
A Proposal to Elicit Usability Requirements
within a Model-Driven Development

Environment
Yeshica Isela Ormeño1, Jose Ignacio Panach2, Nelly Condori-Fernández1,3, Óscar Pastor1

1Centro de Investigación en Métodos
de Producción de Software ProS
UniversitatPolitècnica de València
Camino de Vera s/n, 46022
Valencia, Spain
{yormeno, nelly,
opastor}@pros.upv.es

2Escola Tècnica Superior
d’Enginyeria
Departamentd’Informàtica
Universitat de València
Av. de la Universidad, s/n
46100 Burjassot, Valencia,
Spain
joigpana@uv.es

3Faculty of Electrical
Engineering, Mathematics and
Computer Science
University of Twente
Information Systems Group
7500 AE Enschede, 217,
Netherlands
O.N.CondoriFernandez@utwen
te.nl

ABSTRACT
Nowadays there are sound Model-Driven Development (MDD) methods that deal with
functional requirements, but in general, usability is not considered from the early stages of the
development. Analysts that work with MDD implement usability features manually once the
code has been generated. This manual implementation contradicts the MDD paradigm and it may
involve much rework. This paper proposes a method to elicit usability requirements at early
stages of the software development process such a way non-experts at usability can use it. The
approach consists of organizing several interface design guidelines and usability guidelines in a
tree structure. These guidelines are shown to the analyst through questions that she/he must ask
to the end-user. Answers to these questions mark the path throughout the tree structure. At the
end of the process, we gather all the answers of the end-user to obtain the set of usability
requirements. If we represent usability requirements according to the conceptual models that
compose the framework of a MDD method, these requirements can be the input for next steps of
the software development process. The approach is validated with a laboratory demonstration.

 Keywords: Usability requirements, model-driven development, requirements elicitation process

1.INTRODUCTION

Model-Driven Development (MDD) paradigm (Embley, Liddle, & Pastor, 2011) states that the
analysts’ entire effort should be focused on a conceptual model, and the system should be
implemented by means of model to code transformations performed by a model compiler. A
software production process is then seen as a set of conceptual models that are adequately
transformed from requirements to code. A plethora of MDD methods and tools have been
proposed, such as WebML (Ceri, Fraternali, & Bongio, 2000) or UWE (Koch, Knapp, Zhang, &
Baumeister, 2008) among others.

There are two main dimensions to consider in MDD (Frankel, 2002): a “vertical” dimension and
a “horizontal” dimension. In the vertical dimension there are at least three main layers that must
be present in any MDD process:

1. A Requirements Modeling step, to produce a Requirements Model.

2. A Conceptual Model representation, where requirements are represented from the
computer-oriented perspective.

3. The final Software Product (the Code).

The horizontal dimension focuses on the different expressiveness that must be present in the
different conceptual perspectives of a MDD software process. Summarizing, these perspectives
are:

 The data (static, system structure-oriented) perspective.

 The functional (dynamic, system behavior-oriented) perspective.

 The interaction (user interface-oriented) perspective.

While it can be argued that the two first perspectives (data and functionality) are largely explored
by the different MDD approaches, it is surprising to realize that the interaction perspective is not
at all so intensively explored. One could conclude that a Software Product is just the sum of a
conceptual model where data and behavior are precisely specified, what is not exactly true,
because the specification of the system interaction is an essential component of any software
product. To confirm this situation, it is enough to consider the current modeling approaches that
we find in practice. From the Data perspective, the question of what data models can be used to
represent data has an immediate answer: ER and UML Class Diagrams are clearly among the
most widely used and known. From the Functional perspective, since the appearance of the Data
Flow Diagrams till the most modern UML diagrams designed to represent functionality, the offer
is large. However, if the question is what models are specially used to represent System
Interaction, the answer is not at all so immediate.

Extending a previous version presented at (Y. I. Ormeño, Panach, Condori-Fernandez, & Pastor,
2013), the goal of this paper is to explore the need of an interaction modeling, focusing on an
essential software quality criteria that is mainly in the interaction scope: usability. Nowadays, in
MDD, usability features are manually implemented once the code has been generated. According
to Bass (Bass & John, 2003) and Folmer (Folmer & Bosch, 2004), these manual changes may
involve changes in the system architecture, which can result in a lot of extra effort. Moreover,
these manual implementations can produce a source code that contradicts the system’s
characteristics expressed in the conceptual model.

In the previous work (Y. I. Ormeño et al., 2013) we defined how to elicit usability requirements
according to existent usability guidelines. In this paper, we define how to include the usability
requirements elicitation process in a MDD method. The main final goal of the paper is to define
an approach to facilitate the usability requirements capture process for analysts who are not
experts in usability engineering, and that want to include also the specification of usability
requirements in a MDD-based approach.

The proposal to elicit usability requirements is based on the idea that first, an expert in usability
defines a tree structure where design alternatives and usability guidelines are represented
textually with questions and answers. Next, the analyst (non-expert in usability) can use this tree

structure indefinitely to ask end-users which alternative is the most suitable according to their
requirements. Usability guidelines can help the end-user select an alternative throughout the tree
structure. At the end of the process, we have a design for our system based on the end-user’s
requirements. If we represent the designs according to an existing conceptual model of a MDD
method, those designs are the input for next development steps in the MDD process. The
approach is validated with a laboratory demonstration with the participation of 4 subjects.

This paper is divided into the following sections: Section 2 presents the state of art of various
approaches concerning both the modeling of interaction and the use of usability guidelines;
Section 3 provides a general view of the approach to elicit usability requirements; Section 4
describes how to build the tree structure to represent all the design alternatives in an existent
MDD method; Section 5 shows how to use the approach once the tree structure has been built;
Section 6 reports an initial empirical validation of our approach. Finally, Section 7 describes the
conclusions and future work.

2. RELATED WORK

The literature presents a lot of usability guidelines to support the design of user interfaces, but
they may confuse the analyst if she/he is not an expert in usability. In general, the analyst may
face the following problems (among others): it is not easy to understand how to apply the
guideline; sometimes it is difficult to determine when a guideline has been broken; and, some
guidelines are so ambiguous that they are difficult to apply to specific contexts. All these aspects
require a huge effort on the part of the analyst that leads us to determine if the usability
guidelines are still usable.

Cronholm’s work (Cronholm, 2009) and Henninger’s work (Henninger, 2000) describe possible
solutions to some of these problems. Cronholm’s work proposes meta guidelines as a solution to
obtain more systematic and categorized guidelines. Design guidelines defined by Henninger
include two types of guidelines: interface principles, or typed rules, and usability examples, also
known as cases. These cases are examples of specific interfaces developed for organizations that
contain a lot of knowledge about the needs and common practices of clients’ work. Cysneiros’s
work (Cysneiros, Werneck, & Kushniruk, 2005) proposes a reusable catalogue to capture
usability requirements. The method is based on i* framework and it uses personal experiences to
obtain knowledge to achieve the objectives of usability.

The cited works aim to mellow the ambiguity of the usability guidelines, but they increase the
complexity of use for non-experts in usability. All these solutions involve a lot of effort to
understand all the guidelines and to choose the most suitable one for a specific context. For
example, understanding the notation or the information arrangement in a guideline may involve
some of the analyst’s effort in order to use the guideline optimally. Furthermore, the comparison
of guidelines shows great variability, which leads to creating specific usability guidelines for
specific domains. Some authors aim to reduce developer’s effort, such as Ferre (Ferre, Juristo, &
Moreno, 2005), who defined a framework for usability practices integration. HCI techniques are
characterized according to relevant criteria from a Software Engineering (SE) perspective and
integrated into a framework organized according to development activities. Examples of methods
to capture usability requirements are: a method for quantitative usability requirements applied in
user interfaces to depict the true usability (Jokela, Koivumaa, Pirkola, Salminen, & Kantola,

2006); multimedia user interface designs that design attractive and usable multimedia systems
(Sutcliffe, Kurniawan, & Jae-Eun, 2006); and, embedded Functionality Usability Features in
model transformation technologies (Panach, España, Moreno, & Pastor, 2008). We can state that
there are many proposals but none of them clearly and concisely addresses how to perform the
usability requirements capture in early stages.

If we focus on approaches to elicit usability requirements according to the MDD paradigm, we
realize that there are not previous works; in spite of MDD methods have usually a model to
represent the interaction with the end-user. For example, WebRatio (Acerbis, Bongio, Brambilla,
& Butti, 2007) includes a Presentation Model to express the layout and graphic appearance of
pages, independently of the output device and of the rendition language. UWE (Koch et al.,
2008) enables the definition of the front-end interface by means of a Hypertext Model. NDT
(Escalona & Arag, 2008) has an abstract interface based on a set of prototypes to represent the
interaction with the user. OO-Method (Pastor, 2007) has two models to represent the interaction:
the Abstract Interaction Model (independently of platform) and the Concrete Interaction Model
(platform-specific). All these MDD methods have some proposals to capture functional
requirements but all of them lack of a process to capture usability requirements. This might result
in unsatisfied end-users, which involves changes in conceptual models and in the generated code
to solve problems related to interaction. This rework involves a lot of effort if analysts are not
experts in usability. An early usability requirements elicitation guided by means of usability
guidelines aims to prevent these problems from the first steps of the software development
process.

This paper defines a process to organize the information stored in different usability guidelines
based on a user-centred development (Hassenzahl, 2008). This way, analysts without a
background in usability can work with the guidelines. Based on a review of the literature
(Yeshica Isela Ormeño & Panach, 2013), we can say that very few papers that address how to
perform the extraction process of usability requirements have been written (Henninger, 2000),
(Cysneiros et al., 2005). Generally this task is done when the usability requirement capture has
finished. Moreover, usability requirement capture has not been developed focusing on the MDD
method. This paper aims to cover this gap, proposing a process to capture usability requirements
such a way they can be transformed later into part of the conceptual model of the MDD method.

3. A PROPOSAL TO ELICIT USABILITY REQUIREMENTS

Based on ISO 9241-11 (ISO-9241_11, 1998) standard, usability requirements are requirements
that affect effectiveness, efficiency and satisfaction of a user achieving his/her goals in a defined
context of use. Our approach is based on existing usability guidelines and design guidelines, that
are stored in a tree structure. The analyst navigates through this structure in order to capture the
usability requirements by asking questions to end-users. The tree structure helps the analyst to
identify the different design alternatives, and how these decisions will affect the system’s
usability. Figure 1 shows the elements used in our approach. Next, we describe each element:

Figure 1. Schema of the proposal to capture usability requirements

3.1 Usability guidelines and interface design guidelines
Both usability guidelines and interface design guidelines have been created to guide the analyst
to develop systems (Figure 1a). Usability guidelines recommend how to combine users, tasks
and context to enhance the system usability. Interface design guidelines provide alternatives for
designing systems. These guidelines have been built for different technologies and platforms that
are represented by standards, principles, heuristics, styles, patterns, best practices, etc. Design
and usability guidelines are related to each other since some design guidelines can improve or
decrease the usability (depending on the combination of tasks, users and context). Working
directly with both kinds of guidelines implies a huge effort as the variability and amplitude of
these guidelines is very high. In order to reduce this effort, we propose storing all the relevant
guidelines information in a tree structure, which is explained in more detail below.

3.2 Tree diagram
We propose using design and usability guidelines through a tree structure in order to minimize
the cognitive effort to work with them (Figure 1b). A tree structure is defined as a connected
graph with no cycles and a root (Johnsonbaugh, 1997). Figure 2 shows a general schema of the
tree structure used in our approach, which is composed of four elements: question, answer, group
of questions, and design. Next, we present these elements:

Figure 2. General representation of the tree structure (adapted from (Y. I. Ormeño et al., 2013))

Root

GQ1

GQ2

GQi

GQn

...

Q1

Q2

...

Qi

Qn

Ai/GQii/Di

GQI : GROUP OF
QUESTION
QI : QUESTION
AI : ANSWER
DI : DESIGN
i = 1,2,…, N

LEGEND

...

Ai/GQii/Di

Ai/GQii/Di

Ai/GQii/Di

1. Question(Qi): The design guidelines present diverse design alternatives for many UI (User

Interface) components (e.g. menu). In order to ask the end-user which alternative she/he
prefers, we have defined a question when alternatives to design appear. For example,
when we are designing dialog elements for mobile, design guidelines (Nokia), (Android,
2012) specify that dialog elements provide a top-level window for short-term tasks and a
brief interaction with the user. We can define a question to decide which is the UI
component to represent a selectionable task, “Which UI component is used to show
selectable tasks?”. In Figure 2, questions are represented by Qi.

2. Answer(Ai): These are the exclusive options for each question according to interface
design guidelines. These options are presented to the analyst in such a way that she/he can
choose which one best fits user’s requirements. The analyst’s decision is not only based
on end-user criteria, but also on usability guidelines. This means that we must relate
answers to usability guidelines depending on the type of user, task and context. When
answers are shown to the analyst, we will show which answers are recommended by
usability guidelines. For example, the answers to the question “Which UI component is
used to show selectable tasks?” can be: RadioButtons, TextBoxes, CheckBoxes or Slider
(Android, 2012), (Nokia). According to usability guidelines, a RadioButton is constructed
for a persistent single-choice list (Android, 2012), where aspects such as “simplify
navigation” and “minimize user input” are usability requirements (Cerejo, 2011). In
Figure 2, answers are represented as Ai, Ai+1, … , An.

3. Group of Question (GQi): Some branches of the tree structure are not mutually exclusive
(the end-user should be asked all of the questions). This type of branch is represented by a
group of questions, which gathers several questions grouped by a design characteristic.
For example, the question “Which UI component is used to show selectable tasks?” can
be gathered with other questions that ask about Selection Dialogues, such as “Where is the
action button located?”, “Where is the dialogue box located?”, and “Where is the
positive action on button located?”. All these questions have in common that deal with
how selection dialogs are displayed, and all of them are gathered in the same Group of
questions. In the tree structure these are represented as GQi, in Figure 2.

4. Designs (Di): These are the interface designs reached through the alternatives that the
analyst has been choosing. The analyst navigates through the tree structure asking the
questions to the end-user, who selects the most suitable answer (usability guidelines can
recommend some answers). When the analyst reaches a leaf in the tree, a design has been
obtained. The final design of the whole system is the set of leaves in the tree that the
analyst has reached. For example, a design can be a selection dialog with radio buttons,
where each item shows an enumerated data (Nokia),(Android, 2012). At the tree structure
these are represented as Di, in Figure 2.

The tree structure must be built by an analyst in collaboration with an expert in usability, who
knows how to interpret and use usability guidelines. The expert in usability is responsible for
defining the recommendations for each answer. In order to identify all the elements that compose
the tree structure, we have defined a meta-model (Figure 3). The meta-model allows the
replication of the tree structure in any context and the instantiation of as much instances as we
need. Each instance can be used for different design and usability guidelines, resulting in
different combinations of questions and answers.

Next, we describe the elements of the metamodel (classes). Class Design Guideline represents
the interface design guidelines used in our tree structure. Questions that the end-user will be
asked in order to discover which design alternative is most suitable are derived from these
guidelines. Every question can be related to a group of questions, or to at least two Answers,
since there is always more than one choice for each question. The class Group of Questions
represents the set of questions we can define, and the class Answer specifies the exclusive
alternatives for the question. Some of these answers can be recommended by one or several
usability guidelines, recommendations, standards and best practices, represented as instances of
the class Usability Guideline. According to the usability definition described in ISO-9241 (ISO-
9241_11, 1998), some usability guidelines are specific for a context, task or user. This is
represented through the classes Context, Task, and User respectively. Finally, class Design
represents the designs that the analyst can get to at the leaves of the tree. Each instance of this
class is a different interface design that we can reach through different answers.

Figure 3. Meta-model of usability requirements capture (adapted from (Y. I. Ormeño et al., 2013))

3.3 Usability requirement elicitation
Once the tree structure has been finished, any analyst without explicit knowledge of usability can
use it (Figure 1c). The usability requirement elicitation is the process to capture usability
requirements using our approach. The navigation starts from the root of the tree while the analyst
asks the questions to the end-users. The analyst asks the questions according to their sequence in
the tree, from the root to the leaves. Questions are mutually exclusive, in other words, the analyst
only navigates through the branch of the answer selected by the end-user. Questions that are
gathered in the same group of questions are all asked. When the analyst reaches a branch with a
group of questions, the flow continues with the first question in the group. Only when this flow
has finished, the analyst can continue with the next question in the group. The possible
navigation between two nodes of the tree structure can be: i) From a group of questions to a
question, or to another group of questions (GQi Qi / GQi); ii) From a question to an answer

Name
Description

DESIGN GUIDELINE

URequirementName

USABILITY REQUIREMENTS

Name
Decsription

USABILITY GUIDELINE

Description
Specification

DESIGN

Description

GROUP OF QUESTIONS

QuestionInDetail

QUESTION

Name

AUTHOR

AnswerInDetail

ANSWER

ContextDescription

CONTEXT

TaskDescription

TASK

DescriptionApplicability

DESCRIPTION

UserDescription

USER

1..*

1

Define 0..*

1

IsComposedOf

1

0..*

IsDescription

0..*

0..*0..*

0..*

0..*

0..1 0..1
Related

2..*

1

Links
0..1

1

Has

0..*

0..1

0..1
Related

1..*0..*
Define

0..1

0..*
Contain

0..1

1..*

Define

0..*

0..*

Recommended

(Qi Ai); iii) From an answer to a question, to a group of questions or to a design (Ai Qi /
GQi/ Di).

Note that if we work with several usability guidelines, they can contradict each other when they
recommend an answer. For example, a widget with a ListBox (list of items) is recommended to
improve Information Density (amount of information in the interface), since items are hidden

inside the list. However, a RadioButton (◎) is recommended to improve Brevity (users’
cognitive workload), since the items are displayed directly without the necessity of opening any
list. This contradiction is not a problem in our approach, since usability guidelines are only
recommendations. In case of contradiction, the analyst must tell the end-user which alternative is
proposed by each usability guideline. The choice of the most suitable answer only depends on
the user, who must choose according to his preferences. The analyst must explain to the user
which usability recommendation satisfies each design alternative.

3.4 Including the Approach in a MDD Method
The link between the tree structure and a MDD method is performed through the leaves of the
tree (the designs). Our approach consists in specifying the possible designs of the tree structure
through a conceptual model of any existing MDD method. Most MDD methods have a specific
model to represent end-user interaction (interaction model), that together with other models to
represent persistency and behavior are the input for the code generation process. We propose
using those interaction models to represent all the design possibilities expressed in the tree
structure. Note that our proposal does not deal with how to work with interaction models or how
to transform these interaction models into code. That depends exclusively on the MDD tool used
as instantiation of our proposal. We focus on how to elicit usability requirements and how to
include them in any of the existing MDD methods without modifying its existing conceptual
model.

From all the MDD methods with an interaction model, we focus our illustrative example on OO-
Method (Pastor, 2007). This choice is based on two characteristics: (1) OO-Method has an
industrial tool named INTEGRANOVA (CARE, 2014) with a model compiler that can generate
fully functional systems from a set of conceptual models without writing a single line of code.
The generation is performed with ad-hoc transformation rules from models to code. All the
models of the OO-Method framework are stored in a XML file that is the input for the code
generation process. The XML file is read with a parser implemented in C++ that generates the
code in C# or Java. (2) OO-Method has a model expressive enough to represent several design
alternatives.

Next, we summarize both models of OO-Method to represent interaction: the Abstract
Interaction Model (Molina, Meliá, & Pastor, 2002) and the Concrete Interaction Model (Aquino,
2008). The Abstract Interaction Model focuses on representing which are the elements that
will be displayed for each interface. From a MDA perspective, this model is PIM since interfaces
represented with this model are valid for any platform. These are the possible elements (named
interaction patterns):

 Introduction: captures the relevant aspects of data to be entered by the end-user (including
masks).

 Defined selection: enables the definition (by enumeration) of a set of valid values for an
associated model element.

 Argument grouping: defines which input arguments can be grouped.

 Filter: defines a condition to display a list of elements.

 Order criterion: defines how a list can be ordered.

 Display set: determines the elements that compose a list with several fields.

 Actions: defines the set of available services.

 Navigations: determines the information set that can be accessed through a navigation
between two interfaces.

The Concrete Interaction Model specifies how the elements that compose the interface will be
displayed. From a MDA perspective, this model is PSM since interfaces represented with this
model are for a specific platform. For example, in this model, the analyst decides the widget to
display a Defined Selection (a list of enumerated values), which can be a ListBox or with a
Radiobutton. The Concrete Interaction Model is defined through Transformation Templates,
which specify the structure, layout and style of an interface according to preferences and
requirements of end-users, and the different hardware and software computing platforms. A
Transformation Template is composed of Parameters with associated values which parameterize
the different design alternatives of the interfaces (Aquino, 2008). A part from interaction models,
OO-Method is composed of an Object Model (which specifies the system structure in terms of
classes of objects and their relations), a Functional Model (which specifies how events change
object states) and a Dynamic Model (which represents the valid sequence of events for an
object). A detailed description of all these models can be found in (Pastor, 2007).

Next, we apply the three elements of our approach (Figure 1) to OO-Method: (1) Usability and
Design Guidelines; (2) Tree Diagram and (3) Usability Requirements Elicitation. This section
deals with the two first elements, relegating the Usability Requirements Elicitation to next
section. For the first element (Figure 1a) we use the design alternatives of the Abstract
Interaction Model and the Concrete Interaction Model of OO-Method. As usability guidelines,
we use ISO 9126-3 (ISO-9126, 2001) and the ergonomic criteria of Bastien and Scapin (Bastien,
1993). Both guidelines have been widely used in the software engineering community and in the
human-computer interaction community.

The second element of our approach (Figure 1b) is the tree structure definition using design and
usability guidelines previously chosen. From a MDA perspective, the tree structure is CIM, since
it is independent of computation. According to (Y. I. Ormeño et al., 2013), the steps to build a
tree structure are the following:

1. Identify design alternatives and define questions to ask the end-user which is the best
design.

2. Express each design alternative as a possible answer for the questions defined previously.

3. Gather non-excluding design alternatives in groups of questions.

4. Define specific designs in the leaves of the tree.

Figure 4. Tree structure with alternatives of OO-Method (1)

GQ
Introduction

Q How would you like to
display the mask rule?

Q How would you like to display
the error message?

A Hide the rule

A Show the rule

A Show a textual description of the mask

A In an emergent window

A In the same window

Q How would you like to
display enumarated values
with less than 3 items?

A ListBox

A RadioButton

GQ Defined
Selection

GQ
Argument
Grouping

Q How would you like to
group less than 10 arguments?

A GroupBox

A Tabs

A Wizard

A Accordion

GQ FORM

A TextBox

Q How would you like to
display enumarated values
between 3 and 6 items?

Q How would you like to
display enumarated values
between 6 and 9 items?

Q How would you like to
display enumarated values
with more than 10 items?

A ListBox

A RadioButton

A TextBox

A ListBox

A RadioButton

A TextBox

A ListBox

A RadioButton

A TextBox

Q How would you like to
group between 11 and 20

arguments?

A GroupBox

A Tabs

A Wizard

A Accordion

Q How would you like to
group more than 21

arguments?

A GroupBox

A Tabs

A Wizard

A Accordion

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

D16

D17

D18

D19

D20

D21

D22

D23

D24

D25

D26

D27

D28

D29

ROOT

GQ LIST
.
.
.

Figure 5. Tree structure with alternatives of OO-Method (2)

After applying all these steps to OO-Method, we have the tree structure displayed in Figure 4
and Figure 5. Each design is identified with the letter “D” and a number. Apart from identifying
design alternatives, we have also identified the recommendations for the answers according to
the metrics of ISO 9126-3 (ISO-9126, 2001) and the ergonomic criteria (Bastien, 1993). Next,
we describe in detail the design alternatives identified in the Abstract Interaction Model of OO-
Method and which ones are recommended according to usability guidelines. The tree structure
has been performed by an analyst of OO-Method and an expert in usability. Each design
alternative is represented in Figure 4 and Figure 5 as an answer:

 Introduction: the system can show the rule of a mask to prevent end-user from errors or
hide it. Moreover, the error message displayed when inserted data does not fulfill the
mask rule can be shown in a new emergent window or in the same window of the form.
According to the ergonomic criterion Information Density, rules should not be shown,
since they can overload the amount of information. However, criterion Error Protection
(prevention of data entry errors) and metric Message Clarity (proportion of self-

explanatory messages) recommend showing the rules with a textual description to be
understandable. Moreover, criterion Minimal Actions (workload regarding the number of
actions) recommends showing the error message in the same window; while metric
Interface Element Clarity (proportion of self-explanatory interface elements) recommends
using a new emergent interface to show the error message.

 Defined Selection: the possible values can be inserted with a ListBox, a RadioButton or a
TextBox (free text). According to criterion Minimal Action, enumerated values with less
than 9 items should be displayed with RadioButtons, since all the possible values are
shown directly (Panach, Condori-Fernández, Vos, Aquino, & Valverde, 2011). However,
according to criterion Information Density, items should be displayed with a ListBox,
such a way, the list of possible values is hidden until the end-user opens the list.
Enumerated values with more than 9 items should be displayed with a ListBox according
to the criteria Information Density and Legibility (lexical characteristics of information
that facilitate the reading). In this case, a design with RadioButtons could increase the
amount of information in the interface and a design with TextBoxes could not guide the
user.

 Argument Grouping: arguments of a form can be grouped by a GroupBox (a group of
elements in the same window), Accordion (a group of elements that can be hidden), Tabs
(division of a form into different windows without relationship among them) or split into
several interfaces through a Wizard (division of a form into different windows with a
relationship among them). According to metric Functional Understandability (assessment
that new users can understand the system) and criterion Guidance (availability of
advising), a Wizard should be used when there are many arguments to perform an action.
When there are not so many arguments, criterion Information Density recommends
dividing the argument using Tabs or Accordion, since the end-users can show the
arguments depending on their needs. When there are a few arguments, the design with a
GroupBox is recommended by criterion Minimal Actions, since the arguments do not take
up much space and they are shown directly.

 Filter: the first decision is to choose whether or not the system needs filters. Next, we
must decide where displaying them. According to criterion Information Density, the use
of a filter makes sense when there is a huge amount of information and the end-user needs
some mechanisms to reduce it. However, when the amount of information is little,
criterion Minimal Actions recommends not using a filter, such a way, end-users can list all
the information directly. With regard to the position of the filter in the interface, top and
left positions will consider the filter more important than the right and bottom positions.
This recommendation provides from criterion Compatibility (match between users’
characteristics and dialogues), that propose developing the system regarding end-users’
perceptions and customs.

 Order Criterion: this pattern shares the same design alternatives as the filter, adding the
possibility to choose how to display the different order criteria. According to criterion
Legibility and metric Help Facility (proportion of functions described in the user
documentation), order criteria should be used when there is much information in
interfaces. This mechanism will help end-users identify quickly the required data.
However, when the amount of information is little, criterion Minimal Actions

recommends not using Order Criteria, since the actions for ordering can spend more time
than the benefit obtained with the order. With regard to the position of the order criteria,
we can apply the same criterion used for Filter (Compatibility). How to display the order
criteria alternatives will depend on the size of the screen. For wide screens, criterion
Minimal Actions recommends displaying the order criteria with a RadioButton or a
CheckBox. However, for narrow screens, criterion Information Density recommends
hiding the order criterion until the end-user needs them. In this case, a design with a
ListBox or Acordion is the most suitable.

 Display Set: the fields of the list can be displayed per rows or per columns. Moreover, we
can colour the fields if we think that this will help to understand displayed data.
According to criterion Compatibility, the fields of the Display Set should be compliant
with the size of the screen in order to avoid scroll bars. Therefore, wide screens can show
the different fields per column and narrow screens should show the fields per row.
Moreover, criterion Legibility and metric Help Facility recommend using different colours
per field to help end-users understand the information.

 Actions: there are different locations to display the actions; different widgets, such as
buttons or hyperlinks; and different representations, such as icons, labels or a combination
of icons and labels. According to criterion Compatibility, the recommendation for the
position is the same as the recommendation for Filters. With regard to how to display the
action in the screen, criterion Compatibility recommends using the widget most
commonly used. Therefore, an appearance as Hyperlink is more suitable for Web
applications and mobile systems, while an appearance as button is more suitable for
desktop systems. Moreover, criterion Prompting (guide to make specific actions) and
metric Function Understandability recommend identifying the actions such a way every
user can recognize the action. Therefore, a textual label or an icon with a label is more
suitable than only an icon. However, systems with a small screen should use icons
according to criterion Information Density, since an icon will always take up less space
than a textual description.

 Navigations: they share the same alternatives as actions. According to criterion
Compatibility, the recommendation for the position is the same as the recommendation for
Filters. Moreover, the recommendation for the appearance is the same as the
recommendation for Actions according to criterion Compatibility.

The fourth step of our process consists in specifying the designs of the leaves through a
conceptual model of the MDD method (Figure 6). This specification is the link between our
proposal to elicit usability requirements and an existing MDD method. Each design of the tree
structure can be represented in a conceptual model of the MDD method. Note that the process to
specify the designs is done once only, when the tree structure is specified. How each design is
specified depends exclusively on the used MDD method. As illustrative example, we describe
how to specify the design to show a mask rule (D2 in Figure 4) and the design to display its error
message in an emergent window (D4 in Figure 4). D2 and D4 must be specified both in Abstract
and Concrete Models of OO-Method. This notation is just an example for the instantiation of our
proposal to OO-Method:

 D2 is represented in the Abstract Model through the interaction pattern Mask, which is
specified through the XML code:

<PIntroductionM id=”Mask_XX”>

<MsgError> “XXXX” </MsgError>

 <PIntroduccionStringM Mask=” XXXX” /> </PIntroduccionStringM>

</PIntroduccionM>

D2 is represented in the Concrete Model through the template:

.MaskError=Mask_XX.MsgError

 D4 is represented with the same Abstract Model as D2, since both designs share the same
interaction pattern: Mask.

D4 is represented in the Concrete Model through the next template:

.DisplayErrorMask= NewWindow

Note that models used to define the designs in the requirements elicitation step are initial
interaction models composed of a first draft of Abstract and Concrete Models. By initial, we
mean a model where specific details of the interface are not yet represented, just usability
requirements. That is the reason why the previous examples of Abstract and Concrete Models do
not specify an error message. In next development steps, the analyst must complete the
interaction model and together with other models that represent persistency and behavior, they
are the input for the model compiler. Finally, the model compiler interprets the characteristics
expressed in the interaction models and generates the code that implements those characteristics.
A detailed description about how to model interfaces with the Abstract Interaction Model
(Molina et al., 2002), the Concrete Interaction Model (Aquino, 2008) and model to code
transformations are out of scope of this paper since they do not concern the requirements
elicitation step. Our contribution in this paper is only the process to elicit usability requirements
(in grey background in Figure 6).

Figure 6. Overview of the process to include usability requirements in an MDD method

4. The Tree Structure in Use

This section describes the third element of our approach (Figure 1c): how to use the tree
structure once it has been defined completely. As example, we use a system for car rental that
must save information of all the cars that the car rental company has around the world; therefore,

the system needs to store much information. The system will follow a client-server architecture,
such a way, the same server can connect with several clients in different platforms. In our
example, we need to develop for two platforms: Web and mobile. The need of two platforms
results in the development of two types of interfaces, in spite of the business logic is the same in
both of them. In order to elicit the usability requirements for both systems, we must navigate two
times through the tree structure of our approach.

First, we focus the example on eliciting usability requirements for the Web application. The
process starts from the tree root to the leaves. When a question arises in the path, the analyst
must ask the end-user that question. Apart from the question, the analyst must tell the end-user
the possible answers to the question. If the answers are recommended by some usability
guidelines, the analyst must specify which answers are recommended and why. Starting from the
root (Figure 4 and Figure 5), we have a group of questions with two questions: How would you
like to display the mask rule? and How would you like to display the error message? In this case,
since the size of the screen is not a key issue, we can guess that the end-user chooses to show a
textual description of the mask and to show the error message in a new window (A in Figure 7a).
Once all the questions of a group of questions have been answered, the flow continues with the
next question or group of questions with a pending answer. When a design (a leaf) arises in the
path, the flow continues with the closest unresolved question.

In our example, the flow continues with the group of questions for Defined Selection. We guess
that the end-user chooses as answers the recommendations for a Web application: using a
RadioButton for items between 2 and 9 elements (B in Figure 7a), and using a ListBox for more
than 9 items (C in Figure 7a). The next group of questions in the flow elicits requirements for
Argument Grouping. According to the recommendations, the end-user selects a Wizard for more
than 20 arguments, Tabs for a set between 11 and 20 arguments (D in figure 7a) and a Group
Box for less than 10 arguments. Next, the flow continues with the questions regarding the Filters.
Since there is much information to store in the system, the end-user selects to display the filters
at the top of the interface (E in Figure 7b). This way, the first task end-users do within the
interface is filling filters. Next, the flow continues with the questions regarding Order Criteria.
Again, the amount of information recommends using order criteria. Since the size of the screen is
not a problem, the end-user selects to display the order alternatives at the top of the interface
using RadioButtons (which require less clicks than the use of a ListBox)(F in Figure 7b). Next,
the flow continues with the questions regarding Display Sets. Since the screen for a Web
application is wide, the recommendations suggest displaying the fields per column using
different colours per field (G in Figure 7b). Next, the flow continues with the questions regarding
Actions. According to the recommendations, the end-user selects to display the actions on the
left with a hyperlink and to use a textual description (the size of the screen is not a problem) (H
in Figure 7b). Finally, the flow continues with the questions regarding Navigations. The end-user
selects to display the navigations at the bottom, since these actions will not be used very
frequently (I in Figure 7b). Moreover, the visual appearance of navigations should be a
hyperlink, since it is the most common widget for Web applications.

At the end of the process, we have a set of designs we have reached through the navigation of the
tree structure. All these designs compose the set of usability requirements for the Web
application. As example, we show the specification of designs D7, D10 and D13 used to display
a RadioButton for lists between 2 and 9 items in INTEGRANOVA (B in Figure 7a). Note that all
the designs are specified when the tree structure is defined. D7, D10 and D13 are represented in

the Abstract Model through the interaction pattern Defined Selection, which is specified through
the XML code:

<PDefined_Selection id=”List_2-9”>

<Item1> “XXXX” </Item1>

<ItemN> “XXXX” </ItemN>

</PDefined_Selection>

This design is represented in the Concrete Model through the template:

.PDefined_Selection_id=”List_2-9”=RadioButton

This design is generic for every list of items between 2 and 9 elements. In next steps of the
software development process, the analyst must complete this model for each interface that
includes the pattern Defined Selection. In our example of Figure 7a, the Abstract Model will be
completed with the following XML lines:

<PDefined_Selection id=”List_2-9” name=”Marital_Status”>

<Item1> Single </Item1>

<Item2> Married </Item2>

<Item3> Widowed </Item3>

</PDefined_Selection>

The Concrete Model does not need more details to specify how to display the list. The Abstract
and Concrete Models are specified together with the other models of the OO-Method framework
and finally we can obtain the final system. Figure 7 shows two examples of interfaces compliant
with the requirements we have elicited for the Web application.

Figure 7.a,b Two examples of interfaces compliant with the requirements for a Web application

Figure 8.a,b Two examples of interfaces compliant with the requirements for a mobile application

Second, we use the tree structure again to elicit the usability requirements for the mobile system.
In this case, the end-user would accept the recommendations for mobile applications, which
claim to reduce as much information as possible in interfaces. In the group of questions
Introduction, the end-user chooses to hide mask rules and to show error messages in a new
emergent window (A in Figure 8a). Next, in the group of questions Defined Selection, the end-
user selects to use ListBoxes in order to reduce the amount of information in interface (B in
Figure 8a). Next, in the group of questions Argument Grouping, for a set of arguments between 2
and 20 items, the end-user chooses to use a design with Accordion (C in Figure 8a). Groups with
more arguments should be displayed with a Wizard. Next, the end-user selects to display Filters
at the top of the interface with an Accordion, since there is much information to display in little
space (D in Figure 8b). Next, the end-user also selects Order Criteria at the top of the interface
displayed with a ListBox, such a way they do not take up much space (E in Figure 8b). Display
Sets are shown per row with colours, since mobile screens are very narrow (F in Figure 8b).
Next, the end-user selects to show the Actions on the left of the interface, with a visual
appearance of buttons and with a description based on icons (G in Figure 8b). Finally, for
Navigations, the end-user selects to display them at the bottom of the interface using buttons,
since this is the most frequently used representation for mobile systems (H in Figure 8b).

As example of designs specification, we show the specification of D6, D9, D12 and D15, used to
display a ListBox for any group of items (B in Figure 8a). The Abstract Model for these designs
is the same as the used for D7, D10 and D13. The Concrete Model is:

.PDefined_Selection_id=”List2-10”=ListBox

In next steps of the software development process, the analyst must complete the Abstract Model
and the Concrete Model for each interface. For the example of list “Marital Status”, we can use
the same Abstract Model as we defined for Defined Selection in Figure 7a. The Concrete Model
does not need more changes. Figure 8 shows the same example of interface represented in Figure
7 but for a mobile system. Filters and Order Criteria have been hidden according to usability
requirements.

5. INITIAL VALIDATION OF OUR APPROACH

Wieringa (Wieringa, 2010) classifies many different forms of validation that can be conducted
with respect to a research proposal. This section describes a laboratory demonstration1 that we
have performed to validate the usability requirements elicitation process. We have used 4
subjects that are members of the PROS research center (http://www.pros.upv.es): 2 subjects play
the role of analysts (persons that work usually with INTEGRANOVA) and other 2 subjects play
the role of customers (persons without knowledge in INTEGRANOVA). We use two problems:
Problem1 is a Web application to manage a car-rental system (like Figure 7) and Problem2 is a
mobile application to manage a company of water supply. Table 1 shows the design used in the
evaluation.

Treatments Without Tree With Tree

Problems Problem1 Problem2

Subjects Analyst1, Customer1 Analyst1, Customer1

Analyst2, Customer2 Analyst2, Customer2

Table 1. Evaluation design

The experimental process consists in an interview between the analyst and the customer to elicit
usability requirements of each problem with the target of developing both problems in
INTEGRANOVA. Elicitation of Problem1 is performed without the tree structure and the
elicitation of Problem2 is performed with the tree structure of Figure 4 and Figure 5 (design
alternatives for INTEGRANOVA). Previously to the elicitation process, we explained how the
tree structure works to the analyst. During the interview, the customer can change his
requirements if the analyst offers him a better solution. Once the interview is over, we ask the
analyst for interface sketches in paper. Next, the customer compares these sketches with his

1 Technique used by the author on a realistic example in an artificial environment that shows that the technique
could work in practice [a]

requirements. This way, we can confirm whether elicited usability requirements correspond to
expected interfaces by the customer.

The Factor used in the experiment is the elicitation technique used for usability requirements.
The factor has two levels: without our proposal and with our proposal. Each level is applied to
each problem. Response variables are: time spent in the elicitation process (measured as
minutes); design alternatives not asked to the customer and design alternatives that the customer
changes after talking with the analyst (measured as number of design alternatives); analyst’s
satisfaction and customer’s satisfaction (measured with a 5 point Likert scale). Table 2 shows the
satisfaction questionnaires used.

Analyst’s Satisfaction

I have no doubts about customer requirements

I would use the method to elicit requirements frequently

The method to elicit requirements is easy to use

The method to elicit requirements is useful

Customer’s Satisfaction

The offered sketches satisfy your expectations

You would change your idea of system for the offered sketches

You think that the analyst has done a good work in the requirements elicitation process

Table 2. Satisfaction questionnaires

Results regarding spent time show that time spent using our approach is slightly higher (an
average of 5 minutes more). Regarding design alternatives not asked to the customer without
our approach, Analyst1 forgot asking 68% of design alternatives, and Analyst2 forgot 79%. Both
analysts chose the most frequently used design alternatives without contrasting those decisions
with the customer. Using our approach, both analysts asked 100% of design alternatives.
Regarding changes in interfaces during the interview, Customer1 changed 5 features without
our proposal and 6 features with our proposal. Customer2 changed 11 features without our
proposal and 8 features with our proposal. Regarding analyst’s satisfaction, both analysts are
more self-confident with elicited requirements using our proposal, they would use our approach
frequently and they classify our approach as useful and easy to use. Regarding customer’s
satisfaction, there are not differences between using our approach or not for the expected sketch
and for the valuation of the analyst’s work. Using our approach, both customers prefer the
sketches of the analyst rather than their own ideas previous to the interview.

As conclusion, we state that even though this evaluation is a pilot experiment, results show an
improvement in the elicitation process of usability requirements in a MDD method such as
INTEGRANOVA: more matching between elicited requirements by the analyst and real needs of
customers, and more satisfaction for analysts and customers. A disadvantage of our proposal is
that it takes more time, since it requires asking the customers all the possible design alternatives.

Note that how to model the interaction and transformations have not been evaluated because they
depend on the MDD tool used (INTEGRANOVA in this case).

6. CONCLUSIONS AND FURTHER WORK

This paper is a step forward to obtain holistic MDD methods, where all the system features,
including usability, can be represented from the early steps till the code (vertical dimension). We
propose a process to elicit usability requirements based on existent design alternatives and
usability guidelines. The end-user must participate in the process, choosing the design alternative
that better fits with her/his requirements. The approach is based on the construction of a tree
structure that represents all the design alternatives. How to build the tree structure and how to
use it, is explained in detail. Moreover, the approach has been validated with 4 subjects through a
laboratory demonstration.

Note that the approach is valid for any MDD method but, as illustrative example, we have used
OO-Method. This choice has led the design alternatives and the construction of the tree structure.
The use of our approach in other MDD method, with models to represent the interaction different
from the Abstract Model and the Concrete Model of OO-Method, involves building another tree
structure. The size of the tree structure depends on the number of design alternatives; the more
alternatives, the higher is the tree structure. One benefit of our proposal is that its use does not
involve changing the existing MDD method. We do not propose any extension of existing
interaction models or new transformation rules. We propose using existing interaction models to
represent designs of our tree structure, and those models will be the input for existing
transformation rules in next steps of the development process (if the existing MDD method
supports these transformations).

In our example, we have used two usability guidelines: ISO 9126-3 and the ergonomic criteria.
In Human-Computer Interaction and in Software Engineering communities there are many other
guidelines. Our approach accepts as many guidelines as the analyst would like to consider. A
contradiction between two guidelines does not mean a problem, since the end-user decides the
most suitable design alternative. However, it is important to mention that too many
recommendations for the possible designs can confuse end-users.

Our approach focuses on eliciting usability requirements. As outcome of our elicitation process
we get some incomplete conceptual models. In next development steps, the analyst must enhance
these models with primitives that represent the functionality and the visual appearance of the
system in order to get a fully functional system. How the usability requirements will be
expressed in the next steps of the software process will depend exclusively on the MDD method.

As future work, we plan to develop a tool to support the construction and use of any tree
structure. Even with a few design alternatives and a few usability guidelines, the size of the tree
structure is considerable. Moreover, we also plan to apply our proposal to a real case study in
industry with more subjects than the ones used in this paper.

ACKNOWLEDGEMENTS

This work has been developed with the support of MICINN (PROS-Req TIN2010-19130-C02-
02), UV (UV-INV-PRECOMP13-115032), GVA (ORCA PROMETEO/2009/015), and co-
financed with ERDF. We also acknowledge the support of the Intra European Marie Curie
Fellowship Grant 50911302 PIEF-2010. We also thank Sergio España, Francisco Valverde,
Marcela Ruiz and María Jose Villanueva for their participation in the experimental validation.

REFERENCES

Acerbis, R., Bongio, A., Brambilla, M., & Butti, S. (2007). WebRatio 5: An Eclipse-Based
CASE Tool for Engineering Web Applications. LNCS, 4607, 501-505.

Android, D. (2014). User Interface Guidelines, from
http://developer.android.com/guide/practices/ui_guidelines/index.html

Aquino, N., Vanderdonckt, J., Valverde, F., Pastor, O. (2008). Using Profiles to Support Model
Transformations in the Model-Driven Development of User Interfaces. Paper presented at
the Proc. of 7th Int. Conf. on Computer-Aided Design of User Interfaces CADUI’2008,
Albacete, Spain.

Bass, L., & John, B. (2003). Linking Usability to Software Architecture Patterns through General
Scenarios. Journal of Systems and Software, 66(3), 187-197.

Bastien, J. M., Scapin, D. (1993). Ergonomic Criteria for the Evaluation of Human-Computer
Interfaces. Rapport technique de l'INRIA, 79.

CARE. (2014). CARE Technologies, from https://www.care-t.com.

Cerejo, L., A. (2011). User-Centered Approach To Web Design For Mobile Devices. Retrieved
11 october 2012, from http://mobile.smashingmagazine.com/2011/05/02/a-user-centered-
approach-to-mobile-design/

Ceri, S., Fraternali, P., & Bongio, A. (2000). Web Modeling Language (WebML): A Modeling
Language for Designing Web Sites. Computer Networks, 33(1), 137-157.

Cronholm, S. (2009). The Usability of Usability Guidelines: A Proposal for Meta-guidelines.
Paper presented at the 2lth Australasian Conference on Computer-Human Interaction,
Melbourne, Australia.

Cysneiros, L. M., Werneck, V. M., & Kushniruk, A. (2005, Aug 29 - Sept 2, 2005). Reusable
Knowledge for Satisficing Usability Requirements. Paper presented at the 13th IEEE
International Conference on Requirement Engineering, Washington, DC, USA.

Embley, D. W., Liddle, S. W., & Pastor, O. (2011). Conceptual-Model Programming: A
Manifesto. In D. W. Embley & B. Thalheim (Eds.), Handbook of Conceptual Modeling
(pp. 3-16): Springer Berlin Heidelberg.

Escalona, M. J., & Arag, G. (2008). NDT. A Model-Driven Approach for Web Requirements.
IEEE Trans. Softw. Eng., 34(3), 377-390.

Ferre, X., Juristo, N., & Moreno, A. M. (2005). Framework for integrating usability practices
into the software process. Paper presented at the Proceedings of the 6th international
conference on Product Focused Software Process Improvement.

Folmer, E., & Bosch, J. (2004). Architecting for Usability: A Survey. Journal of Systems and
Software, 70, 61-78.

Frankel, D. (2002). Model Driven Architecture: Applying MDA to Enterprise Computing: John
Wiley & Sons, Inc.

Hassenzahl, M. (2008). The interplay of beauty, goodness, and usability in interactive products.
Hum.-Comput. Interact., 19(4), 319-349.

Henninger, S. (2000). A Methodology and Tools for Applying Context-Specific Usability
Guidelines to Interface Design. Interacting with Computers, 12(3), 225-243.

ISO-9126. (2001). Software Engineering - Product Quality - Part 1: Quality Model.

ISO-9241_11. (1998). Ergonomic Requirements for Office Work with Visual Display Terminals
(VDTs) - Part 11: Guidance on Usability.

Johnsonbaugh, R. (1997). Discrete Mathematics (Fourth ed.). New Jersey: Prentice Hall
Intemational.

Jokela, T., Koivumaa, J., Pirkola, J., Salminen, P., & Kantola, N. (2006). Methods for
Quantitative Usability Requirements: A Case Study on the Development of the User
Interface of a Mobile Phone. Personal Ubiquitous Comput., 10(6), 345-355.

Koch, N., Knapp, A., Zhang, G., & Baumeister, H. (2008). UML-Based Web Engineering, an
Approach Based on Standards In Web Engineering, Modelling and Implementing Web
Applications (pp. 157-191): Springer.

Molina, P. J., Meliá, S., & Pastor, Ó. (2002). JUST-UI: A User Interface Specification Model.
Paper presented at the Proceedings of Computer Aided Design of User Interfaces,
CADUI'2002, Valenciennes, Francia.

Nokia. (2014). Symbian Design Guidelines - Dialogs. from
http://www.developer.nokia.com/Resources/Library/Symbian_Design_Guidelines/

Ormeño, Y. I., & Panach, J. I. (2013). Mapping study about usability requirements elicitation.
Paper presented at the Proceedings of the 25th international conference on Advanced
Information Systems Engineering.

Ormeño, Y. I., Panach, J. I., Condori-Fernandez, N., & Pastor, O. (2013, 29-31 May 2013).
Towards a proposal to capture usability requirements through guidelines. Paper

presented at the IEEE Seventh International Conference on Research Challenges in
Information Science (RCIS'2013)

Panach, J. I., Condori-Fernández, N., Vos, T., Aquino, N., & Valverde, F. (2011). Early
Usability Measurement In Model-Driven Development: Definition and Empirical
Evaluation. International Journal of Software Engineering & Knowledge Engineering
(IJSEKE).

Panach, J. I., España, S., Moreno, A., & Pastor, O. (2008). Dealing with Usability in Model
Transformation Technologies. Paper presented at the ER 2008, Barcelona.

Pastor, O., Molina, J. (2007). Model-Driven Architecture in Practice. Valencia: Springer.

Sutcliffe, A. G., Kurniawan, S., & Jae-Eun, S. (2006). A Method and Advisor Tool for
Multimedia User Interface Design. Int. J. Hum.-Comput. Stud., 64(4), 375-392.

Wieringa, R. (2010). Design science methodology: principles and practice. Paper presented at
the Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering.

