disabling an action

This step is method dependent and one single solution cannot be provided for any

existent MDD method. For the 50 configurable properties generated in the second step of
the process, we have identified 68 primitives needed to support all the configurable
properties (accessible through [23]).

3.4 Description of Changes in the Model Compiler

Finally, in fourth step, the model compiler needs to be modified in order to make it able to
deal with new conceptual primitives and non-configurable properties. This step also
depends on the MDD method since the model compiler is method specific but again
solutions are similar between MDD methods. So the solution we show here is useful to
guide changes for any MDD method. The changes needed in the model compiler are:
 New conceptual primitives: The model compiler must have the capability to

recognize and generate the code that implements the new conceptual primitives

9

(generated in step three) according to the configuration represented in the conceptual
model.

 Non-configurable properties: Although these properties do not imply changes to the
conceptual model, they do affect the model compiler. The model compiler must build
the functionality of non-configurable properties into the generated code without analyst
participation.

As illustrative example, Table 3 shows an overview of the necessary code to implement
all the properties derived from System Status Feedback. Note that even non-configurable
properties, such as Service selection, involve some lines of code for their implementation.

Table 3. Necessary code to implement properties of System Status Feedback

Mode of Use Property Needed code
MoU1 Service selection Report the results after executing an action

Message Visualization -Display an error message when an action fails
-Display a success message when an action
finishes
-Display all messages according to the
characteristics defined with primitives

MoU2 Dynamic information
to show

Calculate and display the dynamic information

Static information to
show

Display static text

Message visualization Display information according to the
characteristics defined with primitives

MoU3 Actions selection Allow to disable actions
Condition to disable Disable an action when a condition is satisfied
Descriptive text Display text that describes the reason for

disabling an action

Notice that MoUs and properties (steps 1 and 2) can be used for any MDD method.

Changes to the conceptual model and to the model compiler (steps 3 and 4) are MDD
method specific since every MDD method has its own conceptual primitives and its own
transformation rules. However, solutions provided to one specific method are analogous to
those needed for a different MDD method. For the 57 properties generated in the second
step of the process, we have identified 68 characteristics to implement through code
(accessible through [23]).

4 Proof of Concept

We have selected OO-Method [29][28] as the specific MDD method to be used to validate
our proposal. INTEGRANOVA [6] is a commercial tool which implements OO-Method
that can generate code in Java, C# and ASP.NET. Code is automatically generated by
INTEGRANOVA from a conceptual model using a model compiler. The company
INTEGRANOVA makes business using the tool INTEGRANOVA to develop software
systems to be used in the real life. OO-Method conceptual model is composed of four
complementary models (or views):

10

 Object model, which specifies the system structure in terms of classes of objects and
their relations. It is modelled as an extended UML [39] class diagram. A class is based
on attributes and services.

 Dynamic model, which represents the valid sequence of events for an object. It is
modelled as a UML statechart diagram.

 Functional model, which specifies how events change object states.
 Interaction model, which represents the interaction between the system and the user.

It has two views: (i) the Abstract Interaction Model [22], which defines the interface
without taking into account definite visualization features, representing the interface
independently of the interaction types and the platform features; and (ii) the Concrete
Interaction Model [3], which specifies details of the interface in terms of elements
that end users can perceive. The Abstract Interaction Model is structured through
interaction patterns divided into three levels:
o Level 1 - Hierarchical Action Tree (HAT): organizes the access to the system
functionality.
o Level 2 - Interaction Units (IUs): represent the main interactive operations that can
be performed on objects. There are three types of IUs: Service Interaction Unit
(SIU), which represents a form to execute a service; Population Interaction Unit
(PIU), which represents a query of instances from a class; Instance Interaction Unit
(IIU), which represents details of a specific object.
o Level 3 - Elementary Patterns (EPs): constitute the building blocks from which
IUs are constructed. Through these patterns, we can model: masks for text entry
fields (EP Introduction); lists of elements (EP Defined Selection); groups of widgets
(EP Argument Grouping); filter criteria (EP Filter); set of elements to display in a
table (EP Display Set); order criteria for lists (EP Order Criterion); actions that the
user can trigger (EP Actions); navigations among interfaces (EP Navigation).

The Concrete Interaction Model specifies how the elements that compose an interface
will be displayed. For example, in this model, the analyst decides the widget to display a
Defined Selection, which can be a list box or a radio button. The Concrete Interaction
Model is defined through Transformation Templates, which specify the structure, layout
and style of an interface according to preferences of end-users and the different
hardware and software computing platforms. A Transformation Template is composed
of Parameters with associated values which parameterize the different design
alternatives of interfaces.
In the following, we use Structured Text Entry and Warning (Table 1) as usability

mechanisms to illustrate how our approach works in OO-Method. Structured Text Entry
belongs to the FUF called User Input Error Prevention, whose goal is to help the user when
the system only accepts inputs in a specific format. Warning belongs to the FUF called
Feedback, whose goal is to inform users about what is happening in the system. We select
both FUFs because their goals are simple enough for presentation in a couple of pages and
both mechanisms are used in our experiment. Moreover, Structured Test Entry is partially
supported by OO-Method currently, which is useful to illustrate that some primitives used
to represent configurable properties can be already supported by the MDD method.

First step of the proposed procedure is identification of Modes of Use. We identify
three MoUs for the Structured Text Entry and one for Warning. These MoUs have been
derived from the requirements elicitation guidelines of the usability mechanisms [17].

11

Table 4 shows the elicitation requirements questions from which the MoUs have been
derived, the goal of the MoUs and their names.

Table 4. Structured Text Entry and Warning MoUs

FUF Question Goal MoU
Structured Text Entry

Which is the format of
input arguments?

Specify the format of the input
widget to help the user

Specify the input widget
visualization type
(MoU1_STE)

What guidance should the
user receive to enter the
input in the required
format?

Stop the user from entering
data that is not in a valid
format

Mask definition
(MoU2_STE)

What guidance should the
user receive to enter the
input in the required
format?

Provide the user with
guidance on which format to
use to enter data

Default values
(MoU3_STE)

Warning
Which requested services
have irreversible
consequences?

Warn the user about the
consequences of executing a
service

Warning message
(MoU1_W)

Table 5.Properties of MoU1_STE, MoU2_STE, MoU3_STE and MoU1_W

Question Goal Name
Specify the input widget visualization type (MoU1_STE)

Which is the format of input
arguments?

Define how the user will
visualize input arguments

Type of input widget
(P1_MoU1_STE)

Mask definition (MoU2_STE)
Which widgets require a
specific format for their
data?

Specify the widgets that need
a mask

Widget selection
(P1_MoU2_STE)

Which is the required
format for the widget?

Define the regular expression
that defines the mask

Regular expression
(P2_MoU2_STE)

Default values (MoU3_STE)
Which widgets require a
default value?

Specify the widgets that need
a default value

Widget selection
(P1_MoU3_STE)

Which is the required
default value?

Define the default value Default value definition
(P2_MoU3_STE)

Warning message (MoU1_W)
Which tasks require a
confirmation?

Specify the services that need
a warning before its execution

Service selection
(P1_MoU1_W)

When does the system show
the confirmation?

Define the condition to
display the warning message

Condition definition
(P2_MoU2_W)

Which information is
provided to confirm?

Define how the user will
visualize the warning message

Message visualization
(P3_MoU3_W)

12

Next step is identification of properties for each MoU. We derive properties from FUF
requirements elicitation guidelines. Table 5 shows the properties that we have identified
from FUF definition. They are all configurable properties since analysts need to specify
what setup users would like. These two first steps of our proposal are independent of the
MDD method.

Next step is definition of conceptual primitives to identify the required primitives to
abstractly represent every configurable property. Whether or not each configurable property
is already supported by the MDD method needs to be studied. This task is MDD method
dependent. Let us analyze for INTEGRANOVA the properties identified for MoU1_STE,
MoU2_STE and MoU3_STE.

Type of input widget (P1_MoU1_STE) is not completely supported by this MDD
method. Depending on the argument type, analysts can choose from a restricted list of
widgets. For example, if the argument type is a numbered list, analysts can choose between
a list box or a text box. However, if the argument is Boolean, the widget will be directly
transformed into a check box. But a radio button would be better in some contexts.
Therefore, to include P1_MoU1_STE property, the OO-Method conceptual model needs to
be enriched with new primitives that represent the different widget types. These changes
affect the Concrete Interaction Model, which defines visualization features.

Note that the conceptual primitives in the OO-Method Interaction Model (Abstract and
Concrete) are defined textually. However, INTEGRANOVA facilitates the definition of
these primitives that it displays as widgets to be filled in by the analyst.

Fig 2 shows a prototype modelling the Type of input widget property (P1_MoU1_STE).
On the left of the window there is a list with all the Service Interaction Units (SIU) defined
in the system. Arguments are grouped by the service to which they belong. We select the
argument province of Create a client service as an example. On the right of Fig 2, analysts
can choose the type of widget that will visualize the selected argument (Property
P1_MoU1_STE). The widget types from which analysts can choose depend on the
argument type, which should have been defined previously in the existent object model
(when classes and attributes constituting the business logic are defined). In the example, the
province argument type is a numbered list, but this argument type can also be represented
by a combo box or radio button.

Fig 2. How to model MoU1_P1 with new primitives in the Concrete Interaction Model

13

MoU2_STE and MoU3_STE are already supported by OO-Method conceptual model and
do not therefore require new conceptual primitives. This example is useful to illustrate that
some configurable properties can be already supported by the MDD method. In the
following, we show how both MoUs are already modelled in INTEGRANOVA with
existent primitives. The two properties of Mask definition (MoU2_STE) are modelled in
the Abstract Interaction Model, where analysts specify the elements of the SIU. The
Regular expression (P2_MoU2_STE) property is defined in an existent window like Fig 3.
In this example, the analyst has defined a mask that accepts a string with only five
characters to represent a post code. Next, the analyst has to assign this regular expression to
an existing argument. This assignment is the representation of the Widget selection property
(P1_MoU2_STE).

Fig 3. How MoU2_P2 is already modelled in the Abstract Interaction Model

Fig 4. How MoU3_P1 and MoU3_P2 are already modelled in the Object Model

The Widget selection (P1_MoU3_STE) and Definition of the default value
(P2_MoU3_STE) properties are modelled in the existent object model (Fig 4). When

14

analysts specify the attributes in a class, they can also specify a default value for each
attribute. The P1_MoU3_STE property is specified by selecting one of the arguments on the
right side of Fig 4. After the input argument has been selected, the P2_MoU3_STE property
is defined in the default value field in Fig 4. The default value must be compliant with the
argument type.

Regarding properties of Warning message (MoU1_W), they are not supported by
INTEGRANOVA yet. The inclusion of Service selection (P1_MoU1_W) involves
specifying what services must display a warning message before running. We can add a
new primitive within the Object Model to express whether or not each service of a class
needs a warning message. The Object Model already supports the definition of services
(methods of a class), therefore, it is the most suitable model to define all properties
regarding services. The inclusion of Condition definition (P2_MoU1_W) needs a primitive
to represent when to display a warning message. We propose including a new primitive in
the Object Model to define formulas that express when to show the message. Fig 5 shows a
prototype modelling P1_MoU1_W and P2_MoU2_W to define a warning message for the
service Create reservation. The system warns end users before running the service if the
period of reservation lasts longer than 30 days.

Fig 5. How to model P1_MoU3_W and P2_MoU3_W with new primitives in the Object Model

Fig 6. How to model P3_MoU3_W with new primitives in the Concrete Interaction Model

15

Message visualization (P3_MoU3_W) is focused on display options. The inclusion of
this property involves new primitives to represent every visual alternative of the warning
message. These new primitives are added to the Concrete Interaction Model, where we can
model all display options through design templates. Fig 6 shows an example of prototype
that configures visualization alternatives to display the warning message of
Create_reservation. According to this configuration, the message will be displayed within
an obtrusive alert window and the text message will be displayed in Arial, size 10 and
centred alignment.

Note that the analyst must specify all the primitives that represent configurable
properties before generating the code that implements them. Each primitive is exclusive of
a specific configurable property derived from a specific MoU. In order to facilitate the
analysts’ work, these conceptual primitives can have a default value in case analysts do not
want to configure them. Default values should be the most frequently used values. Analysts
can change these default values in case they do not satisfy user’s requirements.

The solution provided for OO-Method illustrates the type of solution needed for any
MDD method. We have generated 47 new specific conceptual primitives (see [27] and
[23]) to enable OO-Method to deal with MoU configurable properties. The conceptual
model of OO-Method already supported 9 configurable properties for which no new
primitives were required.

The last step in the proposed procedure is to proceed with the changes to the model
compiler. Again, this step is method dependent. The only changes to be made to OO-
Method model compiler to support Structured Text Entry are to include Specify the input
widgets visualization type (MoU1_STE), since the other two MoUs are already supported.
The aim of these changes is to generate the code that implements the type of widget
specified by means of conceptual primitives.

Fig 7. Class Diagram to represent the implementation of MoU1_STE

We use UML class diagrams to represent the changes in the code transformation
process. Fig 7 shows every class that is affected by the inclusion of MoU1_STE. New
software classes required to implement MoUs are shaded grey, classes extended with new

16

attributes and methods appear with a background crossed by diagonal lines, whereas
unchanged classes appear on a white background. The meaning of each class is as follows:
 OK: This class represents the button that the user uses to trigger a service.
 Cancel: This class implements a cancel button that goes back to a previous window.
 Form: This class implements a window where the user must enter values (SIU). Once

the values have been input, the user can trigger the service that requires the arguments
(by means of the OK button).

 Input arguments: This class represents the arguments required to execute the service
related to the form.

 Widget: This class represents a widget that is the front-end of an input argument.

Fig 8 shows the classes to implement the properties of Warning_message (MoU1_W).
Classes Form, OK and Cancel have the same meaning as in Fig 7.

 ClassX action: Each one of these classes represents a class of the Object Model. These
classes must be extended with methods to check the condition of the warning message.

 Service wrapper: This class connects the end user interface to the system
functionality. It must be extended with methods to capture requests of actions that have
a warning message related to them.

 Alert manager: This class shows warning messages to end users according to
visualization alternatives previously defined.

Fig 8. Class Diagram to represent the implementation of MoU1_W

Changes applied to the conceptual model and to the model compiler need to be MDD
method specific. For the 47 new OO-Method conceptual primitives generated in the third
step, we have generated 94 new attributes, 76 new services and 11 new classes (see [27]
and [23]). Since OO-Method has a model to represent the whole system interface
(Interaction Model), FUFs can be more easily included in the method than in most MDD
methods that do not count with a model to define all the characteristics of the user
interaction (such as [9]). The level of expressiveness to represent the interaction within a
model depends on the MDD method. For example, the interaction model of OO-Method
already supported Mask definition (MoU2) and Default values (MoU3) and no change was
required. Since most primitives that represent MoU properties are related to interaction, the
workload for supporting MoUs will be greater for most MDD methods which have models
to represent the interaction with poorer expressiveness than it has been for
INTEGRANOVA.

The process to incorporate FUFs in a MDD method will be carried out only once. This
effort is worth since once it has been done, analysts will be able to incorporate FUFs in

17

their development and improve the usability of the system by means of abstract primitives.
Using these primitives as input, the model compiler automatically will generate the code
that implements the MoUs.

5 Laboratory Evaluation

The aim of the evaluation we have carried out is to study whether end users perceive the
benefits of including MoUs in the system. If so, the effort to include MoUs in a MDD
method will be worthwhile, since MoUs improve end user’s satisfaction. Most HCI
recommendations (including FUFs) are based on experts’ opinion and their usability
improvement has not been empirically evaluated.

We have carried out a controlled experiment with 66 subjects using a car rental Web
application. We divided the experimental subjects into two sets: subjects that interact with
the system without MoUs and subjects that interact with the system including several
MoUs. The most common system functionalities are: reserve a car; pick up a car; return a
car; register a new customer; create an invoice. This Web application has been fully
developed using INTEGRANOVA [6]. One author of this paper has included manually in
the generated code the MoUs not supported by INTEGRANOVA (only Mask definition
and Default values are currently supported by the MDD tool).

5.1 Experiment Definition

We evaluate two research questions:
 R1: Is the satisfaction of users who interact with MoUs better than the satisfaction of

users who interact without MoUs?
 R2: Do users interacting with MoUs record better times than users interacting without

MoUs?
We identify the following null hypotheses related to research questions R1 and R2:
 H10: Satisfaction for users interacting with MoUs is the same as satisfaction for users

interacting without MoUs.
 H20: Time for users interacting with MoUs is the same as time for users interacting

without MoUs.
There are two response variables [15] in the experiment: user satisfaction level and

time to finish the task. User satisfaction level indicates whether or not the user is satisfied
with the interaction. Time to finish the tasks measures how long it takes the user to
complete the experimental tasks.

We have defined a metric for each response variable:
 M1: User satisfaction is measured by means of a five-point Likert-scale questionnaire.

To design the questionnaire, we have followed HCI recommendations for
questionnaires to evaluate usability [33]. We first identified the usability attributes to
which each MoU is related. To do this, we used the list of usability attributes defined
in ISO 9126-1 [13], since they are measurable entities. Second, we defined a question
for each usability attribute related to the MoUs included in the experiment. Users have
to respond to these questions on a five-point Likert-scale. For example, the Specify the
visualization type of input widgets (MoU1) MoU is related to three usability attributes:
Minimal Actions, Familiarity of Concepts and Error Prevention. Each usability
attribute results in a question. Two questionnaire items are generated for each question

18

(a positive and a negative statement) in order to verify user response reliability.
Subjects are asked to check the box that best represents their opinion from “I totally
agree with the affirmative sentence” to “I totally agree with the negative sentence”.
Besides, general usability questions are asked after subjects have completed all the
tasks. These questions are: Is the system easy to use? Would you recommend this
system to other people? Are you generally satisfied with this system?

 M2: Time (measured in seconds) to finish the tasks. This time is measured per task and
subject through the implementation of a hidden timer. The timer starts when the task is
shown to the subject and it stops when the subject indicates that the task is finished.

There is one factor [15] in the experiment: Use of MoUs. This factor involves studying
the Web application with and without MoUs. There is a blocking variable: Previous
experience of applications generated with INTEGRANOVA. For this variable, we divided
the subjects into experienced INTEGRANOVA application users and beginners.

The subjects were selected out of convenience. There were a total of 66 subjects from
different backgrounds. All subjects had interacted with Web applications before and were
aged from 21 to 56 years. They were volunteers from different countries that were able to
perform the evaluation over the internet as if they were employees of offices all over the
world of a rental car company. We have classified users depending on their previous
experience with Web applications generated with INTEGRANOVA, since usually, users of
Web applications are subjects without any knowledge of computer engineering. Learning
how to interact with Web applications generated with INTEGRANOVA might add noise to
the evaluation that experienced users do not present. Table 6 shows the design of the
experiment.

Table 6. Experimental groups

 Use of MoUs

 Groups With
MoUs

Without
MoUs

Experienced in
INTEGRANOVA

G1 (11) X
G2 (11) X

Inexperienced in
INTEGRANOVA

G3 (22) X
G4 (22) X

The instruments used for running the experiment are:

 A demographic questionnaire: This questionnaire gathers information about subjects’
gender, age, experience of using Web applications and experience of using applications
generated with INTEGRANOVA.

 Tasks: There are four tasks, each aiming at studying different MoUs. The tasks are the
same for all subjects irrespective of whether they interact with or without MoUs. This
ensures that all subjects interact with the application in the same way. We timed all
subjects as they performed every task. This timer implements metric M2.

 User satisfaction questionnaire: After performing each task, the subjects fill in a
questionnaire that captures satisfaction. The questionnaire includes a question for each
usability attribute of the MoUs studied in the task (this questionnaire can be seen in
[23]). This questionnaire implements metric M1.

The instruments were posted on a Web page available over the internet [41]. We refer to
this page as the Guide Page, because it guides subjects through the experiment. The Guide

19

Page is not to be confused with the rent-a-car system on which the subjects perform the
tasks.

5.2 Experiment Procedure

Fig 9 shows the experimental process. The experiment starts with the demographic
questionnaire. After the subjects have filled in this questionnaire on the Guide Page, they
record their experience on INTEGRANOVA applications. Depending on their background
knowledge, the Guide Page automatically assigns the subject to the group of experts or
beginners. Next, the Guide Page alternately assigns subjects to the with or without MoUs
group. This procedure ensures that the groups of subjects with and without MoUs are
balanced.

Fig 9. Experiment operation

After subjects have been assigned to a group, the Guide Page shows the first task to be
performed using the rent-a-car system (T1 in Fig 9). The Guide Page automatically times
subjects as they perform each task. When subjects finish the task, they have to fill in the
satisfaction questionnaire on the Guide Page. This questionnaire includes a question for
each usability attribute related to the MoUs of Task 1 (Q1 in Fig 9). Next, the Guide Page
shows Task 2 (T2 in Fig 9). This process is repeated for each task. After subjects have
finished all tasks, there is a short questionnaire on the Guide Page with three questions
about the general usability of the system (QF in Fig 9).

Table 7 shows the relationship among experimental tasks, MoUs and usability
mechanisms included in the experiment. From 12 usability mechanism and 22 MoUs, 4
usability mechanisms and 7 MoUs were relevant for the car rental system (MoU2_STE and
Mou_STE3 are already supported by INTEGRANOVA). These MoUs include a total of 16
configurable properties and 1 non-configurable property. The other 15 MoUs have not been
included in the experiment since they are not relevant in the context of the car rental
system. We have discarded MoUs that are derived from usability mechanisms that are
especially useful for systems with much input data (Step by Step), for systems whose
actions last for several seconds (Interaction Feedback, Progress Feedback, Abort
Operation), for systems with critical actions (Global Undo) and for systems where end
users interact with the same system repeatedly during a long period of time (Preferences,
Personal Object Space, Favourites). The application of all these mechanisms is not useful
for the car rental system, where end users provide a few arguments, actions are simple,

20

actions last for a few milliseconds and end users do not interact with the same system
repeatedly.

Table 7. Relationship between experimental tasks and modes of use

Task Mode of use Mechanisms
Create a car Inform about service execution

success or failure (MoU1_SSF)
System Status Feedback

Specify the input widgets
visualization type (MoU1_STE)

Structured Text Entry

Default values (MoU3_STE) Structured Text Entry
Create a bank account Mask definition (MoU2_STE) Structured Text Entry

Dynamic help (MoU1_MH) Multilevel Help
Reserve a car for rental Warning message (MoU1_W) Warning
Put up a car for sale Show the action state (MoU3_SSF) System Status Feedback

5.3 Data Analysis

We analysed the data using three methods: comparison of means, univariate general lineal
model, and box and whisker plots. In the following we detail these three analyses.

The comparison of means is shown in Fig 10. The y-axis represents subject
satisfaction. The smaller the value, the better satisfaction is. Value 1 means that the subject
is completely satisfied and value 5 means that the subject is completely dissatisfied. The x-
axis represents the MoUs studied in the experiment (MoU acronyms were described in
Table 7). From Fig 10, the users that interact with MoUs appear to be more satisfied. This
rule does not hold for MoU3_SSF (Default values).

Fig 10. Average satisfaction per MoU

Fig 11 shows the average time spent on a task. The y-axis represents minutes and the x-
axis represents the four tasks in the experiment. Experts appear to take less time to
complete a task than beginners, which makes sense.

1

1,5

2

2,5

3

3,5

4

4,5

5

MoU_SSF1 MoU_STE1 MoU_STE3 MoU_STE2 MoU_MH1 MoU_W1 MoU_SSF3 GENERAL US.

ExpertsWithMoUs NoviceWithMoUs

ExpertsWithoutMoUs NoviceWithoutMoUs

21

Fig 11. Average minutes per task

Univariate General Lineal Model (GLM) can only be applied in these three
assumptions: residuals are independent of each other, residuals must be normally
distributed, residuals should have the same variance for all values of the independent
variables (homoscedasticity assumption). We ensured that all these assumptions were
satisfied. All the residuals obtain a value close to 2 using the Durbin-Watson tests, which
means that residuals are uncorrelated. All the residuals obtain a p-value higher than 0.05
with K-S test, which means that residuals are normally distributed. All the residuals obtain
a p-value higher than 0.05 with Levene’s test, which means that residuals have the same
variances for each independent variable.

Table 8 shows the GLM for User satisfaction level with the Use of MoUs factor. The
last column (Sig.) in Table 8 shows that subject satisfaction strongly depends on the use of
MoUs, except for Inform about service execution success or failure (MoU1_SSF), Show
the action state (MoU3_SSF) and General usability.

Table 8. Univariate GLM for User satisfaction level

Response
variable

Type III Sum
of Squares

Mean
Square

F Sig.

MoU1_SSF 6.68 6.68 0.911 0.344
MoU1_STE 44.182 44.182 5.802 0.019
MoU2_STE 458.727 458.727 50.047 0.000
MoU3_STE 45.833 45.833 12.77 0.001
MoU1_MH 94.561 94.561 22.571 0.000
MoU1_W 427.636 427.636 41.406 0.000
MoU3_SSF 21.879 21.879 1.822 0.182
General 2.97 2.97 0.529 0.47

Table 9. Univariate GLM for Time to finish the tasks

Response
variable

Type III Sum
of Squares

Mean
Square

F Sig.

Time_Task1 23221.879 23221.879 2.402 0.126
Time_Task2 62930.97 62930.97 3.464 0.067
Time_Task3 3136.742 3136.742 1.31 0.718
Time_Task4 858.242 858.242 0.076 0.784
Total_Time 33773.47 33773.47 0.247 0.621

0

1

2

3

4

5

6

TASK1 TASK2 TASK3 TASK4

ExpertsWithMoUs NoviceWithMoUs

ExpertsWithoutMoUs NoviceWithoutMoUs

22

Table 9 shows the GLM for Time to finish the tasks with the Use of MoUs factor. We
have timed each task and the addition of all of them. The last column (Sig.) in Table 9
shows that the time to finish the task is not related to the use of MoUs, which might make
sense since not always a higher usability involves making tasks faster. Sometimes the
improvement of other usability criteria different from efficiency (such as learnability or
satisfaction) may involve a decrease in efficiency.

Fig 12. Box and whisker plot for User satisfaction level with and without MoU1_W

Fig 13. Box and whisker plot for Time to finish the tasks with and without MoUs

Box and whisker plots illustrate the median and quartile for both response variables

(User satisfaction level and Time to finish tasks). Fig 12 shows the plot that compares User
satisfaction level with and without Warning message (MoU1_W). The x-axis represents the
use of the MoU1_W factor and the y-axis represents the sum of all the questions that
measure the User satisfaction level of MoU1_W. According to Fig 12, there is a sizeable
difference between the medians of subjects that do and do not interact with MoU1_W. The
satisfaction value for subjects that interact with MoU1_W is better (the lower the value on
the y-axis, the better satisfaction is). Also, the median for subjects with MoU1_W is
positively skewed, whereas the median for subjects without MoU1_W is negatively

23

skewed. All MoUs have a similar trend, except for MoU1_SSF, MoU3_SSF and General
usability, where the difference of medians between subjects that do or do not interact with
MoUs is not so clear.

Fig 13 shows the box and whisker plot for Time to finish the tasks with reference to the
Use of MoUs factor. The median of subjects that interact with and without MoUs is
identical, although it is more positively skewed for subjects that interact with MoUs.

5.4 Results Interpretation

We can state that MoUs generally improve user satisfaction independently of the
experience in the use of applications developed with the MDD method. Consequently, we
reject hypothesis H10 (satisfaction for users interacting with MoUs is the same as
satisfaction for users interacting without MoUs).

There are two exceptions: inform about service execution success or failure
(MoU1_SSF) and show the action state (MoU3_SSF). An explanation for this result might
be that these two MoUs were not implemented in the best possible way for the type of
systems used in the evaluation. Both MoUs showed a message to explain whether or not the
actions had been completed successfully and why the actions had been disabled,
respectively. After the evaluation, some subjects commented that these messages threw
them.

Another finding from the experiment is that the General usability of the system improves
very little. It is noteworthy that, unfortunately, there are no studies (in either the HCI field
or SE) about the degree of usability improvement that each specific mechanism,
recommendation, heuristic or guideline provides. Usability benefits are evaluated after
applying several improvements (typically suggested by a usability expert in HCI field).
Therefore, there is no knowledge yet about the specific gain in usability when one or a
small set of features is included in a system. Our experiment has incorporated 3 out of 6
FUFs, 4 out of 12 mechanisms and only 32% of MoUs. It seems that our approach is
promising, since an improvement of general usability is still appreciated even for such a
small incorporation of usability mechanisms.

With regard to the time hypothesis, the analysis shows that time is independent of
interaction with or without MoUs. Moreover, there is no difference between the time taken
by experts in applications developed with the MDD method and beginners. Consequently,
we accept hypothesis H20 (Time for users interacting with MoUs is the same as time for
users interacting without MoUs). For some tasks, like Task 2 (Create a bank account), time
taken by users that interact with MoUs is even worse than time taken by users that interact
without MoUs. Notice that users who interact without MoUs are not notified about
mistakes made during the task. We observed that, very often, they did not take as long to
complete the task because they performed the task incorrectly. For example, Task 2 forced
the user to make a mistake that only subjects who interacted with MoUs noticed. In this
task, the user had to insert a bank account number randomly. This value should have a
specific 16-digit format (according to real cards). However, most subjects that interacted
without MoUs inserted the wrong number of digits. Subjects that interacted with MoUs had
a mask and a default value that indicated the correct number of digits. Therefore, these
subjects noticed and spent time fixing the mistake. Reviewing the task outcomes, we can
also state that MoUs help to improve user effectiveness (completing the task satisfactorily).

From the results of our experiment we can extract some relevant conclusions. First, end
users’ satisfaction improves after including MoUs in a system. This statement justifies the

24

enhancement of MDD methods to support MoUs. Second, the improvement of satisfaction
does not depend on the level of end users’ experience, which means that novice users also
appreciate an improvement in satisfaction. Third, interaction time is not reduced
significantly through the inclusion of MoUs, which means that the use of usability features
is not suitable to reduce end users’ effort.

5.5 Threats to Validity

We have used the classification of threats defined by Wohlin [43] to identify threats. Next,
we discuss how we have dealt with those issues that threaten the validity of the experiment:

Subjects of random heterogeneity: This threat appears when there are subjects with
more experience than others. In our experiment, all subjects had lengthy experience in Web
applications. This was confirmed by the demographic questionnaire.

Maturation: This is the effect of subjects reacting differently to treatments as time
passes. We dealt with this threat by designing an experiment that takes only 15 minutes.

Instrumentation: Even though tasks and questionnaires are the same for all subjects,
these can be interpreted differently by each subject. In order to minimize this threat, we ran
a pilot test with 4 subjects. This pilot test was useful for detecting ambiguous and hard-to-
understand instructions and questions. All detected defects were fixed before carrying out
the real experiment.

Hypothesis guessing: This threat accounts for cases where subjects guess the aim of the
experiment and act conditionally upon that goal. This threat has been minimized by
concealing the aim.

Interaction of selection and treatment: This is an effect of having a subject population
that is not representative of the population that we want to generalize. This threat is
minimized by blocking the number of subjects with and without experience of
INTEGRANOVA applications. Moreover, we have studied subjects aged from 21 to 56
years, with different professions and from several countries.

Next, we describe threats that we did not manage to avoid due to the characteristics of
our experiment:

Mono-MDD tool bias: This is the effect of studying our approach only with one MDD
method. The application of our approach to INTEGRANOVA demonstrates that the
proposal can work with a real tool but this fact does not involve that using other MDD
tools, results would be the same. Each MDD method has its own model to represent the
interaction, which hinders the generalization of our results to any other MDD method.

Experiment expectancies: This threat appears when participants can bias the results
unconsciously due to expectations for specific results. Our experiment suffers from this
threat since we implemented manually unsupported MoUs for the experiment and we also
defined the approach to include MoUs in a MDD method.

Restricted generalizability: the results of our experiment are only valid for the car
rental system, although the findings might be a clue for other systems that deal with
management operations. To generalize the results to other systems, Web applications from
different domains need to be used. However, our research is not aiming to gain empirical
evidence on usability improvement through the incorporation of FUFs in a system. HCI
recommendations for improving usability have been routinely followed during years
without experimental evidence. This experiment just aims to collect some empirical data to
illustrate that including usability features into a MDD method might worth.

25

6 Manual Versus MDD Design of Usability Features

Most MDD methods have mechanisms to represent the interaction with the end user. For
example, WebRatio [2] includes a Presentation Model to express the layout and graphic
appearance of pages, independently of the output device and of the rendition language. This
model is based on an abstract XML syntax. UWE [19] enables the definition of the front-
end interface by means of a Hypertext Model. It defines pages and their internal
organization in terms of components for displaying content. This model also supports the
definition of links between pages and content units that support information location and
browsing. Components can also specify operations; such as, content management or user’s
login/logout procedures. NDT [9] has an abstract interface to represent the interaction with
the user. This model is based on a set of evaluated prototypes, where the analyst and the
users must choose the best one for the developing system. OO-Method [29][28] has two
models to represent the interaction: the Abstract Interaction Model and the Concrete
Interaction Model. The Abstract Model represents the interface independently of platform
features and the Concrete Model represents the interface for a specific platform.

However, all these MDD methods (among others) do not provide enough expressiveness
in their conceptual models to support usability features. Nowadays, analysts that work with
MDD methods need to enhance manually the generated code to include such features. Next,
we compare the effort of programming usability features manually versus the effort of
modelling them through conceptual primitives. This comparative is performed using OO-
Method. The object used in the comparison is the software system used in the laboratory
evaluation. The subjects are two of the authors of this paper, who are experts in OO-
Method and INTEGRANOVA. These subjects did not participated in the definition of OO-
Method (1992) or in the implementation of INTEGRANOVA (2002) but they are
developing software systems with INTEGRANOVA from 2006. The choice of experts is
because of our approach requires analysts that already work with MDD methods and aim to
deal with usability features through conceptual primitives, in the same way as they deal
with functional or behaviour features. Analyst1 and Analyst2 have a wide experience
developing software systems with INTEGRANOVA and they are already familiar with the
architecture of the generated code. Moreover, Analyst2 is an expert in the development of
Web applications using programming languages such as PHP or C#.

 As we have commented in the evaluation section, the 5 MoUs studied in the experiment
were implemented manually by Analyst1, since INTEGRANOVA does not yet support
their code generation. We have considered the effort spent in this implementation as the
data of Analyst1 to manually include usability features in the code generated from
INTEGRANOVA. Analyst2 has replicated the development of the same system used in the
experiment to analyze possible differences between efforts of both analysts. Table 10
shows effort of Analyst1 (A.1) and Analyst2 (A.2) to manually implement unsupported
MoUs in terms of time and number of lines of code. Mask definition (MoU2_STE) and
Default values (MoU3_STE) have not been included since they did not require manual
implementation in INTEGRANOVA. Remember that both MoUs are already supported by
INTEGRANOVA and they are modelled using the primitives shown in Fig 3 and Fig 4. As
a result, Analyst1 needed 14 hours and Analyst2 needed 11.5 hours to manually implement
the 5 MoUs. This time includes the time taken to debug the code. The source code of more
than three classes was modified for each MoU, which is an added difficulty for the analyst.

26

The reason why effort (both time and number of lines) obtained with Analyst2 is better than
Analyst1 might be due to his great experience in the development of Web applications.

These data align with previous information on FUF design effort [16]. Table 11 shows
this previous information focused on the FUFs used in our lab evaluation. The table
includes information about the difficulty of implementing FUF functionality, the number of
classes affected by the FUF, the complexity of the new methods that implement the FUF
and the amount of interaction between new and existing methods. Feedback has the biggest
impact on design even if not many classes are needed. At the other end of the scale, Help is
the easiest FUF to implement since it does not require much functionality or many
methods. However, it took us a long time to implement this FUF because it appears in all
the system interfaces, since each interface has its own help.

Table 10. Time taken to implement each MoU manually in INTEGRANOVA

FUF MoU Time Lines

 A. 1 A.2 A.1 A.2

Feedback Inform about service

execution success or failure

(MoU1_SSF)

2 h 2h 60 12

Show the action state

(MoU3_SSF)

2 h 5h 26 22

Warning message

(MoU1_W)

3 h 1.5h 94 16

User Input

Error

Prevention

Specify the input widgets

visualization type

(MoU1_STE)

3 h 1.5h 35 22

Help Dynamic help (MoU1_MH) 4 h 1.5h 108 23

Table 11. Difficulty of including FUFs manually [16]

FUF Functionality Class Methods Interac.
Feedback High Low Medium High
User Input
Error
Prevention

Medium Low Medium Low

Help Low Low Low High

Let us move now on measuring the workload of the analyst working with conceptual

primitives (MDD approach). The 2 MoUs that are currently supported by INTEGRANOVA
(Mask definition and Default values) are measured using existing INTEGRANOVA
interfaces (see Fig 3 and Fig 4). The other 5 MoUs that are not supported currently by
INTEGRANOVA have been calculated using interface prototypes (such as Fig 2). Table 12
shows the number of clicks and the approximate seconds that Analyst1 (A.1) and Analyst2
(A.2) needed to model MoUs used in the experiment. Note that comparing both analysts,
we notice that Analyst1 took less effort (both time and number of clicks) than Analyst2.

27

The reason might be that Analyst1 is working in the proposal to represent usability features
through conceptual models from the beginning, and he knows the prototypes perfectly.
Data of Table 12 has been extracted without considering default values in
INTEGRANOVA. These numbers can decrease sharply if the required and default values
match in the interfaces to model MoUs.

Comparing Table 10 and Table 11 with Table 12, we find that the workload of the
analysts using conceptual primitives to develop usability features is clearly smaller.
Analysts needed around 12 hours to implement modes of use manually while they needed
around 10 minutes to model modes of use through conceptual primitives.

With our proposal, the MDD designer needs to spend time improving the conceptual
model with new conceptual primitives and to change the model compiler in order to
incorporate usability features into the MDD method. However, this is a one-off workload.
Once the new primitives have been enabled in the MDD method, analysts find it
straightforward to include MoUs in just a few clicks.

Table 12. Number of clicks to model each MoU in INTEGRANOVA

FUF MoU Time Clicks
A.1 A.2 A.1 A.2

Feedback Inform about service
execution success or
failure (MoU1_SSF)

300 sec 350
sec

34 36

Show the action state
(MoU3_SSF)

5 sec 8 sec 2 2

Warning message
(MoU1_W)

10 sec 12 sec 8 9

User Input
Error
Prevention

Specify the input widgets
visualization type
(MoU1_STE)

7 sec 10 sec 4 5

Mask definition
(MoU2_STE)

7 sec 12 sec 5 5

Default values
(MoU3_STE)

6 sec 12 sec 6 6

Help Dynamic help
(MoU1_MH)

280 sec 400
sec

30 32

7 Related Work

In the literature, there are many works related to User Interface Design Patterns (UIDPs)
and interaction patterns that propose solutions for well-known and frequent user interface
problems. The major UIDP libraries include Tidwell [40], Perzel et al. [31] and van Welie
et al. [42]. Tidwell represents UIDPs graphically in such a way that users can participate in
architecture design. Perzel et al. describe a set of interaction patterns targeting web
environments. Van Welie et al. have defined interaction patterns focused on the user’s
perspective.

A shortcoming of these patterns is that each author defines the patterns with a different
notation and a different syntax. There are as many notations to represent UIDPs as authors

28

working in this area. Analysts need to be familiar with a huge amount of patterns expressed
in different notations in order to take advantage of all of UIDPs. Some proposals try to
overcome this problem by using a formal notation to represent patterns. Henninger et al.
[12] use Semantic Web concepts to formally describe UIDPs in a way that computers can
understand and that can be converted into a human-readable form.

UIDPs deal only with interface visual elements, i.e., a list of elements or a navigation
button. Interface visual elements are not the only type of usability features, there are
usability features strongly related to system architecture (as Folmer [11] et al. and Bass et
al. [4] state). This type of usability feature cannot be represented using UIDPs. For
example, a UIDP can specify that a progress bar is needed in an interface, but this pattern
does not deal with the internal services needed to be executed for the progress bar to work.

There are very few works dealing with usability features in a MDD method. Moreover,
when they are discussed, very few precise details are given. This makes it difficult to
understand how these approaches could work correctly in practical settings. Tao [38]
proposes to model usability by means of state transition diagrams. Each diagram can be
used to represent an interaction between the system and the user. Paternò et al. [30] have
defined a method for the development of user interfaces for applications based on Web
services. The method starts from a task model and it is refined with an abstract and a
concrete model. In order to guide the analyst, the process to specify interfaces is supported
with usability guidelines. Both state transition diagrams and tasks models are not able to
deal with all types of usability subcharacteristics; they are only able to represent
interactions.

Sottet et al. [37] investigate MDD mappings for embedding both usability description
and control. In this research, a user interface is defined as a graph of models describing the
interface from different perspectives ranging from user tasks to deployment in the context
of use. Transformations between different abstraction levels are performed by means of
mappings. These mappings describe and control system usability. Raneburger et al. [32]
propose improving system usability by MDD transformations. Raneburger’s proposal
focuses on minimizing navigation and scrolling in interfaces for small devices. Both Sottet
and Raneburger define usability features inside transformation rules. This approach
requires know-how to define transformations with usability.

There are works focused on measuring usability in conceptual models. Fernandez et al.
[10] propose a usability model to evaluate system usability from conceptual models.
According to Fernandez, evaluation performed at the conceptual model level produces a
platform-independent usability report that provides feedback to the system analysis stage.
Molina et al. [21] propose defining usability features from the early stages of the MDD
development process. This approach focuses on navigational models provided by a tool that
offers automatic support for all the activities. But most of the usability features are
subjective and cannot be evaluated automatically without taking into account the user. For
instance, features related to the attractiveness subcharacteristic cannot be measured by
means of conceptual models. Therefore, the result of early usability evaluation is a
prediction of sorts, but it cannot be considered trustworthy.

Summarizing, there are some proposals for dealing with usability in a MDD method. But
few propose modelling usability features by means of conceptual models, which is a
software artefact strongly related to producing quality systems. Moreover, we found no
work that defines specific conceptual primitives to represent usability features in a MDD

29

method. Usability is an important feature of systems, therefore MDD methods should
provide a mechanism to abstractly represent this characteristic.

8 Conclusions

We aim to enrich MDD methods with enough expressiveness to support usability features.
This paper presents a procedure to extract properties of existing functional usability
features and represent them with conceptual primitives. Next, these primitives can generate
the code that implements the usability features thanks to a model compiler. Our proposal
brings us a step closer to conceptual models where the models represent not only
functionality, behaviour or persistence, but also usability features.

In a MDD context, we have found no other research proposing conceptual primitives to
abstractly represent usability features. Other authors suggest dealing with usability by
means of models, but do not define how to build such models. In general, in any MDD
method, usability features are manually implemented once the system has been generated
from a conceptual model.

Our approach needs to be partly independent and partly dependent on the MDD method.
The modes of use and properties obtained in this research are applicable to any MDD
method. The conceptual primitives and the changes to the model compiler are MDD
method dependent, since the conceptual model and model compiler are exclusive to the
MDD method. However, our work on the OO-Method shows that our approach works and
is useful for guiding designers through the changes that should be made to other MDD
methods. The application of our proposal to other MDD methods depends on the
expressiveness of their conceptual models. OO-Method has an interaction model, which
facilitates the inclusion of new conceptual primitives to represent interaction features.
However, MDD methods with less expressiveness to deal with interaction would require
adding more conceptual primitives to represent MoUs.

By means of an experiment, we have observed that our approach improves user
satisfaction. This means that we are getting better user satisfaction by incorporating MoUs
in a system. We have also compared the workload required to introduce MoUs by means of
conceptual primitives versus manually. Once the primitives representing MoUs have been
incorporated into the MDD method, there is a sizeable reduction in analyst workload with
respect to manual implementation.

Acknowledgments

This work was developed with the support of the Spanish Ministry of Science and
Innovation project SMART ADAPT (TIN2013-42981-P), TIN2011-23216 and was co-
financed by ERDF. It also has the support of Generalitat Valenciana-funded ORCA project
(PROMETEO/2009/015) and UV (UV-INV-PRECOMP13-115032).

References

[1] S. Abrahão, E. Iborra, and J. Vanderdonckt, "Usability Evaluation of User Interfaces Generated with a

Model-Driven Architecture Tool," in Maturing Usability, E. Law, et al., Eds., ed: Springer, pp. 3-32, 2008.

[2] R. Acerbis, A. Bongio, M. Brambilla and S. Butti, WebRatio 5: An Eclipse-Based CASE Tool for

Engineering Web Applications, Lecture Notes in Computer Science, vol. 4607, pp. 501-505, 2007.

[3] N. Aquino, J. Vanderdonckt, F. Valverde and O. Pastor, Using Profiles to Support Model Transformations in

30

the Model-Driven Development of User Interfaces, presented at 7th Int. Conf. on Computer-Aided Design of

User Interfaces CADUI’2008, Albacete, Spain, pp. 35-46, 2008.

[4] L. Bass and B. John, Linking usability to software architecture patterns through general scenarios, The

journal of systems and software, vol. 66, pp. 187-197, 2003.

[5] J.M. Bastien and D. Scapin, Ergonomic Criteria for the Evaluation of Human-Computer Interfaces, Rapport

technique de l'INRIA, pp. 79, 1993.

[6] INTEGRANOVA http://www.integranova.com

[7] L. Chung, B. Nixon, E. Yu and J. Mylopoulos, Non-Functional Requirements in Software Engineering.

London: Kluwer Academic Publishing, 2000.

[8] T. Coram and L. Lee. A Pattern Language for User Interface Design. http://www.maplefish.com/todd/

papers/experiences/Experiences.html, 1996

[9] M.J. Escalona and G. Aragon, NDT. A Model-Driven Approach for Web Requirements, IEEE Transactions

on Software Engineering, vol. 34, pp. 377-390, 2008.

[10] A. Fernández, E. Insfrán, and S. Abrahão, Integrating a Usability Model into Model-Driven Web

Development Process, presented at Web Information Systems Engineering - WISE 2009, pp. 497-510, 2009.

[11] E. Folmer and J. Bosch, Architecting for usability: A Survey, Journal of Systems and Software, vol. 70 (1),

pp. 61-78, 2004.

[12] S. Henninger and P. Ashokkumar, An Ontology-Based Infrastructure for Usability Design Patterns,

presented at Semantic Web Enabled Software Engineering (SWESE), Galway, Ireland, pp. 41-55, 2005.

[13] ISO/IEC 9126-1, Software engineering - Product quality - 1: Quality model, 2001.

[14] ISO 9241-11, Ergonomic requirements for office work with visual display terminals - Part 11: Guidance on

Usability, 1998.

[15] N. Juristo and A. Moreno, Basics of Software Engineering Experimentation, Springer, 2001.

[16] N. Juristo, A. M. Moreno and M. I. Sánchez, Analysing the impact of usability on software design, Journal

of Systems and Software, vol. 80, pp. 1506-1516, 2007.

[17] N. Juristo, A. M. Moreno and M. I. Sánchez, Guidelines for Eliciting Usability Functionalities, IEEE

Transactions on Software Engineering, vol. 33, pp. 744-758, 2007.

[18] S. Kent, "Model Driven Engineering," presented at the Proceedings of the Third International Conference on

Integrated Formal Methods, pp. 286-298, 2002.

[19] N. Koch, A. Knapp, G. Zhang and H. Baumeister, "UML-Based Web Engineering, an Approach Based on

Standards, Web Engineering, Modelling and Implementing Web Applications, Springer, pp. 157-191, 2008.

[20] S.J. Mellor, A. N. Clark and T. Futagami, Guest Editors' Introduction: Model-Driven Development, in IEEE

Software, vol. 20, pp. 14-18, 2003.

[21] F. Molina and A. Toval, Integrating usability requirements that can be evaluated in design time into Model

Driven Engineering of Web Information Systems, Advances in Engineering Software, vol. 40, pp. 1306-

1317, 2009.

[22] P.J. Molina, S. Meliá, and Ó. Pastor, JUST-UI: A User Interface Specification Model, presented at Computer

Aided Design of User Interfaces (CADUI'2002), Valenciennes, France, 2002.

[23] List of changes: http://hci.dsic.upv.es/FUF/ChangesList.html

[24] Y. I. Ormeño and J. I. Panach, "Mapping study about usability requirements elicitation," presented at the

Proceedings of the 25th international conference on Advanced Information Systems Engineering, Valencia,

Spain, pp. 672-687, 2013.

[25] J.I. Panach, N. Juristo and O. Pastor: Including Functional Usability Features in a Model-Driven

Development Method Computer Science and Information Systems (ComSIS) vol. 10, 999-1024, 2013.

[26] J,I. Panach, N. Juristo and O. Pastor: Introducing Usability in a Conceptual Modeling-Based Software

Development Process, presented at 31st International Conference on Conceptual Modeling (ER), Vol. 7532.

Springer, Lecture Notes in Computer Science, Florence, Italy, 525-530, 2012.

31

[27] J.I. Panach. Incorporating Usability Mechanisms in MDD Development. PhD Dissertation. Universidad

Politécnica de Valencia, 2010

[28] O. Pastor, J. Gómez, E. Insfrán and V. Pelechano. The OO-method approach for information systems

modelling: from object-oriented conceptual modelling to automated programming, Information Systems, vol.

26, pp. 507-534, 2001.

[29] O. Pastor and J. Molina, Model-Driven Architecture in Practice, Springer, 2007.

[30] F. Paternò, C. Santoro and L.D. Spano: Engineering the authoring of usable service front ends, Journal of

Systems and Software vol. 84, 1806-1822, 2011.

[31] K. Perzel and D. Kane, Usability Patterns for Applications on the World Wide Web, presented at PloP'99

Conference, 1999.

[32] D. Raneburger, R. Popp, S. Kavaldjian, H. Kaindl, and J. Falb, Optimized GUI Generation for Small

Screens, Model-Driven Development of Advanced User Interfaces, vol. 340, Springer, pp. 107-122, 2011.

[33] J. Sauro and J. R. Lewis, Quantifying the User Experience: Practical Statistics for User Research, Morgan

Kaufmann, 2012.

[34] C. D. Schmidt. Guest Editor's Introduction: Model-Driven Engineering. IEEE Computer. 25-31 Available:

http://doi.ieeecomputersociety.org/10.1109/MC.2006.58, 2006.

[35] B. Selic, The Pragmatics of Model-Driven Development, IEEE software, vol. 20, pp. 19-25, 2003.

[36] S. Sendall and W. Kozaczynski, Model Transformation: The Heart and Soul of Model-Driven Software

Development, IEEE Software, vol. 20, pp. 42-45, 2003.

[37] J.S. Sottet, G. Calvary, J. Coutaz, and J.-M. Favre, A Model-Driven Engineering Approach for the Usability

of Plastic User Interfaces, presented at Engineering Interactive Systems joining Three Working Conferences

: IFIP WG2.7/13.4 10th Conference on Engineering Human Computer Interaction, IFIP G 13.2 1st

Conference on Human Centred Software Engineering, DSVIS - 14th Conference on Design Specification

and Verification of Interactive Systems, pp. 22-24, 2007.

[38] Y. Tao, An Adaptive Approach to Obtaining Usability Information for Early Usability Evaluation, presented

at International MultiConference of Engineers and Computer Scientists (IMECS), pp. 1066-1070, 2007

[39] UML: http://www.uml.org/

[40] J. Tidwell, Designing Interfaces, O'Reilly Media, 2005.

[41] Web used in the experiment: http://hci.dsic.upv.es/TareasEvaluacion

[42] M.v. Welie and H. Traetteberg, Interaction Patterns in User Interfaces, presented at 7th. Pattern Languages of

Programs Conference, Illinois, USA, 2000.

[43] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén, Experimentation in Software

Engineering: An Introduction, Springer, 2012.

