
Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6
A Practical Experience of How to Teach Model-Driven Development to Manual Programming Students 1
Special Issue on Teaching and Learning Conceptual Modeling

A Practical Experience of How to Teach Model-Driven
Development to Manual Programming Students

José Ignacio Panach*,a, Óscar Pastorb

a Escola Tècnica Superior d’Enginyeria, Departament d’Informàtica, Universitat de València, Avinguda de la Universitat, s/n
46100 Burjassot, Valencia, Spain
b Valencian Institute of Research in Artificial Intelligence (VRAIN),Universitat Politècnica de València, Camino de Vera s/n,
46022 Valencia, Spain

Abstract. This paper presents the teaching experience of a course named Information Systems Engineering
in a Master’s degree program of the Universitat Politècnica de València. The target of this course is to
teach Model-Driven Development (MDD). On the last years we have observed that students attended the
course with poor motivation since they do not see MDD as being a useful development paradigm. The
students have an extensive background in a traditional method (they are good programmers) where all
the code is manually programmed, but they lack sound experience in conceptual modeling. In order to
improve their motivation and to highlight the pros and cons of MDD, we propose a practical comparison of
a traditional method and MDD. The teaching methodology consists of a problem-based learning task where
students must develop two problems from scratch, one with a traditional method and the other with MDD.
Our experience has been evaluated in terms of attitude towards MDD, knowledge of MDD, quality of the
developed system, and satisfaction of the developer. The results show that the students obtained significantly
better results for MDD in terms of attitude, knowledge, and quality.

Keywords. Model-Driven Development • Conceptual Modeling • Code Generation

Communicated by Kristina Rosenthal, Estefanía Serral, Monique Snoeck, Stefan Strecker. Received 2021-05-06.
Accepted after 3 revisions on 2022-12-23.

1 Introduction

Model-Driven Development (MDD) (Atkinson
and Kühne 2003) is a software development
paradigm that aims to raise abstraction levels to
specify all system features. In the same way as a
Java compiler takes a textual implementation as
input and generates machine instructions, MDD
aims to specify the system through models that
are the input for a model compiler that gener-
ates the code. This way the developer does not

* Corresponding author.
E-mail. joigpana@uv.es
This work was developed with the support of the Spanish
Ministry of Science and Innovation project SREC (PID2021-
123824OB-I00) and was co-financed by ERDF. It also has
the support of Generalitat Valenciana with GISPRO project
(PROMETEO/2018/176) and GENI (CIAICO/2022/229).

focus all of the effort on implementation issues,
but on models that abstractly represent the sys-
tem. Model-to-code transformations can be done
through transformation rules. The underlying
motivation for MDD is to improve productivity
(Selic 2003), quality (Singh and Sood 2009), ef-
fort (Hailpern and Tarr 2006), and satisfaction
(Martínez et al. 2013).

The MDD paradigm is based on the concept
of Conceptual-Model Programming (Embley et
al. 2011), which states that programming activi-
ties can be carried out via conceptual modeling.
Conceptual-Model Programming proposes that
developers focus on the domain problem through
conceptual models, relegating the solution space
(specific code) to model-to-code transformations.

http://dx.doi.org/10.18417/emisa.18.6
joigpana@uv.es


International Journal of Conceptual Modeling
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6

2 José Ignacio Panach, Óscar Pastor
Special Issue on Teaching and Learning Conceptual Modeling

Thus, the combination of MDD and Conceptual-
Model Programming leads to software develop-
ment based on models (Pastor and Molina 2007).

In general, the syllabi of most degree programs
in Computer Science focus on courses to teach
the skill of coding. For example, in the Degree
in Computer Science at Universitat Politècnica
de València (UPV), 10% of the courses are about
industrial management, 16% are about mathe-
matics and physics, 16% are about network and
hardware and 58% are about software develop-
ment (operating systems, programming, artificial
intelligence, algorithms, etc.). However, there
is not any course for conceptual modeling under
the context of MDD. There is only one course of
software engineering where students learn about
UML diagrams. However, these diagrams are
used as a way to document the system; in the end,
students have to manually implement the code of
the system. These numbers indicate that we are
training developers for manual programming jobs.
Students that finish the degree program are good
programmers, but they do not consider models as
being a useful tool. These models are conceived
only for documenting, and their practical use is
very limited. Moreover, students feel that working
with these models is boring and a waste of time
since models become easily obsolete as soon as
the code evolves.

The first course that deals with MDD at Uni-
versitat Politècnica de València (UPV) appears in
the "Master of Engineering and Software Systems
Technology" program. The name of the course is
"Information Systems Engineering", with 3 ECTS
credits. Both of the authors of this paper are
teachers of this course. The main challenge of
the course is to motivate the students to work
with models instead of coding. Note that previous
teachers have been teaching the development of
systems through coding for at least the last four
years. Therefore, it is difficult for students to
build models to abstractly represent the system.
Moreover, this course is the first time that we have
introduced the concept of MDD and Conceptual-
Model Programming to the students. In general,
the first reaction of the students is to think that all

of the theoretical benefits that the literature states
about MDD are fake, and they think that they
are better at working with a traditional software
development method. By a traditional method,
we mean a method where the developer must man-
ually write the code that implements the system.
The use of models, in this case, is only for doc-
umentation or as instruments to report solutions,
with no option to generate code from them.

To make students aware of their own actions,
we organized the course as a comparison between
MDD and a traditional software development
method. The main contribution of the article is
the description of this practical experience. Each
student compares her/his quality and satisfaction
with software development through a traditional
method versus development that is based on MDD.
This way, the students can draw their own con-
clusions about MDD use and the pros and cons.
Since our students have a very good background
in working with a traditional method, the course
focuses only on teaching how to work with the
MDD paradigm using the WebRatio tool (WebRa-
tio 2021). The course is based on a Problem-Based
Learning methodology where students must de-
velop the solution for two problems from scratch:
one using a traditional development method and
the other using MDD. Both problems are different
in order to prevent the learning effect, but they are
similar in difficulty. Therefore, the students can
compare both software development methods by
working with each of them.

The results of our teaching experience are an-
alyzed using four variables. First, we measured
the students’ Attitude towards MDD and their
Knowledge of MDD. Both variables were evalu-
ated at the beginning of the course and at the end
of the course using the same questionnaires. This
way we were able to compare whether or not there
were significant differences between the answers
at both moments. We also measured the Qual-
ity of the developed system and the developers’
Satisfaction for each problem.

The results show significant differences for
all of the variables. Attitude and Knowledge
show better results after applying our teaching

http://dx.doi.org/10.18417/emisa.18.6


Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6
A Practical Experience of How to Teach Model-Driven Development to Manual Programming Students 3
Special Issue on Teaching and Learning Conceptual Modeling

methodology. Quality shows better results for
the MDD development. For Satisfaction, the
students consider MDD as being easy to use,
but they have no intention of using MDD in the
future. In our analysis, these numerical results are
complemented with assumptions about the pros
and cons of MDD, which were obtained through
open questions in the discussion session of the
course.

The paper is structured as follows. Section 2
describes related works with practical experiences
in teaching MDD in courses. Section 3 explains
the teaching methodology that we used in our
experiment. Section 4 presents the design of the
validation of our experience. Section 5 presents
the results of the evaluation. Section 6 discusses
the results and explains them. Finally, Section 7
presents conclusions and future work.

2 Related Works

There are several previous works that have con-
ducted an analysis of trends in MDD and concep-
tual modelings, such as Härer and Fill (Härer and
Fill 2020) and Chen et al. (Chen et al. 2007). From
all the previous works in MDD and conceptual
modeling, this related works section focuses on
those that deal with the pedagogical point of view.
There are different options to conduct a literature
review (Watson and Webster 2020), and we opt
for a Targeted Literature Review (TLR). TLR is a
non-systematic, in-depth, and informative litera-
ture review aimed at keeping only the significant
references, maximizing rigorousness while min-
imizing selection bias (Huelin et al. 2015). As
TLR protocol to look for papers, we have struc-
tured this search in terms of the search string,
inclusion and exclusion criteria, and search proce-
dure. Since the target domain of study is "teaching
MDD", all synonyms and related concepts must be
considered in our search. These include: Model-
Driven Development, Model-Driven Engineering,
Model-Driven Architecture, and Conceptual mod-
eling. All of these terms led to the following
search string: ("Model-Driven" OR "Conceptual
modeling") AND ("Teaching" or "Teach"). This

search string was applied to the title, keyword,
and abstract in February 2021 in Scopus, IEEE
Xplore, and ACM Digital Library. Apart from the
search string, we used two publication outlets: the
workshops of the ER (Conceptual modeling) con-
ference proceedings under the name of Advances
in Conceptual modeling and the ICSE conference.
ICSE is the most relevant conference of Software
Engineering and has special tracks for teaching
education. Advances in Conceptual modeling has
several special workshops related to teaching con-
ceptual modeling. The exclusion criteria include:
(1) tutorial papers; (2) papers that do not report the
results of the teaching experience; and (3) papers
without models. The inclusion criteria include:(1)
papers that describe the teaching methodology in
MDD through conceptual modeling; and (2) pa-
pers that describe how they evaluated the teaching
methodology. The publications outlets yielded
three papers from Advances in Conceptual Model-
ing and two papers from ICSE. The search string
returned 226 papers. After applying the exclusion
and inclusion criteria to the title and the abstract
and gathering papers from both the outlets and
the search string, we analyzed the content of 18
papers, which we describe below. The dataset
with the analyzed papers is presented in (Panach
and Pastor 2021a). The entire search process was
conducted by one of the authors of the current
paper.

There are several works in the literature that
deal with how to teach MDD to students. The
work of Rosenthal et al. (Rosenthal et al. 2019)
contributes with a systematic literature review
with 121 publications to look for the importance
of teaching and learning conceptual modeling and
its accepted challenges. The proof of this variety
is the fact that there are works that analyze and
compare several existing teaching techniques in
the area of MDD, such as the work developed by
Ciccozzi et al. (Ciccozzi et al. 2018). Those au-
thors conducted a survey of 47 MDD instructors to
analyze tools, technologies used, and positive and
negative factors affecting learning outcomes. The
results show the prevalence of assessment meth-
ods that focus on tools and technologies. There

http://dx.doi.org/10.18417/emisa.18.6


International Journal of Conceptual Modeling
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6

4 José Ignacio Panach, Óscar Pastor
Special Issue on Teaching and Learning Conceptual Modeling

are works that focus on the teaching methodology
at the requirements elicitation stage. For example,
the work of Reyes and Quintero (Reyes and Quin-
tero 2020) teaches how to elicit requirements in an
MDD environment based on scenarios with real
problems. The students had to build Use Case Di-
agrams to elicit requirements and transform those
models into code manually. The classes were
virtual and based on active learning principles
in small groups. The results indicate sufficient
motivation, greater retention of the learned abili-
ties, and improvement in interpersonal relations.
The work of Paja et al. (Paja et al. 2015) reports
the experience in teaching conceptual modeling
with the i* goal-oriented language. The results
demonstrate that i* allows students to evaluate the
satisfaction of goals in their models and to better
understand their models. There are no transfor-
mations among models in this study. There are
works such as Berre et al. (Berre et al. 2018) that
aim to generate code from the conceptual models.
That work describes the experience of teaching
several models from requirements such as BPMN,
Canvas, and IFML to generate code through MDD
tools (e. g., WebRatio). The results show that the
use of executable models at an early stage in the
course is key in training students. Other works,
such as Zibri et al. (Zribi et al. 2016), focus on the
design of a framework to simulate models. Zribi
et al. defined a framework to simulate BPMN mod-
els that include event-based monitoring, allowing
collaborative simulation and providing learners’
assessment. As a conclusion of our review of
all of these related works that deal with require-
ments models, we highlight that only one of them
(Berre et al. 2018) considers code generation in
the course. Most of the existing works focus on
evaluating models instead of code, which could
hide the utility of the method from the point of
view of the students.

Other proposals are based on the concept of
gamification, such as Larenas et al. (Larenas et
al. 2018). Those authors used a role-playing
game named Classutopia to teach the design of a
class diagram from the point of view of conceptual
modeling. The game aims to teach about modeling

challenges and comprehension of models with
different complexity levels. The work of Roungas
and Dalpiaz (Roungas and Dalpiaz 2016) proposes
an MDD framework to design serious games for
teaching environments. That work defines the
primitives required to define a game for teaching
a concept of MDD. It is important to note that
existing works in gamification focus on models;
there is no work that studies code generation.

There are proposals that teach MDD from an ag-
ile development point of view. The work of Ghiran
et al. (Ghiran et al. 2020) describes an experience
of teaching conceptual modeling through a meta-
modeling approach. In that approach, modeling
languages are considered as "schemas" that can
be tailored and transformed. Those schemas are
artifacts in an agile software development process.
Other works deal with specific contexts, such as
Ringert et al. (Ringert et al. 2017), which focuses
on agile MDD methods for cyber-physical systems.
The students developed complex robotics applica-
tions through SCRUM and conceptual modeling.
In both works (Ghiran et al. 2020) and ((Ringert
et al. 2017), the final code system is generated and
tested to check the teaching results.

Other works summarize teaching experiences
with MDD and conceptual modeling from a wide
variety of contexts. Daun et al. (Daun et al. 2017)
describe the experience of teaching conceptual
modeling in an online course through lecture-style
videos and whiteboard-style videos. The main
important challenges were the lack of interaction
among students and teachers and the need to dis-
cuss and provide feedback to students. The work
of Cabot and Kolovos (Cabot and Kolovos 2016)
and the work of Hamou-Lhadj et al. (Hamou-
Lhadj et al. 2009) present their experience of
teaching MDD to undergraduate students (most
papers focus on Master’s students). Both works
explain the basis of model-to-model and model-
to-code transformations through OCL and ATL.
The work of Lim (Lim 2019) describes a course
to teach MDD to develop embedded software.
The course is based on Class Diagrams and State
Charts, while the code is manually written from
those models. The work of Kuzniarz and Martins

http://dx.doi.org/10.18417/emisa.18.6


Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6
A Practical Experience of How to Teach Model-Driven Development to Manual Programming Students 5
Special Issue on Teaching and Learning Conceptual Modeling

(Kuzniarz and Martins 2016) describes the expe-
rience of a course to teach MDD with the aim of
generating code from UML models. The course
is taught from a theoretical perspective; the stu-
dents do not apply actually transformation rules.
Muller (Muller 2015) summarizes the challenges
of teaching conceptual modeling to practitioners
in companies. The most critical challenges are:
the multi-disciplinary profile of the models; the
need for exploring the customer context; modeling
the dynamic behaviour of the system and mov-
ing from the technical design to the context with
humans. The work of Porüban et al. (Porubän
et al. 2015) describes the teaching guidelines used
in teaching MDD to solve specific problems in
the development process. The course is based
on Domain-Specific Languages (DSLs) to gener-
ate code only for CRUD operations. The work
of Eckert et al. (Eckert et al. 2016)) deals with
the advantages and disadvantages of MDD in the
context of a teaching course. The course is based
on UML diagrams that generate code in JAVA
through the Astah framework.

As conclusions of our analysis of these related
works, we can highlight some assumptions: (1)
All of the analyzed teaching techniques evaluate
models instead of the quality of the generated
code; (2) At best, some of the existing works
generate small chunks of code or only CRUD
functionalities (e. g., (Porubän et al. 2015), but
they do not produce a fully functional system; (3)
There are works e. g. (Cabot and Kolovos 2016)
and (Hamou-Lhadj et al. 2009) where students
must define the transformation rules and apply
them, which reduces effectiveness in the system
development.

In summary, we can state that there are no works
that compare both a traditional method and an
MDD method. Most of the existing MDD courses
focus on evaluating models, which hinders the
potential of the MDD paradigm in code generation.
The few works that evaluate generated code do not
deal with fully functional systems but with small
chunks of code. The following section presents
our approach to closing these gaps.

3 Teaching Methodology

The course where the experiment is conducted fo-
cuses on the comparison of MDD and a traditional
development method with the aim of determining
the pros and cons of MDD for the students. This
way, students can judge first-hand if MDD can be
applied in real software developments. At first
glance, students tend to refuse the assumption that
MDD is better than a traditional method or even
comparable to each other. Most students think
that MDD can only generate small chunks of code,
as CASE tools do. During their previous under-
graduate studies, they focused their abilities on
programming; conceptual models are relegated to
the use of UML models for documentation. Fig. 1
describes the teaching methodology that we used
in our practical experience to compare MDD and
a traditional method. The teaching methodology
is based on problem-based learning (Perrenet et al.
2000); students have to develop problems to learn
the theoretical concepts described above.

The first step of our methodology consists of
obtaining the profile of each student. At first
glance, we can claim that all of the subjects have
a large background in traditional development.
These students have been learning programming
languages for four years in the undergraduate pro-
gram as a minimum. Most of them are already
working in companies in the role of developers,
so we think that these students can be considered
good programmers. We need to check this as-
sumption using a demographic questionnaire. We
ask about their knowledge of programming and
the knowledge of MDD and the roles that they
have played in the industry before attending the
Master’s program, and their average marks in the
undergraduate program. This questionnaire is
completed during the first 5 minutes of the first
class.

The second step consists of an introduction to
the MDD paradigm independently of any tool. The
teacher describes the concept of MDD considering
the differences between the problem space and
the solution space. The teacher highlights that,
in MDD, all the analysts’ efforts are focused on

http://dx.doi.org/10.18417/emisa.18.6


International Journal of Conceptual Modeling
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6

6 José Ignacio Panach, Óscar Pastor
Special Issue on Teaching and Learning Conceptual Modeling

1- DEMOGRAPHIC 
QUESTIONNAIRE

2-MDD 
INTRODUCTION

3- TRADITIONAL 
TRAINING

4- TRADITIONAL 
CONTROLLED EXERCISE

5- MDD 
LESSONS

6- MDD 
TRAINING

C
LA

SS
R

O
O

M
H

O
M

E

7- MDD CONTROLLED 
EXERCISE

P1

P2

P2

P1

Figure 1: Steps of the teaching methodology

the problem space, whereas in traditional software
development, efforts are focused on the solution
space. This introduction requires two lessons (4
hours).

The third step is done in parallel with Step 2.
While the teacher introduces MDD, the students
also have one week to train in the development of
a Web page application using a traditional method.
Even though we can assume that all of the students
are good programmers in the traditional method,
we must ensure that all of them have enough
knowledge to develop a system from scratch. This
is why we ask students to implement a software
system with a traditional method as training before
doing a controlled exercise in the classroom. Since
the traditional development method is beyond the
scope of the course, the students perform their
training as homework. Students can develop the
system in the programming language that they
prefer; we recommend Web development since the
MDD tool generates code for the web. This way,
the students can compare a traditional method
with MDD in the context of Web application
development. The training problem is a system
for managing the routes of public buses.

The fourth step consists of the development of
a system from scratch using a traditional method.
This is a controlled exercise in the classroom.
By controlled we mean that it cannot be done
as homework; it must be done under teacher su-
pervision. Once the training of Step 3 has been
completed, we can ensure that the students have
enough knowledge to develop a system with their
favorite programming language. We divide the
students into two groups; half of them develop
Problem 1 and the other half develop Problem 2.
Problem 1 (Invoice Problem) aims to manage an
electrical appliance company. Once the repair is
done, the system must create an invoice. Prob-
lem 2 (Photography Problem) aims to manage a
company that works with freelance photographers.
The system must register who is the owner of each
photo and the amount of money to pay to each
photographer. Both problems have similar com-
plexity; Problem 1 has 272 function points and
Problem 2 has 199 function points. The reason
for using two different problems is to generalize
the results of the experience since we make the
results independent of any problem. This exercise
requires two classes (4 hours). Both problems are
too complex to be completed in such a short period

http://dx.doi.org/10.18417/emisa.18.6


Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6
A Practical Experience of How to Teach Model-Driven Development to Manual Programming Students 7
Special Issue on Teaching and Learning Conceptual Modeling

of time, but we just want to see what percentage
of the system is developed. None of the students
finished either problem completely.

The fifth step is teaching MDD applied to a
specific tool. In our course, we teach WebRa-
tio (Brambilla and Fraternali 2014), which is an
MDD tool that works with different models: (1) a
Domain Model, which is a conceptual schema that
represents all of the classes and their properties and
relationships needed in the system represented in
UML Class Diagram notation; (2)the Interaction
Flow modeling Language (IFML) (OMG 2021),
which represents the system interfaces (adopted
by the OMG as the standard to represent interfaces
abstractly); (3) the Action Model that specifies the
CRUD (Create, Read, Update, Delete) operations
that can be done in the system. We need five
classes (10 hours) to teach WebRatio to students.

The sixth step is training the students in the
MDD method, similar to the training done in Step
3. In this case, we aim to train the students in the
MDD method. The main difference regarding the
training of the traditional method is that, in this
step, the training is done in the classroom with the
support of the teacher. Note that this is the first
time that most of the students have worked with
MDD, so the teacher must be close-by in order to
resolve questions that arise. For the training, we
used a system to manage films renting video club.
Three classes (6 hours) are required to complete
the training. Students that need more time can
finish the development as homework.

The seventh step is a controlled exercise in the
classroom to develop a system from scratch using
MDD. The problems used are the same problems
as those used in Step 4, but the problems are
swapped. The students who developed Problem 1
in Step 4, now develop Problem 2 in this step (and
vice versa). Swapping problems reduces the learn-
ing effect (carrier effect) between development
methods. The students do not know the problem
since this is the first time that they must develop
it. Two lessons (4 hours) are required to develop
the assigned problem. As in Step 4, the problems
are too large to be completed in such a short time.

We aim to check which percentage of the system’s
students can complete in the four hours.

Note that all of the steps except for Step 3 are
conducted in the classroom with the support of
the teacher. The course was designed to learn
and work mainly in the classroom. To ensure that
students do not work on the controlled problems
as homework, we collect the problem require-
ments at the end of each class. Moreover, the
virtual machines where WebRatio is installed are
hidden when each class is over, so the students
cannot access WebRatio outside of the controlled
sessions.

The final mark is calculated by measuring the
percentage of test cases successfully satisfied in
the four developments from scratch: traditional
development training, experimental traditional
development, MDD training, and experimental
MDD development. All of them have the same
weight in the final mark. This represents 95%
of the final mark. The other 5% depends on the
results of the knowledge questionnaire. There is
no written exam.

3.1 Bloom’s Taxonomy of Educational
Objectives

Bloom’s taxonomy is used to classify the educa-
tional objectives that students must meet at the
end of the course. Below, we describe the goals
of our course:

• 𝐺1: Students will be able to label the different
conceptual primitives of a conceptual model.

• 𝐺2: Students will be able to distinguish the aim
of each conceptual model.

• 𝐺3: Students will be able to build a conceptual
model in WebRatio.

• 𝐺4: Students will be able to analyze infor-
mation represented in a WebRatio conceptual
model.

• 𝐺5: Students will be able to evaluate the quality
of a WebRatio conceptual model.

• 𝐺6: Students will be able to develop a fully
functional system from scratch using WebRatio
conceptual models.

http://dx.doi.org/10.18417/emisa.18.6


International Journal of Conceptual Modeling
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6

8 José Ignacio Panach, Óscar Pastor
Special Issue on Teaching and Learning Conceptual Modeling

Based on the work of Bork (Bork 2019), we
classify our teaching goals into a two-dimensional
schema for the assessment of educational objec-
tives: the knowledge dimension and the cogni-
tive process dimension.

The knowledge dimension classifies the knowl-
edge into four categories: (1) Factual Knowl-
edge, the basic elements that students must know;
(2) Conceptual Knowledge, interrelationships be-
tween the basic elements; (3) Procedural Knowl-
edge, how to do something; and (4) Metacognitive
Knowledge, knowledge of cognition in general
and knowledge of one’s own cognition.

The cognitive process dimension specifies what
is to be done or learned according to six categories:
(1) Remember, retrieving relevant knowledge from
long-term memory; (2) Understand, determining
the meaning of concepts; (3) Apply, using a proce-
dure; (4) Analyze, detecting how the parts relate
each other and to an overall structure; (5) Evaluate,
making judgments; (6) Create, putting elements
together to form an original product. The results
of classifying our goals into both dimensions are
shown in Tab. 1.

4 Experiment Design

This section describes the design of an experiment
that we conducted in the 2020/2021 course. We
first describe profile of the participants, and then
we describe the hypotheses, variables, and metrics.

4.1 Subjects
The subjects were 22 students of the Master’s
program in Engineering and Software Systems
Technology at Universitat Politècnica de València
(UPV). They worked in pairs (except for two
students who worked alone) and had to develop
the training problems and the controlled problems
by working together. This decision was due to
space restrictions. Moreover, we have seen in
previous years that working in pairs involves more
collaboration and the results tend to be better than
when working individually.

Now, we analyze the results of the demographic
questionnaire extracted from Step 1. Fig. 2 shows

the maximum programming experience of the
students. The figure shows that there are 10
students with more than one year of experience,
5 students with less than one year of experience,
and only 7 students with no experience. Fig. 3
shows the roles of students in a company. It can
be observed that most students (11) were junior
programmers. This means that they work daily
implementing code manually. Finally, Fig. 4
shows the knowledge of MDD that the students had
before attending the course. The figure shows that
16 students had no idea of MDD or had just heard
some ideas. Only 3 students took lessons before
this course, and only 1 has worked occasionally
with MDD. These results confirm our assumption
that students are good programmers, but they have
no previous knowledge of MDD. At first glance,
this leads us to think that students will be more
motivated to program than to use modeling, which
is the goal of our course.

Tab. 2 shows the average marks (each mark is
between 0 and 10) of the students in the undergrad-
uate program before starting the Master’s course
as well as the final marks obtained in the MDD
course. This is helpful for assessing the level and
aptitude of students. It can be used to look for a
correlation between the marks on previous courses
and marks on the modeling course (analyzed in
the results section).

4.2 Hypotheses, Variables and Metrics
This section describes the hypotheses we aim to
check with the students, the variables we use to
check such hypotheses, and the metrics used in
the variables. We are proposing this experience
because we aim to improve the motivation for
learning MDD, to improve the knowledge of MDD,
to ensure that students have learned educational
competences to develop quality software through
MDD, and to improve their satisfaction of working
with MDD. These objectives lead to the definition
of the following null hypotheses:

• 𝐻01: The attitude towards using MDD in soft-
ware development is the same before and after
the course.

http://dx.doi.org/10.18417/emisa.18.6


Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6
A Practical Experience of How to Teach Model-Driven Development to Manual Programming Students 9
Special Issue on Teaching and Learning Conceptual Modeling

Table 1: Bloom’s Taxonomy of teaching goals

Remember Understand Apply Analyze Evaluate Create
Factual Knowledge G1
Conceptual Knowledge G2
Procedural Knowledge G3 G6
Metacognitive knowledge G4 G5

7

1

4

6

4
Never

1 Month

3 months- 1 year

1-3 years

More than 3 years

Figure 2: Years of experience of programming in a real company

11

1

3
Junior
Programmer

Senior
Programmer

Project
Management

Figure 3: Roles played in a real company

• 𝐻02: The knowledge of MDD is the same before
and after the course.

• 𝐻03: The quality of the software developed us-
ing MDD is the same as the software developed
using traditional development.

• 𝐻04: The satisfaction of developing software

using MDD is the same as the satisfaction of
using traditional development.

To analyze these hypotheses, we need vari-
ables (factors and response variables) (Juristo
and Moreno 2001) and their metrics. Factors are
variables that affect the response variables that we
want to understand. We have two factors in our

http://dx.doi.org/10.18417/emisa.18.6


International Journal of Conceptual Modeling
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6

10 José Ignacio Panach, Óscar Pastor
Special Issue on Teaching and Learning Conceptual Modeling

3

13

5

1I never heard about it

I heard about it

I took lessons

I work sporadically
with it

Figure 4: Knowledge of MDD before the lessons

Table 2: Students’ marks before and after the MDD
course

Student Average of marks
before the course

Marks of the
course

1 6 8
2 7.5 9.5
3 7 8.5
4 9.1 7.5
5 8.5 9.2
6 6.4 9
7 8.02 9.5
8 7.8 6
9 7.6 7.5
10 7.6 8.5
11 7.4 8.6
12 7.9 9.5
13 7.7 9.2
14 6.2 8.6
15 7.4 6
16 7.2 9.5
17 9 8.5
18 7 8.5
19 7.3 9
20 7 9
21 8.7 9
22 7.6 9

validation. One factor is the use of the teaching
methodology, with two levels: before and after
teaching. The other factor is the development
method, with two levels: MDD and a traditional
method.

Response variables are the effects studied in
the experiment caused by the manipulation of
factors. We have a response variable for each
hypothesis. 𝐻01 is measured through the variable
Attitude. By attitude, we mean the opinion or
feeling that students have about MDD (Sitaraman
et al. 2002). The metric that we use for this
response variable is obtained from a questionnaire
defined by us with a 5-point Likert scale (from
1 to 5 points). Tab. 3 shows the questions that
compose the questionnaire. Questions AQ1, AQ2,
and AQ3 deal with how confident the student feels
with MDD. Questions AQ4 and AQ5 obtain the
student’s opinion of the code generation process.
Question AQ6 asks about the student’s satisfaction
with using MDD. Questions AQ7, AQ8, and AQ9
deal with how easy MDD is. Finally, Question
AQ10 deals with the usability of the tools that
support the MDD method. The Attitude metric is
the sum of the answers to all of these questions.
Thus, we have a single value for Attitude for each
student. Possible values for Attitude fluctuate
between 10 and 50 (each question individually
fluctuates between 1 and 5).

http://dx.doi.org/10.18417/emisa.18.6


Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6
A Practical Experience of How to Teach Model-Driven Development to Manual Programming Students 11
Special Issue on Teaching and Learning Conceptual Modeling

Table 3: Questionnaire for Attitude towards MDD

ID QUESTION

AQ1 MDD is a challenging activity.
AQ2 If I work for a company that uses MDD,

I feel qualified to develop a real software
system.

AQ3 I feel capable of working in MDD with
models that are different from the models
seen in this course.

AQ4 MDD allows code to be generated with fewer
errors than a traditional method.

AQ5 MDD allows code to be generated in less
time than a traditional method.

AQ6 I am more satisfied working with MDD than
with a traditional method.

AQ7 MDD notation allows me to identify errors
easier than a traditional method.

AQ8 The effort required to learn MDD is less
than the effort needed to learn a traditional
method.

AQ9 The effort required to use MDD is less than
the effort needed to use a traditional method.

AQ10 The usability of an MDD tool is better than
the usability of a tool of a traditional method.

For 𝐻02, we have defined the response variable
Knowledge, which means how much the student
knows about MDD. The metric for this response
variable has also been obtained from a question-
naire with four options where only one is correct.
Tab. 4 shows the topic of the six questions that
compose the questionnaire. We have two ques-
tions related to the Class Model (KQ1 and KQ2),
two questions related to the Interaction Model
(KQ3 and KQ4), and two questions related to the
Actions Model (KQ5 and KQ6). The metric for
Knowledge is the sum of all of the correct answers
of this questionnaire. Thus, we have a single value
for Knowledge for each student. Possible values
for Knowledge fluctuate between 0 and 10 (each
question is weighted the same, 1.66). Note that
from a teaching point of view, in order to ensure
that students have enough knowledge of MDD, we
not only use these questionnaires, but we also use
the development of the system from scratch.

Table 4: Questionnaire for Knowledge

ID QUESTION

KQ1 Inheritance relationship between classes.
KQ2 Derived attributes of a class.
KQ3 Menus in interfaces.
KQ4 Navigation among interfaces.
KQ5 modeling actions.
KQ6 Relationship among forms and actions.

For 𝐻03, we have defined the response variable
Quality. IEEE defines quality as "the degree to
which a system, component, or process meets
specified requirements" (IEEE 1991). To measure
this response variable, we have prepared a suite of
test cases to be checked in both problems. Each
functional requirement (described in Panach and
Pastor 2021b) has been transformed into a test
case that must be run on the executable system.
Each test is composed of several sequential items
that are required to accomplish the target of the
test. Tab. 5 shows an example of the test case
for creating a repair card. In general, in each
test case, there are items for checking the normal
execution, such as the last item in Tab. 5. The test
uses the percentage of items successfully passed
as possible values. Therefore, possible values for
each test is a range between 0% (no test passed)
and 100% (all tests passed). These tests are run on
the final software systems developed. The Quality
of the system is calculated as the average of all
of the run tests. In summary, the quality of the
developed systems depends on the percentage of
functional requirements that the subject managed
to satisfy during the experimental session. The
students work in pairs in the classroom, which
means that we have one value of Quality for each
pair of students.

For 𝐻04, we have defined a satisfaction ques-
tionnaire with a 5-point Likert scale (from 1 to 5
points). The metric used to measure this variable
is a satisfaction questionnaire that was built us-
ing the framework developed by Moody (Moody
2003). Moody defined a framework to evaluate
model quality in terms of Perceived Usefulness

http://dx.doi.org/10.18417/emisa.18.6


International Journal of Conceptual Modeling
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6

12 José Ignacio Panach, Óscar Pastor
Special Issue on Teaching and Learning Conceptual Modeling

Table 5: Example of test case

Create a repair card

Insert identifier: 1
Insert customer passport no.: 33472035L
Insert repair date: 21/02/2021
Insert description: TV repair
Insert amount due: 100€
Insert technician’s name: Francisco García
Check that all of the above data has been saved in
the system

(PU), Perceived Ease Of Use (PEOU), and In-
tention To Use (ITU). This framework has been
previously validated and is widely used. Accord-
ing to Moody (Moody 2003), we defined eight
questions to measure Perceived Usefulness, six
questions to measure Perceived Ease of Use, and
two questions to measure Intention to Use. Tab. 6
shows the questions that compose the satisfaction
questionnaire. These questions are for measur-
ing the satisfaction with MDD; we have a similar
questionnaire for measuring the satisfaction with
the traditional method. Questions SQ1,SQ4, SQ6,
SQ9, SQ11, and SQ14 are for measuring Per-
ceived Ease of Use; questions SQ2, SQ3, SQ5,
SQ7, SQ8, SQ12, SQ13, and SQ15 are for mea-
suring Perceived Usefulness; questions SQ10, and
SQ16 are for measuring Intention to Use. The
metrics for Perceived Ease of Use, Perceived Use-
fulness and Intention to Use are the sum of their
respective questions. After calculating this sum,
we have a single value for Perceived Ease of Use,
Perceived Usefulness, and Intention to Use for
each student. Possible values fluctuate between
6 and 30 for Perceived Ease of Use, 8 and 40
for Perceived Usefulness, 2 and 10 for Intention
to Use. The satisfaction questionnaires are com-
pleted after applying the traditional method and
MDD respectively, before discussing the results
for quality assessment in the last session.

In addition to the questionnaires regarding the
hypotheses, at the end of the course, we asked
the students about the pros and cons of using
MDD. We asked the questions directly in an open-
question format. The analysis of these questions

Table 6: Questionnaire for Satisfaction

ID QUESTION

SQ1 I found the procedure for applying MDD to
be simple and easy to follow.

SQ2 I think MDD reduces the effort required to
develop web applications.

SQ3 The conceptual model of the Web applica-
tions developed with MDD is easily under-
stood and modifiable by other developers.

SQ4 Overall, I find MDD easy to use.
SQ5 MDD makes it easy for the developer to fix

web application bugs.
SQ6 You could easily explain MDD to someone

else who didn’t know you.
SQ7 Overall, I found MDD helpful.
SQ8 In general MDD is practical for implement-

ing the needs of the users of the Web appli-
cation.

SQ9 In my opinion, MDD is easy to use in the
web application that I have developed.

SQ10 I would definitely use MDD to develop web
applications.

SQ11 MDD seemed clear and easy to understand.
SQ12 Overall, I believe that MDD provides an

effective solution for web application devel-
opment.

SQ13 By using MDD you can build large web
applications efficiently.

SQ14 I am confident that I now have the necessary
skills to apply MDD in practice.

SQ15 Overall, I think MDD is an improvement
over other development methods.

SQ16 I will preferably try to use MDD over other
development methods if I have to develop
other web applications in the future.

allows us to explain the numerical data results of
the hypotheses.

The validation follows a within-subjects de-
sign since we apply both treatments to all of the
students. We obtained data from all of the sub-
jects before and after the course (the Use of the
Teaching Methodology factor), and after apply-
ing each development method (the Development
Method factor). The Use of the Teaching Method
factor answers 𝐻01 and 𝐻02, while the Develop-
ment Method factor answers 𝐻03 and 𝐻04. For

http://dx.doi.org/10.18417/emisa.18.6


Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6
A Practical Experience of How to Teach Model-Driven Development to Manual Programming Students 13
Special Issue on Teaching and Learning Conceptual Modeling

the Development Method factor, we have a block-
variable named Problem to represent the problems
in which treatments are applied. We blocked by
the problem to avoid the learning effect of using
the same problem in both methods (traditional and
MDD). This means that we analyze the interaction
of Development Method*Problem, but we are not
interested in analyzing the problem independently
of the development method.

4.3 Experiment material
This section describes the material used in the
experiment. Even though the problems may have
several possible solutions, we describe the experi-
menters’ solutions. Fig. 5 shows the UML Class
Diagram for the Invoice Problem. The system
must create and save repair orders for technical is-
sues. These repairs are done by technicians that go
to the customer’s house to make the repair. Once
the repair is completed, the technician must create
an invoice to collect money from the customer.
Some repairs are randomly audited. We need to
register who did the audit, the company where the
auditor works, and the material used in the audit.
Apart from repairing technical issues, the com-
pany also offers courses for the customers. These
courses aim to teach customers ways to resolve
technical issues and make repairs on their own in
the future. The task is to manage the details of the
courses, including the subjects that compose the
courses and the teachers involved.

Fig 6 shows the UML Class Diagram for the
Photography Problem. The system manages the
information of candidates who want to be pho-
tographers and photographers already been hired.
The applicants candidates can submit their curricu-
lum, and a group of representatives of the company
must decide whether or not to accept them. Each
accepted photographer has a classification that is
used to determine a price specific per photo. This
category can increase as the experience of the pho-
tographer increases. There are two types of jobs
that a photographer can do: stories and scoops.
Stories require a publisher to pay for the photos
immediately, whereas a scoop requires a delivery
order because they are paid later. The price that

the photographer receives for each photo on the
report depends on her/his classification, whereas
the photographer can define the price to receive
for a scoop.

Fig. 7 shows a small part of the Interaction
Model in WebRatio to represent the interface of
the Invoice Problem to list and create invoices.
Fig. 8 shows the Action Model of the Invoice
Problem that represents how to create a course.
The description of the problems as they were
shown to subjects is presented in (Panach and
Pastor 2021b). The repository also includes a
possible solution for both problems to be opened
using WebRatio.

4.4 Threats to Validity
This section describes the threats addressed by the
experiment setting. We have classified the threats
according to the classification provided by Wohlin
et al. (Wohlin et al. 2012). We classify the threats
into four groups: Conclusion Validity, Internal
Validity, Construct Validity, and External Validity.

Conclusion Validity: This type of threat deals
with the ability to draw the correct conclusion
about the relations between the treatment and out-
come. Our experiment may suffer Low statistical
power, which means that the sample size is not
large enough to reject the null hypotheses. Ac-
cording to G*Power (Erdfelder et al. 1996), for
a moderate effect size (0.5) in a within-subjects
design, we need a sample size of over 16 sub-
jects to get good values of power (0.96). We
have 22 subjects, so we can state that even though
our sample is not large, we mitigated this threat.
Another mitigated threat is Subjects of random
heterogeneity, which means that the subjects are
randomly selected and their background is too het-
erogeneous. We managed to mitigate this threat
using training sessions in a traditional method and
in MDD. This way, we could ensure that the stu-
dents had enough knowledge to follow the course.
Another threat that the experiment may suffer is
Reliability of measures, which means that there is
no guarantee that the outcomes will be the same if
a phenomenon is measured twice. We mitigated

http://dx.doi.org/10.18417/emisa.18.6


International Journal of Conceptual Modeling
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6

14 José Ignacio Panach, Óscar Pastor
Special Issue on Teaching and Learning Conceptual Modeling

CREATE_CUSTOMER

NAME

SURNAME

TELEPHONE

ADDRESS

POSTAL CODE

TOWN

COUNTRY

CUSTOMER

CREATE_CUSTOMER

NAME

SURNAME

TELEPHONE

ADDRESS

POSTAL CODE

TOWN

COUNTRY

CUSTOMER

CREATE_INVOICE

PAY_ALL_REPARATIONS

NUM_INVOICE

DATE

TOTAL

INVOICE

CREATE_INVOICE

PAY_ALL_REPARATIONS

NUM_INVOICE

DATE

TOTAL

INVOICE

CREATE_REPARATION

PAY_REPARATION

DATE

DESCRIPTION

AMOUNT

PAID

REPAIRMAN

REPAIR

CREATE_REPARATION

PAY_REPARATION

DATE

DESCRIPTION

AMOUNT

PAID

REPAIRMAN

REPAIR

0..*1..1 0..*1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

CREATE_COURSE

REGISTER_CUSTOMER

TITLE

DURATION

PRICE

NUM_MAX_STUDENTS

START_DATE

END_DATE

COURSE

CREATE_COURSE

REGISTER_CUSTOMER

TITLE

DURATION

PRICE

NUM_MAX_STUDENTS

START_DATE

END_DATE

COURSE

CREATE_SUBJECT

NAME

HOURS

SUBJECT

CREATE_SUBJECT

NAME

HOURS

SUBJECT

CREATE_TEACHER

NAME

SURNAME

SALARY

TEACHER

CREATE_TEACHER

NAME

SURNAME

SALARY

TEACHER

0..*0..* 0..*0..*

0..*

1..1

0..*

1..1

1..1

0..*

1..1

0..*

CREATE_REPARATION

ASSIGN_REPAIR

INCLUDE_MATERIAL

START_DATE

END_DATE

PRICE

AUDIT

CREATE_REPARATION

ASSIGN_REPAIR

INCLUDE_MATERIAL

START_DATE

END_DATE

PRICE

AUDIT

CREATE_MATERIAL

NAME

PRICE

MATERIAL

CREATE_MATERIAL

NAME

PRICE

MATERIAL

CREATE_AUDITOR

NAME

SURNAME

AUDITOR

CREATE_AUDITOR

NAME

SURNAME

AUDITOR

CREATE_COMPANY

NAME

ADDRESS

TELEPHONE

COMPANY

CREATE_COMPANY

NAME

ADDRESS

TELEPHONE

COMPANY

0..* 1..10..* 1..1

0..*

1..1

0..*

1..1

0..*

0..1

0..*

0..1

0..* 0..*0..* 0..*

Figure 5: UML Class Diagram for the Invoice Problem

this threat by applying the metrics objectively by
one experimenter.

Construct Validity: This type of threat con-
cerns generalizing the result of the experiment to
the concept or theory behind the experiment. The
validation may suffer Evaluation apprehension,
which means that the students are afraid of being
evaluated. We did not manage to mitigate this
threat since experimental tasks are exercises that
the students had to complete in order to pass the
course. Another threat that the validation may
suffer is Interaction of different treatments, which
means that there is no way of concluding whether
the effect is due to either of the treatments or to a
combination of several treatments. We mitigated
this threat by considering two factors in separate
response variables, but other factors that were not
considered in the design may have affected the
results.

Internal Validity: This type of threat deals
with influences that can affect the factor con-
cerning causality. A threat that may impact the
validation is Learning of objects, which means
that the students may learn things with the first

problem that help them in the second problem.
We mitigated this threat by using two different
problems to measure the Development Method
factor. Another threat is Subjects’ motivation,
which means that less motivated pairs of students
may achieve worse results than highly motivated
pairs. We did not manage to mitigate this threat.

External Validity: This type of threat concerns
conditions that limit our ability to generalize the re-
sults of our experiments to industrial practice. Our
validation may suffer Object dependency, which
means that results may depend on the objects used
in the experiment and they cannot be generalized.
We mitigated this threat by using two problems for
the Development Method factor. Another threat is
Interaction of history and treatment, which means
that treatments are applied on different days and
the circumstances on that day affect the results.
We mitigated this threat by applying the treatments
in the same schedule and context.

5 Results of the Validation

This section describes the analysis of the results
obtained from the metrics defined previously. The

http://dx.doi.org/10.18417/emisa.18.6


Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6
A Practical Experience of How to Teach Model-Driven Development to Manual Programming Students 15
Special Issue on Teaching and Learning Conceptual Modeling

CREATE_APPLICANT

ACCEPT_APPLICANT

NAME

SURNAME

TELEPHONE

ADDRESS

POSTAL CODE

TOWN

COUNTRY

APPLICANT

CREATE_APPLICANT

ACCEPT_APPLICANT

NAME

SURNAME

TELEPHONE

ADDRESS

POSTAL CODE

TOWN

COUNTRY

APPLICANT

PROMOTE

HIRED 

PHOTOGRAPHER

PROMOTE

HIRED 

PHOTOGRAPHER

CREATE_CATEGORY

LEVEL

PRICE_PER_PHOTO

CATEGORY

CREATE_CATEGORY

LEVEL

PRICE_PER_PHOTO

CATEGORY

CREATE_REQUEST

EQUIPMENT

EXPERIENCE

DATE

REQUEST

CREATE_REQUEST

EQUIPMENT

EXPERIENCE

DATE

REQUEST0..*1..1 0..*1..1

0..* 1..10..* 1..1

CREATE_REPORT

NUM_PHOTOS

DESCRIPTION

REPORT

CREATE_REPORT

NUM_PHOTOS

DESCRIPTION

REPORT

CREATE_SCOOP

ASSIGN_PHOTOGRAPH

RELEASE_PHOTOGRAPH

CREATION_DATE

ASSIGNMENT_DATE

FINALIZATION_DATE

OFFERED_PRICE

DESCRIPTION

SCOOP

CREATE_SCOOP

ASSIGN_PHOTOGRAPH

RELEASE_PHOTOGRAPH

CREATION_DATE

ASSIGNMENT_DATE

FINALIZATION_DATE

OFFERED_PRICE

DESCRIPTION

SCOOP

CREATE_DELIVERY_NOTE

CREATION_DATE

PRICE_PUBLISHER

PRICE_PHOTOGRAPH

DELIVERY NOTE

CREATE_DELIVERY_NOTE

CREATION_DATE

PRICE_PUBLISHER

PRICE_PHOTOGRAPH

DELIVERY NOTE

CREATE_PUBLISHER

NAME

CIF

ADDRESS

PUBLISHER

CREATE_PUBLISHER

NAME

CIF

ADDRESS

PUBLISHER

0..*

0..1

0..*

0..1

0..*

1..1

0..*

1..1

0..*1..1 0..*1..1

0..*

1..1

0..*

1..1

0..*

1..1

0..*

1..1

Figure 6: UML Class Diagram for the Photography Problem

raw data is presented in (Panach and Pastor 2021b).
The data is analyzed through a statistical test
named Mixed Model to look for significant dif-
ferences. We have chosen a Mixed Model (West
et al. 2014) because when we analyze the Devel-
opment Method factor, we also need to include
the block variable (Problem), and both elements
are repeated measures. The Mixed Model is a test
that allows more than one repeated measure to be
analyzed, so it is the most suitable for our design.
We have considered significant differences when
the p-value > 0.05.

We calculated the effect size for only those re-
sponse variables with significant differences using
Cohen’s d. The effect size is used to analyze the
magnitude of such differences. Cohen’s d is de-
fined as the difference between two means divided
by a standard deviation of the data. According to

Cohen (Cohen 1988), the meaning of the effect
size is as follows: more than 0.8 is a large effect;
from 0.79 to 0.5 is a moderate effect; from 0.49
to 0.2 is a small effect.

We have also reported the descriptive data to
analyze which treatment yields better results using
Box and Whisker plots. Finally, we have analyzed
a possible correlation between the final students’
marks with the values of our response variables
after using MDD with Pearson correlation. Values
less than 0.3 mean no correlation, values between
0.3 and 0.5 mean a weak correlation, values be-
tween 0.5 and 0.7 mean a moderate correlation,
and values larger than 0.7 mean a high correlation.
P-values lower than 0.05 mean that the correlation
is significant, i. e., we have a sample size that is
large enough to guarantee the result of the cor-

http://dx.doi.org/10.18417/emisa.18.6


International Journal of Conceptual Modeling
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6

16 José Ignacio Panach, Óscar Pastor
Special Issue on Teaching and Learning Conceptual Modeling

Figure 7: Excerpt from the Interaction Model of WebRatio in the Invoice Problem

Figure 8: Excerpt from the Action Model of WebRatio in the Invoice Problem

relation. Below, we present the results for each
response variable.

Tab. 7 shows the p-value of the Mixed Model
and the effect size for the Attitude response vari-
able. This response variable is calculated for the
Use of the Teaching Methodology factor taking
into account each student individually (we have
the metric for each student). Since p-value=0.00,
we can state that there are significant differences
in the treatment Use of the Teaching Methodology.

The effect size shows that these differences are
moderate. Figure 9 shows the Box and Whiskers
plot for Attitude. It can be observed that the first
quartile, median and third quartile are better after
using our teaching methodology. Therefore, we
can reject the null hypothesis 𝐻01 and state that our
course involves a change in the student’s attitude
toward the use of MDD. Students are more open
to working with MDD after attending the course.

http://dx.doi.org/10.18417/emisa.18.6


Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6
A Practical Experience of How to Teach Model-Driven Development to Manual Programming Students 17
Special Issue on Teaching and Learning Conceptual Modeling

We also aim to look for a possible correlation be-
tween the attitude after attending the MDD course
and the marks obtained at the end of the course.
Pearson correlation yields -0.218, which means
no correlation between the two variables. Signif-
icance yields a p-value of 0.331, which means
the sample size does not have enough statistical
power to look for correlations. Therefore, we can
conclude that students’ attitude does not affect
their marks.

Table 7: Statistics for Attitude

Factor p-value Effect Size

Use of Teaching Met. 0.00 0.56

Tab. 8 shows the statistical results for the
Knowledge response variable using the Mixed
Model. This response variable is calculated for
the Use of the Teaching Methodology factor tak-
ing into account each student individually (we
have the metric for each student). The P-value
is less than 0.05, which means that there are sig-
nificant differences between using our teaching
methodology and not using it. The effect size
shows moderate differences. Fig. 10 shows the
Box and Whiskers plot for Knowledge. It can
be observed that the first quartile, median, and
third quartile have better results after the course.
Therefore, we can reject the null hypothesis 𝐻02
and state that the use of our teaching methodology
involves changes in the knowledge of MDD. The
plot shows that after the course, most of the stu-
dents achieved a mark in knowledge close to 10
points (the maximum possible), which means that
the students learned all of the MDD concepts.

Table 8: Statistics for Knowledge

Factor p-value Effect Size

Use of Teaching Met. 0.00 0.70

Using Pearson correlation, we aim to look for a
possible correlation between the knowledge after
attending the MDD course and the final marks.
The results show a correlation of 0.041, which

means there is no correlation between the two
variables. Significance has a p-value of 0.856,
so the statistical power is not enough to look for
correlations. Note that, even though the final
mark depends on the questionnaire for knowledge,
this questionnaire represents only 5% of the final
mark.

Since the demographic questionnaire collects
the average of the student’s marks in the under-
graduate program studied before attending the
Master’s course (Tab. 2), we analyze a possible
correlation between these previous marks and the
mark in this MDD course. The results of the
Pearson correlation yield -0.024, which means
that there is no correlation. Moreover, the p-value
of significance is 0.916, so the sample size is not
large enough to conclude a possible correlation
between the two marks. We can state that the
average of marks obtained in previous courses are
not correlated with marks obtained when learn-
ing MDD. Therefore, previous knowledge is not
related to success in using MDD.

Tab. 9 shows the statistics for Quality using the
Mixed Model. Note that this response variable
is calculated for the Development Method factor
and the Problem block variable. The sample
unit for this variable is the pair of students since
we have data of this metric for each pair. We
have analyzed the Development Method and the
interaction Development Method*Problem. Only
the Development Method yields significant results,
which means that there are differences between
the two development methods independently of
the problems. The effect size shows a low effect.
Fig. 11 shows the Box and Whiskers plot for
Quality. The results show better quality in MDD
for the first quartile, median, and third quartile.
This means that the students working with MDD
pass more tests than the same students working
with a traditional method. Therefore, we can reject
the null hypothesis 𝐻03 and state that there are
significant differences in Quality depending on
the development method used.

If we analyze the correlation between quality
in MDD and final marks, the Pearson correlation
yields 0.723. This is a strong correlation, which

http://dx.doi.org/10.18417/emisa.18.6


International Journal of Conceptual Modeling
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6

18 José Ignacio Panach, Óscar Pastor
Special Issue on Teaching and Learning Conceptual Modeling

Figure 9: Box and Whiskers plot for Attitude

Figure 10: Box and Whiskers plot for Knowledge

Figure 11: Box and Whiskers plot for Quality

means that students with the best quality in their
MDD models obtain the best marks. Note that
even though the quality of the MDD development
is used to calculate the final mark, there are other

developments used in the calculus (the traditional
development and both trainings). The significance
of the correlation yields a value of 0, which means
that we have a sample size that is large enough to

http://dx.doi.org/10.18417/emisa.18.6


Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6
A Practical Experience of How to Teach Model-Driven Development to Manual Programming Students 19
Special Issue on Teaching and Learning Conceptual Modeling

Table 9: Statistics for Quality

Factor p-value Effect Size

D. Method 0.04 0.39
D. Method*Problem 0.43 -

certify the correlation between the two variables.
This result indicates that the students with the best
marks are those that developed the best systems
with MDD.

Tab. 10 shows the p-value using the Mixed
Model and the effect size for Satisfaction mea-
sured in terms of Perceived Ease of Use, Perceived
Usefulness, and Intention to Use. These results
have been calculated considering the Development
Method as a factor and the Problem as a blocking
variable. The sample units are the subjects since
we have metrics for each subject. In this case,
we have significant results for Perceived Ease of
Use and Intention to Use, whereas Perceived Use-
fulness shows no significant differences. Both
significant results show a low effect size. More-
over, we have a significant result for the Intention
to Use*Problem interaction, which means that
there is a problem that yields better results for one
of the treatments.

The Box and Whiskers plots of Perceived Ease
of Use in 12 show that the first quartile, median,
and third quartile are better for MDD. The medians
of Perceived Usefulness in Fig. 13 show no differ-
ences between the two treatments since they are at
the same level, even though the first quartile and
third quartile are slightly better for MDD. Fig. 14
shows that the traditional method yields better
results than MDD for Intention to Use. The first
quartile, median and third quartile are better for
the traditional method. Fig. 15 shows the profile
plot to interpret the significant differences of the
Development Method*Problem interaction for In-
tention to Use. We see that Problem 1 has a better
Intention to Use for the traditional method rather
than for MDD. This difference does not appear
in Problem 2. This could be because Problem 2
included an inheritance that Problem 1 does not
have. This could slightly increase the difficulty of

Problem 2, masking possible differences between
the Intention to Use of the two development meth-
ods in this problem. According to all of these
results, we can reject 𝐻04 for both Perceived Ease
of Use and Intention to Use. Perceived Ease of
Use shows better results for MDD, whereas Inten-
tion to Use shows better results for the traditional
method.

Table 10: Statistics for Satisfaction

Metric Factor p-value Effect Size

Perc. Ease
of Use

D. Method 0.03 0.29
D. Method*Problem 0.14 -

Perceived
Usefulness

D. Method 0.11 -
D.Method*Problem 0.11 -

Intention
to Use

D. Method 0.04 0.27
D. Method*Problem 0.03 -

An analysis of the Pearson correlation between
the final marks and the three metrics for satis-
faction provides the following values: Perceived
Ease of Use yields a correlation of 0.315 (with
a p-value of 0.153); Perceived Usefulness yields
-0.113 (with a p-value of 0.616); and Intention to
Use yields -0.415 (with a p-value of 0.055). The
only satisfaction metric with a correlation is Inten-
tion to Use, with a weak correlation. The p-value
indicates that the sample size is not large enough
to generalize this conclusion. This result means
that, even though it is not significant, the students
with the best marks do not have the intention to
use MDD in the future.

6 Discussion
This section explains the outcomes that the vali-
dation yields, combining numerical results with
the pros and cons that the students discussed as
open questions at the end of the course. Below,
we discuss the results for each response variable.

With regard to Attitude, we can conclude that
after the course, the student’s attitude towards
working with MDD was significantly higher. At
the beginning of the course, the students were re-
luctant to use MDD, but this perception completely
changed when they compared their outcomes with

http://dx.doi.org/10.18417/emisa.18.6


International Journal of Conceptual Modeling
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6

20 José Ignacio Panach, Óscar Pastor
Special Issue on Teaching and Learning Conceptual Modeling

Figure 12: Box and Whiskers plot for Perceived Ease of Use

Figure 13: Box and Whiskers plot for Perceived Usefulness

http://dx.doi.org/10.18417/emisa.18.6


Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6
A Practical Experience of How to Teach Model-Driven Development to Manual Programming Students 21
Special Issue on Teaching and Learning Conceptual Modeling

Figure 14: Box and Whiskers plot for Intention to Use

Figure 15: Profile plot for Development Method*Problem

the two development methods. Some of the pros
mentioned by the students about their attitude to-
wards MDD are: the time required to develop a
system with MDD is less than with a traditional
method; the deployment time of the system with
MDD is easier than with a traditional method;
the migration to other platforms is easy thanks
to model-to-code transformations. There are also
some cons regarding attitude after attending the
course: it is not easy to identify how model char-
acteristics affect the generated code; MDD does
not allow as much flexibility as in the development
with a traditional method.

With regard to Knowledge, the results show
that after the course, the students had more knowl-
edge of MDD than before the course. Even though
there were models that were well known by the
students before the course, such as the UML Class
Diagram, other models such as Interaction Model
(IFML) and Action Model had to be learned from

scratch during the course. The questionnaire for
measuring Knowledge before the course included
two questions about the UML Class Diagram
(KQ1 and KQ2 in 8). KQ1 was about inheritance
in a class, where all of the students answered
the questions correctly. KQ2 was about derived
attributes in a class, where 17 (of 22) students
answered correctly. However, most of the students
did not manage to answer questions regarding
IFML and the Action Model correctly before the
course. Only after finishing the course did all of
the students manage to answer all of the knowl-
edge questions successfully. One of the pros of
MDD for Knowledge is that it is easy to learn the
conceptual models that support the MDD devel-
opment. One of the cons of MDD for Knowledge
is that the tool that supports the MDD method is
not very usable, which hinders more comfortable
learning.

http://dx.doi.org/10.18417/emisa.18.6


International Journal of Conceptual Modeling
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6

22 José Ignacio Panach, Óscar Pastor
Special Issue on Teaching and Learning Conceptual Modeling

With regard to Quality, we can state that the
quality of systems developed using MDD is higher
than the quality of systems developed using a tra-
ditional method. This means that during the four
hours spent on the development, the students who
used MDD managed to fulfil more requirements
than in the same period of time with a traditional
method. The students stated the following pros
of MDD regarding quality: Small changes in the
models allow a quick correction of the system;
The generated code is free of errors; It is easy to
change the interface to fulfil the requirements. As
cons for quality, the students described the follow-
ing: There are limited layout templates for the
graphical user interface; Errors in the models are
propagated to errors in the code. We also found
a correlation between final marks and the quality
of the MDD developments. This means that the
teaching methodology manages to teach MDD to
students in such a way that they can develop a
fully functional system from scratch.

With regard to Satisfaction, only Perceived
Ease of Use was significantly better in MDD than
in the traditional method. This means that even
though the background in conceptual models was
limited to UML Class Diagrams, the students per-
ceived MDD as being very easy to use. They did
not consider the learnability of the MDD paradigm
to be a problem. Perceived Usefulness showed
no difference between MDD and the traditional
method. This means that the students put both
development methods on the same level. The
fact that the students considered both develop-
ment methods to be at the same level means that,
although they are good programmers, they feel
qualified to work with MDD after just a single
course. Intention to Use indicated that a traditional
method has significantly more intention to be used.
This means that, after the course, the subjects still
had the intention to continue developing systems
using a traditional method. This result also arises
when we analyze the correlation between final
marks and Intention to Use. The students with
better marks had less intention to use MDD in
the future. The students consider that MDD is
easy and useful and develops quality systems, but

they still have the intention to work using tradi-
tional development methods. This assumption
can be explained by some of the cons related to
Satisfaction of MDD that were discussed by the
students: There is not a huge community working
with MDD; Apart from CRUD operations, it is
not easy to model other functionalities; Generated
code is very difficult to understand, so manual
code tweaking is not easy. As pros for Satisfaction
of MDD, the students discussed the following: It
is easier to start to develop if you have no back-
ground in a traditional method; visual models
help in the understandability of the system to be
developed.

As academic results, we highlight that all of the
students completed the four exercises that were
required for the marks of the course (independently
of the level of quality), so all of them passed the
course.

7 Conclusions

This paper describes a practical experience
of teaching conceptual modeling in an MDD
paradigm. The course is part of a Master’s degree
program at Universitat Politècnica de València
(UPV), where students are good programmers
but are not motivated to learn MDD. Our teach-
ing methodology consists of a comparison of a
traditional method versus an MDD method that
the students experience through problem-based
learning. Students must compare a system that
is developed using a traditional method for four
hours versus a system that is developed with MDD
requiring the same amount of time.

The validation of the teaching experience has
been done based on four response variables: Atti-
tude, Knowledge, Quality, and Satisfaction. Atti-
tude and Knowledge show significantly that, after
applying the teaching methodology, students have
a more positive attitude and more knowledge of
MDD significantly. The results also show that
MDD produces software of significantly higher
quality. Significant results for Satisfaction show
that students perceive MDD as being easy to use,
but they have no intention of using it in the future.

http://dx.doi.org/10.18417/emisa.18.6


Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6
A Practical Experience of How to Teach Model-Driven Development to Manual Programming Students 23
Special Issue on Teaching and Learning Conceptual Modeling

These response variables were complemented with
open questions in a discussion session where stu-
dents had to discuss the pros and cons of using
MDD.

After the experience, we have learned the fol-
lowing lessons: (1) Students only notice the ad-
vantages of MDD when they compare their pro-
ductivity using both development methods. When
they start to learn conceptual models, they do not
think that they will manage to develop systems
easily. This assumption only changes when they
generate code; (2) Background in a traditional
method affects how students deal with some of
the MDD challenges. For example, students try
to apply well-known techniques such as debug-
ging while running the system, or they frequently
aim to test the code by running the system after
a few changes (trial and error). Students with
no idea of a traditional method may have dealt
with these problems differently, paying more at-
tention to models and not the finally generated
system; (3) Students are really concerned with
how graphical user interfaces show the system. In
general, students are more interested in person-
alizing the interfaces than in ensuring the right
functionality of the system. This could be one of
the reasons why students do not have the intention
of using MDD in the future since personalization
of interfaces is not easy with MDD.

As future work, we plan to repeat the teaching
methodology in the coming courses. We plan to
change the tool that supports the MDD method to
see if the results are independent of the tool. We
also plan to repeat the experience by comparing
two different MDD tools instead of comparing a
traditional method versus MDD.

References

Atkinson C., Kühne T. (2003) Model-driven de-
velopment: a metamodeling foundation. In: IEEE
Software 20(5), pp. 36–41

Berre A. J., Huang S., Murad H., Alibakhsh H.
(2018) Teaching modelling for requirements engi-
neering and model-driven software development
courses. In: Computer Science Education 28(1),
pp. 42–64

Bork D. (2019) A Framework for Teaching Con-
ceptual Modeling and Metamodeling Based on
Bloom’s Revised Taxonomy of Educational Ob-
jectives. In: Proceedings of the 52nd Hawaii Inter-
national Conference on System Sciences (HICSS)

Brambilla M., Fraternali P. (2014) Large-scale
Model-Driven Engineering of web user interac-
tion: The WebML and WebRatio experience. In:
Science of Computer Programming 89, pp. 71–87

Cabot J., Kolovos D. S. (2016) Human Factors in
the Adoption of Model-Driven Engineering: An
Educator’s Perspective. In: Advances in Concep-
tual Modeling. Springer, pp. 207–217

Chen C., Song I.-Y., Zhu W. (2007) Trends in
conceptual modeling: Citation analysis of the ER
conference papers (1979-2005). In: Proceedings of
the 11th International Conference on the Interna-
tional Society for Scientometrics and Informatrics,
pp. 189–200

Ciccozzi F., Famelis M., Kappel G., Lambers L.,
Mosser S., Paige R. F., Pierantonio A., Rensink A.,
Salay R., Taentzer G., Vallecillo A., Wimmer M.
(2018) How Do We Teach Modelling and Model-
Driven Engineering? A Survey. In: Proceedings
of the 21st ACM/IEEE International Conference
on Model Driven Engineering Languages and
Systems: Companion Proceedings. MODELS ’18.
Association for Computing Machinery, pp. 122–
129

Cohen L. (1988) Statistical power analysis for
the behavioral sciences, 2nd. Edition. Lawrence
Earlbaum Associates

Daun M., Brings J., Obe P. A., Pohl K., Moser
S., Schumacher H., Rieß M. (2017) Teaching
Conceptual Modeling in Online Courses: Coping
with the Need for Individual Feedback to Modeling
Exercises. In: 2017 IEEE 30th Conference on

http://dx.doi.org/10.18417/emisa.18.6


International Journal of Conceptual Modeling
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6

24 José Ignacio Panach, Óscar Pastor
Special Issue on Teaching and Learning Conceptual Modeling

Software Engineering Education and Training
(CSEE T), pp. 134–143

Eckert C., Cham B., Sun J., Dobbie G. (2016)
From design to code: An educational approach.
In: Proceedings of the International Conference
on Software Engineering and Knowledge Engi-
neering, SEKE Vol. 2016-January. cited By 3,
pp. 443–448

Embley D. W., Liddle S., Pastor Ó. (2011)
Conceptual-Model Programming: A Manifesto
In: Handbook of Conceptual Modeling Springer,
pp. 3–16

Erdfelder E., Faul F., Buchner A. (1996)
GPOWER: A general power analysis program.
In: Behavior Research Methods, Instruments, &
Computers 28(1), pp. 1–11

Ghiran A.-M., Osman C.-C., Buchmann R. A.
(2020) Advancing Conceptual Modeling Educa-
tion Towards a Generalized Model Value Proposi-
tion. In: Advances in Information Systems Devel-
opment. Springer, pp. 1–18

Hailpern B., Tarr P. (2006) Model-driven devel-
opment: The good, the bad, and the ugly. In: IBM
Systems Journal 45(3), pp. 451–461

Hamou-Lhadj A., Gherbi A., Nandigam J. (2009)
The Impact of the Model-Driven Approach to Soft-
ware Engineering on Software Engineering Edu-
cation. In: 2009 Sixth International Conference
on Information Technology: New Generations,
pp. 719–724

Härer F., Fill H.-G. (2020) Past Trends and Future
Prospects in Conceptual Modeling - A Bibliomet-
ric Analysis. In: Conceptual Modeling. Springer,
pp. 34–47

Huelin R., Iheanacho I., Payne K., Sandman
K. (2015) What’s in a Name? Systematic
and Non-Systematic Literature Reviews,
and Why the Distinction Matters. In: Evi-
dence Forum. https://www.evidera.com/wp-
content/uploads/2015/06/Whats-in-a-Name-
Systematic-and-Non-Systematic-Literature-
Reviews-and-Why-the-Distinction-Matters.pdf

IEEE (1991) IEEE standard computer dictionary.
A compilation of IEEE standard computer glos-
saries.

Juristo N., Moreno A. (2001) Basics of Software
Engineering Experimentation. Springer

Kuzniarz L., Martins L. E. G. (2016) Teaching
Model-Driven Software Development: A Pilot
Study. In: Proceedings of the 2016 ITiCSE Work-
ing Group Reports. ITiCSE ’16. Association for
Computing Machinery, pp. 45–56

Larenas F., Marın B., Giachetti G. (2018) Classu-
topia: A Serious Game for Conceptual Modeling
Design. In: The 30th International Conference
on Software Engineering and Knowledge Engi-
neering, Hotel Pullman, Redwood City, Califor-
nia, USA, July 1-3, 2018. KSI Research Inc. and
Knowledge Systems Institute Graduate School,
pp. 116–115

Lim D.-J. (2019) Incorporating a Model-Driven
Approach into an Embedded Software Course. In:
Electronics 8(9)

Martínez Y., Cachero C., Meliá S. (2013) MDD
vs. traditional software development: A practi-
tioner’s subjective perspective. In: Information
and Software Technology 55(2), pp. 189–200

Moody D. L. (2003) The method evaluation model:
a theoretical model for validating information
systems design methods. In: Proceedings of the
11th European Conference on Information Sys-
tems, ECIS 2003, Naples, Italy 16-21 June 2003,
pp. 1327–1336

Muller G. (2015) Challenges in Teaching Concep-
tual Modeling for Systems Architecting. In: Ad-
vances in Conceptual Modeling. Springer, pp. 317–
326

OMG (2021) Interaction Flow Modeling Lan-
guage (IFML) : http://www.ifml.org/

Paja E., Horkoff J., Mylopoulos J. (2015) The Im-
portance of Teaching Systematic Analysis for Con-
ceptual Models: An Experience Report. In: Ad-
vances in Conceptual Modeling. Springer, pp. 347–
357

http://dx.doi.org/10.18417/emisa.18.6


Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 6 (2023). DOI:10.18417/emisa.18.6
A Practical Experience of How to Teach Model-Driven Development to Manual Programming Students 25
Special Issue on Teaching and Learning Conceptual Modeling

Panach I., Pastor O. (2021a) Literature re-
view dataset www.uv.es/~joigpana/ research/
PapersDatasetEMISAJ2021.xlsx

Panach I., Pastor O. (2021b) Zenodo Repository
with Experiment Material

Pastor O., Molina J. C. (2007) Model-driven ar-
chitecture in practice - a software production envi-
ronment based on conceptual modeling. Springer

Perrenet J. C., Bouhuĳs P. A. J., Smits J. G. M. M.
(2000) The Suitability of Problem-based Learning
for Engineering Education: Theory and practice.
In: Teaching in Higher Education 5(3), pp. 345–
358

Porubän J., Bačíková M., Chodarev S., Nosál M.
(2015) Teaching pragmatic model-driven software
development. In: Computer Science and Informa-
tion Systems 12(2) cited By 4, pp. 683–705

Reyes L. P. Á., Quintero B. C. (Mar. 2020) Teach-
ing based on models and transformations under the
active learning approach. In: Journal of Physics:
Conference Series 1513, p. 012012

Ringert J. O., Rumpe B., Schulze C., Wortmann A.
(2017) Teaching Agile Model-Driven Engineering
for Cyber-Physical Systems. In: Proceedings of
the 39th International Conference on Software
Engineering: Software Engineering and Education
Track. ICSE-SEET ’17. IEEE Press, pp. 127–136

Rosenthal K., Ternes B., Strecker S. (2019) Learn-
ing Conceptual Modeling: Structuring Overview,
Research Themes and Paths for Future Research.
In: 27th European Conference on Information
Systems - Information Systems for a Sharing Soci-
ety, ECIS 2019, Stockholm and Uppsala, Sweden,
June 8–14, 2019

Roungas B., Dalpiaz F. (2016) A Model-Driven
Framework for Educational Game Design. In:
Games and Learning Alliance. Springer, pp. 1–11

Selic B. (2003) The Pragmatics of Model-Driven
Development. In: IEEE software 20(5), pp. 19–25

Singh Y., Sood M. (2009) Model Driven Archi-
tecture: A Perspective. In: Advance Computing
Conference, 2009. IACC 2009. IEEE International,
pp. 1644–1652

Sitaraman M., Long T. J., Weide B. W., Harner
E. J., Wang L. (2002) Teaching Component-Based
Software Engineering: A Formal Approach and
Its Evaluation. In: Computer Science Education
12(1–2), pp. 11–36

Watson R. T., Webster J. (2020) Analysing the
past to prepare for the future: Writing a literature
review a roadmap for release 2.0. In: Journal of
Decision Systems 29(3), pp. 129–147

WebRatio (2021) WebRatio https://www.webratio.
com

West B. T., Welch K. B., Galecki A. T. (2014)
Linear mixed models: a practical guide using
statistical software. CRC Press

Wohlin C., Runeson P., Höst M., Ohlsson M. C.,
Regnell B., Wesslén A. (2012) Experimentation in
Software Engineering: An Introduction. Springer

Zribi S., Calabrò A., Lonetti F., Marchetti E., Jor-
quera T., Lorré J. (2016) Design of a simulation
framework for model-based learning. In: 2016
4th International Conference on Model-Driven
Engineering and Software Development (MOD-
ELSWARD), pp. 631–639

http://dx.doi.org/10.18417/emisa.18.6
www.uv.es/~joigpana/research/PapersDatasetEMISAJ2021.xlsx
www.uv.es/~joigpana/research/PapersDatasetEMISAJ2021.xlsx
https://www.webratio.com
https://www.webratio.com

