
An Empirical Study of Performance Using Clone & Own and Software Product
Lines in an Industrial Context

Jorge Echeverrı́aa,∗, Francisca Péreza, José Ignacio Panachb, Carlos Cetinaa

aSVIT Research Group, Universidad San Jorge, Zaragoza, Spain
{jecheverria,mfperez,ccetina}@usj.es

bUniversitat de València, Avenida de la Universidad, s/n, 46100 Burjassot, Valencia, Spain
joigpana@uv.es

Abstract

Context: Clone and Own (CaO) is a widespread approach to generate new software products from existing software
products by adding small changes. The Software Product Line (SPL) approach addresses the development of families
of products with similar features, moving away from the production of isolated products. Despite the popularity of
both approaches, no experiment has yet compared them directly.

Objective: The goal of this paper is to know the different performances of software engineers in the software
products development process using two different approaches (SPL and CaO).

Method: We conducted an experiment in the induction hobs software environment with software engineers. This
experiment is a single factor experiment where the factor is the approach that is used to develop software products,
with two treatments: (SPL or CaO). We compared the results obtained by the software engineers when they develop
software products related to effectiveness, efficiency, and satisfaction.

Results: The findings show that: 1) the SPL approach is more efficient even though the number of checking actions
required by this approach is greater than the number required by the CaO approach; 2) the SPL approach offers more
possibilities than software engineers need to perform their daily tasks; and 3) software engineers require better search
capabilities in the CaO approach. The possible explanations for these results are presented in the paper.

Conclusions: The results show that there are significant differences in effectiveness, efficiency, and satisfaction,
with the SPL approach yielding the best results.

Keywords:
Clone and Own, Software Product Line, Experiment, Empirical evaluation

1. Introduction

In industrial contexts where software development is
based on the generation of new software from legacy
software, two approaches have been used successfully:
Software Product Line (SPL) and Clone and Own
(CaO). The CaO approach is based on the generation
of software product families from legacy software prod-
ucts with small modifications [31]. On the other hand,
the SPL approach is based on the systematic reuse of
a set of software components to derive new software
products. These new products are created from existing
elements instead of developing software from scratch
[24].

∗Corresponding author. Tel.: +34 976060100 mail: jechever-
ria@usj.es

In empirical studies related to the SPL and CaO ap-
proaches, we observe two characteristics: 1) most stud-
ies are conducted with students that play the role of
subjects; and 2) to our knowledge, there are no previ-
ous papers that have conducted empirical experiments
in industry with the aim of comparing the SPL and CaO
approaches. Thus, there is a need to conduct empiri-
cal studies with software engineers to compare SPL and
CaO approaches from an industrial perspective in the
real world. In order to bridge this gap, the main contri-
bution of this paper is the design and conduction of an
experiment to compare the SPL and CaO approaches in
industry.

CaO and SPL are two approaches used for software
development in industrial environments. In some con-
texts, depending on the circumstances both approaches

Preprint submitted to Information and Software Technology July 22, 2020

are used. In the industrial context where the experiment
was conducted the predefined approach is SPL but CaO
is used when the time to develop a software product is
short, to perform noncommercial products (e.g., proto-
types), and if the software engineers think that the fea-
ture will not be reused in the future. In these circum-
stances, the software engineers avoid formalizing the
features as opposed to the SPL approach that requires
the feature formalization. Then, it becomes especially
relevant how is the software engineers’ performance in
these contexts.

The goal of this paper is to determine which approach
is better: SPL or CaO. This paper proposes an exper-
iment design that is based on a single factor experi-
ment using a between-subjects design. The factor is
the type of approach while the response variables are
three metrics used to measure quality according to ISO
25000: effectiveness (the percentage of task performed
correctly), efficiency (the ratio between effectiveness
and time spent to perform the tasks), and satisfaction
(the subjective feelings of the software engineers after
finishing the experimental tasks) [1]. The experimental
problem consists of four tasks where the subjects have
to develop a software product using one approach. The
tasks, the software sets,and the language used are the
same for both approaches, this ensures that treatments
are given in the same context. The experimental sub-
jects were software engineers in the induction hob divi-
sion of our industrial partner company, the BSH group.
BSH is the largest manufacturer of home appliances in
Europe and one of the leading companies in the sector
worldwide (the brand portfolio is composed of Bosch
and Siemens, among others). Their induction division
has been producing induction hobs for the last 15 years.

The results show that there are significant differences
for these three variables: effectiveness, efficiency, and
satisfaction have better values with the SPL approach
than with the CaO approach. Our results show findings
that are relevant for improving the software develop-
ment process with the CaO and SPL approaches. Re-
lated to the CaO approach the software engineers asked
about possibilities of improvement in the search capa-
bilities in the CaO approach. On the other hand, re-
garding the SPL approach is more efficient than CaO
approach but the software engineers spend more time
checking actions.

The paper is structured as follows: Section 2 analyzes
other works that have shown empirical evaluations on
SPL and CaO. Section 3 explains the background of the
SPL and CaO approaches. Section 4 describes the de-
sign of the experiment. Section 5 shows the statistical
results. Section 6 discusses the results. Section 7 deals

with the threats to validity. Finally, Section 8 presents
some relevant conclusions.

2. Related Work

Since there are so many concepts to be evaluated
in a SPL, there is an important number of works that
have dealt with studies in this field. Next, we de-
scribe the search strategy that was used to answer the
research question: What evaluations have been done
in the field of SPLs and Clone and Own? The search
string used is (”software product lines” AND ”experi-
ment”) OR (”software product lines” AND ”empirical
evaluation”) OR (”software product lines” AND ”as-
sess”) OR Clone and Own. The inclusion criterion is:
(IC1) Works that evaluate SPLs or CaO through empir-
ical experiments, case studies, or theoretically. The ex-
clusion criteria are: (EC1) Works that do not describe
in detail the goal, metrics, and outcomes of the evalu-
ation; (EC2) Works without any validation. The search
was done in May, 2019 using Scopus. This tool searches
journals and conference proceedings from a broad set of
libraries.

The primary works selected from the set of papers re-
trieved by the search have been classified based on the
topic of the evaluation: requirements elicitation, evo-
lution, complexity of metrics, reliability, comparisons,
Software Product Line, and Clone and Own. Below,
we describe the papers found in each one of these cate-
gories. A summary of all of the primary works is shown
in Table 1. For each work, we summarize the type of
evaluation (empirical experiment, case study, or theo-
retical work), the number and type of subjects, the goal
of the evaluation, the variables used in the evaluation,
and the outcomes.

There are several works that focus on evaluating the
process of requirements elicitation in SPL. Adam and
Schmid [2] have conducted an empirical experiment
with 26 students who play the role of subjects. The
goal of the experiment is to analyze two elicitation ap-
proaches regarding effectiveness during requirements
elicitation. The results show that the elicitation tech-
nique proposed by the own authors is more effective
than a traditional one. Bonifacio el at. [7] have also
conducted an empirical experiment in the field of re-
quirements elicitation in SPLs. The results have been
extracted from a family of three experiments with 12,
24, and 16 subjects, respectively, where all of them are
students. The goal of the experiment is to compare
two techniques to specify use case scenarios for SPLs.
The comparison is performed through the variable ef-

2

Author Topic Type Subjects Goal Variables Result
Adam and
Schmid [2]

RE Experiment 26 students
Compare two techniques of
requirements elicitation for SPL

Elicitation effectiveness
The proposed method is more
effective than traditional methods

Bonifacio
et al. [7]

RE Experiment
52 students
in three
replications

Compare two techniques to specify
SPL requirements

Effort
The most modular technique
obtain better results

Bagheri and
Gasevic [5]

EV

Experiment
and
theoretical
work

15 students
Evaluate a set of structural feature
model metrics

External quality attributes
Some metrics are considered
better than others as
indicators for maintainability

Figueiredo
et al. [18]

EV Case Study The authors
Assess the capabilities of aspects
in SPL

Modularity, change
propagation, feature
dependency

Aspects provide more stable
designs

Michalik et
al. [33]

EV Experiment
17
professionals

Analyze the evolution with
minimal interruption of services

Correctness, logistic
system availability,
confidence level

The architecture-centric
approach improves the
correctness

Tizzei et al. [40] EV
Theoretical
work

The authors
Evaluate the impact of components
in the evolution of SPL

Number of modules
and number of operations

The combination of components and
aspects is the best option

Dubinsky
et al. [13]

EV Case Study The authors
To investigate
the code clonning culture.

Perceived advantages
and disadvantages

Issues that prevent
the adoption of
clonning

Fenske
et al. [17]

EV Case Study The authors
To propose an approach
to migrate multiple cloned
product variants into an SPL.

Effectiveness
An incremental migration
process from CaO to SPL.

Berger and
Sturm [37]

CM Experiment
116
students

Evaluate the comprehensibility of
SPL specified with UML

Comprehension questions
Providing explicit reuse
guidance improves comprehensibility

Marcolino
et al. [32]

CM Experiment 35 students
Evaluate the complexity of SPL
architectures

Complexity metrics
Composed metrics for
complexity are the most reliable

Vale et al. [42] CM Case study The authors
Compare methods to derive
thresholds

Complexity metrics
A set of recommendation
to define metrics thresholds

Koziolek et
al. [28]

R Case study The authors
Identify commonalities and
variabilities in domains of SPLs

Domain metrics
A set of recommendations
to analyze domains

Krishnan et al. [29] R Case study
The own
authors

Investigate failures in components
of SPLs

Number of failures per
component

Common components
present the least failures

Constantino
et al. [11]

CO Experiment 84 students Compare two SPL tools
Easy of use, strengths
and weaknesses

The main issues are in interfaces
and lack of user guides

Dermeval
et al. [12]

CO Experiment 5 students
Compare two modeling techniques
for specifying SPLs

Time to change, impact
of changes, correctness

OWL individuals require
less time and are more
flexible than OWL classes

González-
Huerta et
al. [22]

SPL Experiment 92 students
Validate a MDD method for
building SPL

Effectiveness, efficiency,
perceived ease of use,
perceived usefulness
and intention to use

Better architectures are
obtained though the MDD
method, enhancing
subjects’ satisfaction

Guana and
Correal [23]

SPL Experiment 2 subjects
Validate a MDD method to
automate the definition of
SPLs through reusable components

Test cases
The MDD approach improves
reusability but
involves more time

Santos and
Kulesza [38]

CaO Case Study
The own
authors

Analyze the complexity to
integrate merge conflicts of a cloned
web system

Number of merging
conflicts

There are many semantic conflicts
and it is feasible to use merge
analysis to integrate tasks.

Schlie
et al. [39]

CaO Case Study
8 domain
experts

Propose and evaluate a procedure
to assist model engineers in maintaining
and evolving existing variants

Performance
precision

A technique to support
engineers in maintaining and
reusing existent models.

Fisher
et al. [19]

CaO Case Study The authors
An approach to enhance
CaO in the development
of software product variants

Quality of the composition,
guidance

An approach with the benefits
of CaO and
systematic reuse.

Ghabach
et al. [21]

CaO Case Study The authors
An approach to support the derivation
of new product variants using CaO

Configuration scenarios,
number of products,
number of assets and cost

The approach can save
time and effort
during product derivation.

Krüger
et al. [30]

CaO Case Study The authors
Support developers to identify
common features in cloned systems

Lines of code, differences
between the features,
dependencies between features

The process is suitable to identify
features and present commonalities
and variability in cloned systems.

This paper
CaO
SPL

Experiment
10 software
engineers

Know the performance
when assets are reused to
develop software products

Effectiveness,
efficiency, satisfaction

The process is suitable to identify
features and present commonalities
and variability in cloned systems.

Topic RE: Requirements elicitation, EV: Evolution, CM: Complexity of Metrics, R: Reliability, CO: Comparisons, SPL: Software Product Line, CaO: Clone and Own.

Table 1: Related Work

3

fort. The results show that most modular technique re-
duces the effort required by the analysts.

The evolution of SPL is a feature that must be con-
sidered in any architecture. There are several works
that have analyzed this evolution. One of these works
was performed by Bagheri and Gasevic [5], who have
conducted an experiment with 15 students to evaluate
a set of structural feature model metrics both theoret-
ically and empirically. The evaluation has been done
measuring external quality attributes. The results define
a subset of metrics that have been identified as correlat-
ing with maintainability. Figueiredo et al. [18] have re-
ported a case study to analyze the evolution of two SPLs
in order to asses the capabilities of aspects in SPLs. The
variables analyzed are modularity, change propagation,
and feature dependency. The results show that the use
of aspects provides a more stable design. Moreover, as-
pects scale well for dependencies that do not involve
shared code. Michalik et al. [33] have conducted an-
other experiment based on evolution. In this case, the
subjects were composed of 17 professionals, with the
goal of analyzing the evolution of updates in SPLs with
minimal interruptions in services. The variables ana-
lyzed are the correctness of an update, the availability of
the logistic system, and the confidence level. The results
show that the architecture-centering approach improves
the correctness of updates and reduces the interruption
of services during updates. Tizzei et al. [40] have done
a theoretical study to evaluate the impact of positive
and negative changes in components and aspects on the
evolution of SPLs. The study focuses on analyzing the
number of modules and the number of operations in dif-
ferent SPL systems. The results show that the combi-
nation of aspects and components obtains the best val-
ues. Dubinsky et al. [13] addressed the lack of empir-
ical knowledge about the software development prac-
tices of companies that use cloning to implement prod-
uct lines. They conducted an empirical study to investi-
gate the cloning culture in six industrial software prod-
uct lines realized via code cloning. They presented a set
of recommendations to efficiently develop and manage
software product line assets. Fenske et al. [17] pro-
posed a process to migrate cloned product variants to
a feature-oriented SPL. They evaluated their approach
on five cloned product variants. Their approach reduced
synchronization effort compared to CaO development
and thus reduced the long-term costs for maintenance
and evolution.

Other empirical research focuses on analyzing the
comprehensibility and complexity of SPLs. Berger and
Sturm [37] have conducted an experiment with 116 stu-
dents to study the comprehensibility of domain models

of SPL systems through UML. The evaluation was done
using comprehension questions regarding reuse guid-
ance and variability specification. The results show that
providing explicit reuse guidance has the greatest influ-
ence on the results. Moreover, the variability specifica-
tion also improved comprehensibility. Marcolino et al.
[32] have conducted an experiment to evaluate the com-
plexity of SPL architectures. Thirty-five students played
the role of analysts participating in the experiment. This
experiment is a replication of another baseline experi-
ment. In this case, the subjects were less-qualified than
in the baseline. The metrics used in this replication were
two different metrics to measure complexity. The re-
sults show that even less-qualified subjects obtain better
results for complexity when metrics are composed. Vale
et al. [42] have also performed an analysis of complex-
ity in SPL. The research is a case study to compare three
methods to derive thresholds for metrics that measure
complexity in SPLs. As a result of that work, there is
a list of recommendations and good practices to define
thresholds.

There are other works that evaluate features of SPLs
such as potential or reliability. In this group of works,
we find the work of Koziolek et al. [28], who have per-
formed a case study to identify commonalities and vari-
abilities among SPLs to identify the potential of each
product. The study uses several metrics to analyze the
domain of SPLs and, as an outcome of this analysis,
there is a set of recommendations to analyze the do-
mains of SPLs. Krishnan et al. [29] have done a case
study to analyze the occurrence of severe failures in
four Eclipse releases. The case study was done using
the number of failures as metrics. The results show
that fewer failures occur in components that implement
common functionalities.

There are also empirical studies that focus the analy-
sis on comparing different techniques for working with
SPLs. Constantino et al. [11] have compared two SPL
tools using 84 students that play the role of subjects.
This comparison was based on the ease of use of each
tool and their strengths and weaknesses. The results
show that the main issues observed in both tools are
related to interfaces and a lack of examples and tuto-
rials. Dermeval et al. [12] have compared two alter-
native approaches on ontology-based feature modeling
(OWL classes versus OWL individuals). The compari-
son was done with five students, measuring the time to
perform changes, the structural impact of changes and
the correctness of the changes. The results show that
using OWL individuals requires less time to change and
is more flexible than using OWL classes.

A few of the existing analyses have been focused

4

on the context of Model-Driven Development (MDD).
One of these works was done by González-Huerta et
al. [22], who carried out a family of four experiments
using 92 students as subjects with the goal of evaluat-
ing a MDD method to develop SPL. The metrics used
for the evaluation are effectiveness, efficiency, perceived
ease of use, perceived usefulness, and intention to use.
The results show that the architecture defined using the
method based on MDD is the best. Moreover, the sub-
jects that worked with MDD think that it is easier to
use, more useful, and more likely to be used. Guana
and Correal [23] focus on evaluating a MDD method
to automate the definition process of a SPL through the
use of reusable components. Two subjects participated
in the experiment and the metrics were based on a suite
of tests. The results show that the use of MDD improves
the reusability of components, even though it increases
the time required to learn the tool.

There are not many experiments on the topic of CaO
in the literature. In this field, Santos and Kulesza [38]
have done an exploratory case study that analyzes the
complexity of integrating existing merge conflicts of a
cloned large-scale web system. The study is based on
the number of conflicts that appear in merging actions.
The results show that there is a predominance of seman-
tic conflicts in merge actions and that it is feasible to use
merge analysis approaches to integrate tasks from one
clone to another. Schlie et al. [39] proposed an ad-
vanced comparison procedure, the Matching Window
Technique, to improve the software development pro-
cess with CaO. The authors conducted three case studies
with real-world models from the automotive domain. In
these case studies, they studied performance and pre-
cision to validate their technique. In [19], Fisher et
al. proposed an approach to enhance CaO in the devel-
opment and maintenance of software product variants.
They evaluated their approach in six diverse case stud-
ies of different sizes and domains. The results show that
their approach leverages the benefits of CaO while still
providing the benefits of systematic reuse. Ghabach et
al. [21] proposed an approach to support the deriva-
tion of new product variants based on CaO by providing
the possible scenarios in terms of operations to be per-
formed in order to accomplish the derivation. They val-
idated their approach in a case study where the results
showed that the provided support can reduce the amount
of time and effort that are required to achieve a product
derivation. In [30], Krüger et al. proposed a process to
identify and map features among legacy systems, sug-
gesting a visualization approach. The authors assessed
the process in a case study. Their findings indicate that
the process is suitable to identify features and present

commonalities and variability in cloned systems.
After analyzing all of the primary works, we can draw

some important conclusions. First, there is a lack of
evaluations conducted in industry. All of the works ex-
cept for Michalik et al. [33] and Schlie et al. [39] used
students, or the own authors of the works themselves
played the role of subjects. Second, to our knowledge,
there is no a previous comparative experiment of SPL
versus CaO. Third, the use of metrics such as effective-
ness, efficiency, and satisfaction seems to be consoli-
dated in empirical experiments. Therefore, in this pa-
per, we describe an empirical evaluation conducted in
industry using effectiveness, efficiency, and satisfaction
to compare the SPLs and the CaO approaches. Accord-
ing to existing works, this new contribution is a clear
step forward in evaluating SPLs in a real context of use,
bridging a gap in previous works.

3. Background

This section presents the two approaches used in the
experiment (CaO and SPL).

3.1. Clone and Own
CaO is an approach for generating new software

products in a family of software products [13]. This ap-
proach consists of reusing software artefacts from exist-
ing software products and adding small changes to gen-
erate a new software product with new characteristics
[31]. Figure 1 shows an example of a family of software
products generated with CaO approach [19]. Product P1
consists of two features (BASE and LINE). After some
time, another product (Product P2) is generated from a
variant of two features (BASE and LINE) from Prod-
uct P1 (using the CaO approach), so Product P2 holds
two CAO relationships with a previous product, Product
P1. Moreover, Product P2 comprehends a new feature
(COLOR), which has been created from scratch. After,
another product (Product P3) is built with a new feature
(RECT), a variant of three features (BASE, LINE, and
COLOR) from Product P2. Hence, Product P3 holds
three CaO relationships with Product P2, one for each
reused feature. In total, this family of products com-
prises 3 products, 4 features, and 5 CaO relationships
[36].

The CaO approach has traditionally been used to gen-
erate software products in industrial environments. This
approach has been applied when the software engineers
must develop a new software product that is very sim-
ilar to a previously existing one [13]. The CaO ap-
proach might be efficient depending on certain circum-
stances: catalogue of products, products complexity,

5

Products BASE LINE RECT

Product P1

Product P2

Product P3

X

X

X

COLOR

X

X

X X

X

X

Product P1

BASE

LINE

Product P2

BASE

LINE

COLOR

Product P3

BASE

LINE

COLOR

RECT

Product Feature

Clone and Own

relationships

Figure 1: Family of software products generated with CaO approach.

and the development organization and its software en-
gineering practices [4].

In industrial scenarios, the CaO approach is carried
out manually and relies on the knowledge that software
engineers have of the software models, the code, and the
families of software products. In that context, the diffi-
culty of managing of software products increases: soft-
ware products with long and complex implementations
arise, and the maintenance of software products over
long periods of time by different developers decreases
the control over them. In these scenarios, the engi-
neers tasked with new product developments often lack
knowledge of the entirety of the products and their im-
plementation details [31]. On the other hand, the main-
tenance of many independent products leads to multiple
problems like inefficient feature updates or bug fixing,
duplicate functionality, redundant and inadequate test-
ing, etc [13].

In contrast, in certain scenarios, the CaO approach
facilitates the generation of new software products, the
traceability of these products, and helps maintain a ho-
mogeneous development style among the different soft-
ware products in a family [31].

3.2. Software Product Lines
A SPL is “a set of software-intensive systems that

share a common, managed set of features satisfying the
specific needs of a particular market segment or mis-
sion” [10].

The possible software products of a SPL may be de-
scribed using feature models. Figure 2, adapted from
[6], shows the feature models of a SPL. The relation-
ships show in Figure 2, according to proposal described
in [26], are the following [14]:

Mobile Phone

Calls GPS Screen Media

Basic Color Camera MP34K

Mandatory Optional Only one

Requires Excludes One or more

Figure 2: Feature model of a SPL.

• Mandatory: a child feature has a mandatory rela-
tionship with its parent feature when it is required
to appear in a given product whenever its parent
feature appears in that product.

• Optional: a child feature has an optional relation-
ship with its parent feature when it can appear or
not in a given product whenever its parent feature
appears in that product.

• Or–relationship: a set of child features have an
or–relationship with their parent feature when one
or more child features can be selected in a given
product when the parent feature appears in that
product.

• Alternative: a set of child features have an alter-
native relationship with their parent feature when
only one of them must be selected in a given prod-
uct when their parent feature appears in that prod-
uct.

• Requires, Excludes: a cross–tree relationship like
A requires B means that in any product where fea-
ture A appears, feature B must also appear. On the
other hand, a relationship like A excludes B means
that both features cannot appear in the same prod-
uct at the same time.

A SPL is an approach for the strategic and systematic
reuse of a set of assets within an organization. A SPL
is composed of a product line architecture, a set of soft-
ware components, and a set of derivative products. The
main concept in a SPL approach addresses the develop-
ment of families of products with similar features, mov-
ing away from the production of isolated products. Vari-
ability and commonalities for generating new software
products have been explored in order to optimize the

6

SPL Number of Products Number of Features
ZipMe 32 7
VOD 32 11
GameOfLife 65 15
ArgoUML 256 13
ModelAnalyzer 5 5
SPL used in this paper 46 81

Table 2: Examples of SPL.

software development based on product families. These
products are built using a core asset base instead of be-
ing developed one by one from scratch [24].

The main advantage of a SPL is the systematic reuse
of the common infrastructure which is shared to cre-
ate different product variants [4]. Other benefits of a
SPL approach to develop software are: improved pro-
ductivity, increased software quality, decreased cost, de-
creased labor needs, and decreased time to market [16].
Table 2 shows the characteristics of 6 SPLs, the table
includes the SPL used in this paper [19].

On the other hand, the use of a SPL approach can gen-
erate some difficulties: the incorrect definition of port-
folio, the guarantee of the quality of maintenance due
to the explosion of dependencies, identification of the
products affected by a change, and the implementation
of the same change in several versions of the products
[43].

Our goal is to analyze the software engineers’ per-
formance with two approaches (CaO and SPL) in an
industrial environment. For this reason, we conducted
an experiment at the BSH induction hob division. Both
approaches (CaO and SPL) have a set of 46 induction
hob models, corresponding to products that are cur-
rently being sold or that will be launched to the market
in the immediate future. Both approaches use a Domain
Specific Language for induction hobs named Induction
Hobs Domain Specific Language (IHDSL) [20]. With
regard to the products complexity, each of the induction
hob models is composed of more than 500 elements, in-
cluding around 100 class elements on average.

4. Experiment Design

4.1. Objective

The goal of our research is to know the different soft-
ware engineers’ performance when they use legacy soft-
ware products in the product development process using
different approaches (SPL and CaO). Following Wohlin
et al.’s guidelines [44], the goal of our study is to:

Analyze the engineers’ performance when they use
legacy software products to develop software products;

For the purpose of bridging in the gap of in empiri-
cal evaluation of this topic;

With respect to the different approaches used (SPL
and CaO);

From the viewpoint of software engineers;
In the context of the BSH induction hob division.
In relation to the above goal, we seek both to com-

pare the software engineers performance with the CaO
and SPL approaches from the point of view of quality.
According to ISO 25000, quality in use can be mea-
sured through effectiveness, efficiency, and satisfaction
[1]. This definition of quality leads to define the follow-
ing research questions:

RQ1 Are there differences between the SPL approach
and the CaO approach regarding effectiveness in devel-
oping software products?

RQ2 Are there differences between the SPL approach
and the CaO approach regarding efficiency in develop-
ing software products?

RQ3 Is the subjective satisfaction of software engi-
neers in developing software products different when
they use the SPL approach or the CaO approach?

Taking these Research Questions into account, we
have formulated the following null hypotheses to an-
swer them:

• H01: There is no difference in the effectiveness of
the SPL approach and the CaO approach.

• H02: There is no difference in the efficiency of the
SPL approach and the CaO approach.

• H03: There is no difference in the subjective sat-
isfaction of software engineers using the SPL ap-
proach and the CaO approach.

4.2. Participants
The subjects were ten software engineers who work

for the induction hob division in BSH. These engineers
are experts in developing software. They spent from
1 to 12 years working as software engineers (a mean
of 5.4 years). Five subjects that work daily with CaO
performed the experimental problem with the SPL ap-
proach, while five other subjects that work daily with
SPL used the CaO approach. Therefore, the subjects
had never developed software with the approaches used
before this experiment. This lack of experience was
solved by the subjects using a tutorial and training in the
approach applied (CaO or SPL). On the other hand, all
the subjects develop daily software with both the Do-
main Specific Language and the software sets used in
the experiment. Before conducting the experiment, the
experimenters trained the subjects, who applied tasks

7

User Gender Age Education Level Job Time in Job (years)
user SPL1 M 33 D E 12
user SPL2 M 45 D E 5
user SPL3 M 31 D E 2
user SPL4 M 30 D E 5

SPL

user SPL5 M 35 D E 10
userCaO1 F 31 D E 4
userCaO2 F 32 D E 10
userCaO3 M 24 D E 1
userCaO4 M 27 D E 2

CaO

userCaO5 M 28 D E 3

Table 3: Users. D:Degree, E: Software engineer.

that were similar to the ones used in the experiment (cre-
ate and modify products). The tools used in the exper-
iment had been customized to develop software prod-
ucts in the induction hob division of the company. An
explanation about the tool used for the SPL approach is
shown in the link: https://youtu.be/nS2sybEv6j0. The
predefined approach is SPL but CaO is used in some
circumstances like to perform noncommercial products
or when the available time to develop a software product
is short.

Besides the subjects, an instructor and an observer
were also involved. The instructor provided the infor-
mation about the approaches used, gave tutorials, par-
ticipated in the training, interviewed the subjects after
the experiment, clarified doubts, and designed the cor-
rection. The instructor was not involved in the writing
of this paper. The observer took notes, recorded the in-
terviews for further analysis, and corrected the tasks.

4.3. Defining Variables

4.3.1. Factor and Block Variables

The single factor in the experiment is the type of
approach used to perform four tasks in the context of
an induction hob company (SPL and CaO). These ap-
proaches are explained in section 3. The tools used
to operationalize both treatments are real tools that are
used daily in the company.

The experimental design is a between-subjects design
with one factor and two treatments. Each subject only
uses one treatment of the factor. We have the experi-
mental task as a block variable since we are analyzing
the response variables for each task independently of the
others. This design allows us to better analyze what is
happening in each treatment per task even though we are
not really interested in looking for differences among
tasks. This is the reason why we opted for blocking the
task variable.

4.3.2. Response Variables and Their Metrics
The aim of this experiment is to determine the effec-

tiveness, efficiency, and satisfaction of software engi-
neers when using the SPL approach VS the CaO ap-
proach. The response variables are defined as follows:

• Effectiveness is defined as the percentage of ex-
perimental tasks performed correctly by the en-
gineer without assistance. Commercial products
documentation was used to define a task as cor-
rect. The developments of these products had been
documented and this documentation was used as
ground truth. The task is decomposed into a set of
subtasks in such a way so we can measure whether
or not each subtask was completed successfully.
This way, the effectiveness of the task is calculated
as the aggregation of the effectiveness of its sub-
tasks. Since there are subtasks with different lev-
els of difficulty, the aggregation of the effectiveness
per task was done through weights. The weight of
each subtask is the time that we estimated it would
take to be performed. Therefore, subtasks that re-
quire more estimated time are considered to have
more weight. We used the Keystroke-Level Model
[27] to assign an estimated time to each subtask.
The aggregation to calculate the effectiveness of
the task consists in adding the estimated time of
the subtask only if the subtask was done success-
fully. When all of the subtasks are added (with-
out errors in any subtask), the time added means
100 % effectiveness for the task. When at least
one subtask was not done successfully, the effec-
tiveness of the task is calculated as the percentage
of successfully done subtasks taking to account the
estimated times. Table 4 shows how task T1 (with
the SPL approach) is decomposed according to the
Keystroke-Level Model method: estimated times
for subtasks 1.1, 1.2, 1.3, and 1.4 are respectively
6.3, 3.7, 6.2, and 4,9. For example, if we have
a sample where subtask 1.1.1 (estimated time of
1.2) was not done successfully, the aggregation for
Task 1 would be 19.9, which means an efficiency
of 94.31 % (100*19.9/21,1).

• Efficiency is the ratio between the effectiveness and
the time spent (in minutes) to perform the task ac-
cording to the Common Industry Format (CIF) for
Usability Test Reports [3].

• Satisfaction is measured using a satisfaction ques-
tionnaire filled out by the engineers after finishing
the experimental tasks using each approach (SPL

8

1. Task: T1 Time
1.1 Sub-task: Select the induction hob

1.1.1 Initiate the task (decide to do) 1.2 s
1.1.2 Remember the induction hob reference 1.2 s
1.1.3 Find the induction hob 1.2 s
1.1.4 Point to induction hob 1.1 s
1.1.5 Double click on induction hob 0.4 s
1.1.6 Notice the selected induction hob in the editing window 1.2 s

1.2 Sub-task: Select the module
1.2.1 Remember the module reference 1.2 s
1.2.2 Find the module 1.2 s
1.2.3 Point to module 1.1 s
1.2.4 Click on module 0.2 s

1.3 Sub-task: Replace the module
1.3.1 Remember the new module reference 1.2 s
1.3.2 Find the new module 1.2 s
1.3.3 Point to new module 1.1 s
1.3.4 Click with the button on the right on the new module 0.2 s
1.3.5 Find the option replace 1.2 s
1.3.6 Point to option replace 1.1 s
1.3.7 Click on option replace 0.2 s

1.4 Sub-task: Apply only to one induction hob
1.4.1 See the dialog box 1.2 s
1.4.2 Determine the right choice 1.2 s
1.4.3 Find the right choice 1.2 s
1.4.4 Point to chosen button 1.1 s
1.4.5 Click on chosen button 0.2 s

Table 4: Detailed for task T1 decomposition (SPL approach)

and CaO). The questionnaire was composed of ten
questions using a Likert scale [41].

Note that we have analyzed one measure for effec-
tiveness and one measure for efficiency per experi-
mental task. This way, for each subject, we have as
many measures for effectiveness and efficiency as
tasks in our experimental problem. In the case the
satisfaction metric, we have only one measure per
subject since we have only one questionnaire to be
completed at the end of the experiment.

4.4. Instruments

4.4.1. Demographic Questionnaire
This includes questions to identify the profile of each

subject. The information asked for in the questionnaire
is the following: their educational level, length of time
working in the current department (years), age, gen-
der, knowledge about developing software with inte-
grated development environments (only subjects using
the SPL approach), knowledge about developing soft-
ware using the CaO approach (only subjects using the
CaO approach) and experience with tools for automatic
generation of code.

4.4.2. Task sheet
The experimental tasks were chosen for importance

and frequency of use. In the context of software prod-
uct development from existing software products, the
following tasks that compose the experimental problem
were stated

• T1: To develop a new software product. The de-
velopment of a new software product from exist-
ing ones is depicted in ¶ of Figure 3. With the
CaO approach, the new software product (New P)
is performed using existing source code. With the
SPL approach, the new software product (New P)
is performed using existing features.

• T2: To develop a new software product with a new
feature (SPL approach) or new source code (CaO
approach). This new feature or new source code
is created from an existing one. Figure 3 [· and
¸] with the CaO approach depicts the creation of
new source code from the existing one and then a
new software product is performed with this new
source code. Figure 3 [· and ¸] with the SPL
approach depicts the creation of a new feature from
an existing one and then a new software product is
performed with this new feature.

• T3: To modify an existing software product. The
modification of a software product is depicted in ¹
of Figure 3.

• T4: To modify an existing software product with
a new feature (SPL approach) or new source code
(CaO approach). This new feature or new software
artefact is created from an existing one. Figure 3
[º and »] with the CaO approach depicts the cre-
ation of new source code from existing one and
then a software product is modified. Figure 3 [º
and »] with the SPL approach depicts the creation
of a new feature from an existing one and then a
software product is modified with this new feature.

In the context of our experiment, we have instantiated
these tasks to the context of induction hobs. We have
defined four tasks that have a similar level of difficulty.
The level of difficulty in a task depending on the amount
of software products to create or modify, the amount the
artifacts software used to solve the task, and the amount
of subtasks in the task. The four tasks are the following:

• T1 IH: A new induction hob must be developed
from the induction hob IH011. This induction hob
contains the module MOD006. This module must

9

T1

T2

T3

T4

Clone & Own Software Product Line

New

P

New

P
P1P1 PNPN...

New

P

New

P
P1P1 PNPN...

P1P1 PNPN...

P1P1 PNPN...

New

P

New

P
P1P1 PNPN...

New

P

New

P
P1P1 PNPN...

P1P1 PNPN...

P1P1 PNPN...

Features

Features

Features

Features

Software Products Software Development

11
11

2
2 33

4
4

5
5

6
6

Figure 3: Tasks of the Experimental Problem

be replaced with the module MOD014 to create a
new induction hob.

• T2 IH: A new module must be created from mod-
ule MOD020 to place in a new induction hob. The
value of the parameter VMAX must be changed
to 39 in the module MOD020 to create a new
module named MOD020B. Then, the new mod-
ule MOD020B replaces the module MOD020 in
the induction hob IH005 to create a new induction
hob.

• T3 IH: The inverter INV014958 of the module
MOD016 must be changed. The inverter must be
replaced by the inverter INV015231. The induc-
tion hob IH017 contains the module MOD016.

• T4 IH: The value of the parameter VMAX that
is set in the module MOD019 of the induc-
tion hob IH051 must be changed. A new mod-
ule MOD019B must be created from the module
MOD019 where the value of the parameter VMAX
has to be changed to 44. The module MOD019
must be replaced by the new module MOD019B in
the induction hob IH051.

These tasks were written on the task sheet given to the
subjects. They had to develop the software products ac-
cording to the four tasks.

4.4.3. Recordings
The recordings contain the subjects’ performance

when they developed the products according to the

above tasks and the subjects’ claims about the two ap-
proaches used in the experiment. These recordings al-
lowed us to calculate of the time spent to perform the
tasks and also to determinate where the subjects made
mistakes and the sources of these mistakes.

4.4.4. Satisfaction Questionnaire
This questionnaire is the System Usability Scale

(SUS), which determines the subject’s subjective satis-
faction with the approach used. Measuring user satis-
faction provides a subjective usability metric. The ques-
tionnaire is composed of ten questions using a Likert
scale. In the original SUS, the word system is replaced
by approach. The SUS yields reliable results with only
ten questions [41]. The SUS questions address different
aspects of the subject’s reaction to the approach used
as a whole (e.g., “I found the approach unnecessarily
complex”, “I felt very confident using the approach”) as
opposed to asking the users to assess specific features of
the system (e.g., visual appearance, organization of in-
formation, etc.). The data collected with the SUS must
be put on a spreadsheet in order to be processed to ob-
tain the value of SUS [8].

4.4.5. Interview
The objectives of this interview were: 1) to determine

the understanding by the subject about the approach
used; and 2) to obtain qualitative data from the subject’s
comments. The interview is composed of both open
questions and closed questions. The aim of the closed
questions is to check the understanding of the approach

10

by the subjects. The aim of the open questions is to de-
tect the concepts or process of the approach used that
are more problematic for subjects, along with the real
causes of the problems [25]. For instance, one ques-
tion is “Do you know if you have created unnecessary
assets?”.

The materials resulting from carrying out the experi-
ment can be found at https://svit.usj.es/CaO vs SPL/.

4.5. Experimental Procedure
The experiment was conducted at BSH in Zaragoza

and took one hour per subject. The procedure [see Fig-
ure 4] was the following for both approaches:

1. The subjects were given information about the
goals and objectives of the experiment. They were
told that it was not a test of their abilities. They
were also informed that their interaction would be
recorded.

2. The subjects attended a small tutorial about the ap-
proach to be used. This tutorial was taught by the
instructor. The average time spent on this tutorial
was four minutes since the tasks used in the ex-
periment were very short. For example, Task 1 is
usually done in two minutes.

3. The subjects were asked to fill in a demographic
questionnaire prior to testing.

4. The subjects were then given a series of clear
instructions that were specific for the process of
product development according to the task state-
ments. They were advised to try to accomplish the
tasks without any assistance and that they should
only ask for help if they felt unable to complete the
task on their own.

5. The subjects were asked to create four software
products with reusable assets according to the four
tasks detailed in subsection 4.4.2. These develop-
ment processes were used to calculate effectiveness
and efficiency. To avoid a possible ceiling effect,
there was no time limit to complete the product de-
velopment.

6. The observer wrote down if the subtasks were done
successfully. This information was complemented
with a video recording of the session in order to
understand the pros and cons of each approach.

7. After finishing the four tasks of the experimental
problem, the subjects were then asked to complete
the SUS questionnaire. This questionnaire was
used to calculate the satisfaction of the approach
used.

8. The subjects were interviewed by the instructor
about the tasks that they performed.

9. The observer reviewed the recordings of the sub-
jects performing the tasks in order to calculate the
efficiency, effectiveness and satisfaction. Finally,
the interviews about the tasks were transcribed.

5. Results

According to our design, the most suitable statistical
test is General Linear Model (GLM) [9]. The response
variables for this test are Efficiency, Effectiveness, and
Satisfaction; the Fixed Factor is the Method; the Ran-
dom Factor is the subject since we need to represent
the subject of each measure; the Covariable is the block
variable Task since it is a variable that should not affect
the response variable but that we must check. Conclu-
sions extracted from GLM are supported with descrip-
tive data through box-and-whisker plots and histograms.

The application of GLM depends on three assump-
tions: residuals are independent of each other; residuals
must be normally distributed; residuals should have the
same variance for all values of the factor (homoscedas-
ticity assumption). We ensured that all of these assump-
tions were satisfied. All of the residuals obtained a
value close to 2 using the Durbin-Watson tests, which
means that residuals are uncorrelated. All of the residu-
als obtained a p-value higher than 0.05 with the K-S test,
which means that residuals are normally distributed. All
of the residuals obtained a p-value higher than 0.05 with
Levene’s test, which means that residuals have the same
variances for each factor.

The effect size shows the magnitude of differences for
each factor. It is usually applied when null hypotheses
are rejected in order to study the level of significant dif-
ferences between the treatment means. We calculated
the effect size through Partial Eta Squared, which de-
scribes the proportion of the variability in the dependent
measure that is attributable to a factor. The most com-
mon interpretation is: between 0.02 and 0.13 is a small
effect; between 0.13 and 0.26 is a medium effect; more
than 0.26 is a large effect [35].

The power of any statistical test is defined as the prob-
ability of rejecting a false null hypothesis. Statistical
power is inversely related to beta or the probability of
making a Type II error. In short, power = 1 - β. This
value can be between 0 and 1. When the value is 1,
it means that if the study is replicated 100 times, the
probability of correctly rejecting the null hypothesis is
100%. According to G*Power [15], for an effect size of
0.9, α=0.05 and a power of 0.95, we need a sample size
of 39 subjects. Since we are working with 10 subjects,
we have the threat of a low statistical power. In order

11

Explanation of

Experiment

Tutorial about

Software Product

Line approach

1
2

Fill in Demographic

Questionnaire

3

Explanation of

Instructions

4 Legend:

Start End

FlowActivity

X+

XORANDX

4 Tasks with Clone &

Own approach

4 Tasks with

Software Product

Line approach

5

Observer wrote

about performance

with Clone & Own

Observer wrote

 about performance

with Software

Product Line

6

Review of

recordings, Analysis

and Correction of the

Results

Interview about

Clone & Own

approach

Interview about

Software Product

Line approach

+

Fill in Satisfaction

Questionnaire about

Clone & Own

approach

Fill in Satisfaction

Questionnaire about

Software Product

Line approach

7

Tutorial about

Clone & Own

approach

X +

8

Figure 4: Experimental Procedure

to minimize this threat, we measured the value of Ef-
fectiveness and Efficiency for each task independently.
This way we increased our sample per treatment: 5 sub-
jects*4 tasks results in 20 samples. Next, we analyze
the power of each response variable independently.

5.1. Effectiveness
Figure 5(a) shows the results of the GLM test ap-

plied to Effectiveness. Since the p-value of Method is
less than 0.05, we can conclude that there are signifi-
cant differences between the two treatments (CaO and
SPL). The effect size of 0.98 shows that the magnitude
of this difference is large. The statistical power is the
highest, which means that the rejection of the null hy-
pothesis is not a false rejection. Since Task is a block
variable, we are only interested in studying whether or
not a specific task affects one of the methods. That is
why we only analyzed the interaction Method*Task and
we did not consider Task as a factor. For the interaction
Method*Task, the p-value was higher than 0.05, so there
were not significant differences in this case. This means
that there was not a type of task used in the experiment
that was affecting only a specific method.

Figure 5(b) shows the box-and-whisker plot for the
response variable Effectiveness. It shows that the value
for SPL is better than for CaO. The median, the first
quartile, and the third quartile get better values for SPL.
The two boxes are related by a line between two points
that represent their averages. The average of Effective-
ness for SPL is also better than for CaO. Figure 5(c)
shows the histogram. Note that the frequency is higher
than the number of subjects since we are considering
each treatment (SPL and CaO) in four tasks. Therefore,
we have a total number of 20 samples per treatment

(5 subjects per treatment working with 4 tasks each).
We conclude that an Effectiveness of 100% is more fre-
quent in SPL than in CaO. We have 15 samples of 100%
in Effectiveness using SPL and 10 samples using CaO.
Moreover, Effectiveness lower than 60% only appears
in CaO. The normal curve shows that values for Effec-
tiveness tend to be high (around 80%).

According to our analysis, we can state that there are
significant differences between SPL and CaO in terms
of Effectiveness. The values for SPL are better than the
values for CaO, obtaining values close to 100% Effec-
tiveness. Therefore, we reject H01, which claims that the
effectiveness working with SPL is the same as working
with CaO.

5.2. Efficiency
Figure 6(a) shows the result of the GLM test applied

to Efficiency. The p-value is less than 0.05 for the factor
Method, so there are significant differences between the
two treatments. The effect-size of 0.94 is large, which
means that this difference between the treatments is con-
siderable. The statistical power is the highest, which
means that we can reject the null hypothesis without er-
ror. The interaction Method*Task does not show signifi-
cant differences since the p-value is higher than 0.05, so
the type of task is not affecting the results for a specific
method.

Figure 6(b) shows the box-and-whisker plot for the
response variable Efficiency. The median, the first quar-
tile, and the third quartile get better values for SPL.
Moreover, the average for SPL (represented by the ends
of the line that connect the two boxes) is clearly higher
than for CaO. Figure 6(c) shows the histogram for Effi-
ciency. It shows that values higher than 90 are exclusive

12

100

80

60

40

20

0

Method
SPL CaO

E
ff

ec
ti

v
en

es
s

(%
)

Effectiveness (%)

20 40 60 80 100 120

25

20

15

10

5

0

F
r
eq

u
e
n

c
y

(b)

(c)

(a)

Method

SPL

CaO

SPL

Mean = 93.35

Std. Dev. = 12,34

N= 20

CaO

Mean = 84,425

Std. Dev. = 20,62

N= 20

Variable P-Value Partial Eta Squared Observed Power
Method
Method*Task

0.00 0.98 1
0.19 0.11 0.33

Figure 5: (a) Box-Plot for Effectiveness. (b) Histogram for Effective-
ness. (c) Results after applying GLM to Effectiveness.

to SPL. Most of the samples for CaO (18 samples) are
between 10 and 40 for Efficiency, which is quite poor.
The normal curve shows that values for Efficiency tend
to be around 50.

According to our analysis, we can state that there are
significant differences between SPL and CaO in terms
of Efficiency. The values for SPL are better than the val-
ues for CaO, obtaining values higher than 90 exclusively
for SPL. Therefore, we reject H02, which claims that
the efficiency working with SPL is the same as working
with CaO.

5.3. Satisfaction

Figure 7(a) shows the result of the GLM test applied
to Satisfaction. Note that satisfaction was measured af-

200

150

100

50

0

Method
SPL CaO

E
ff

ic
ie

n
ec

y
 (

%
/m

in
)

Efficiency (%/min)
0 50 100 150 200

12

10

8

6

4

2

0

F
r
eq

u
e
n

c
y

(b)

(c)

(a)

SPL

Mean = 80.15

Std. Dev. = 46,80

N= 20

CaO

Mean = 32,42

Std. Dev. = 17,16

N= 20

Variable P-Value Partial Eta Squared Observed Power
Method
Method*Task

0.00 0.94 1
0.6 0.03 0.12

Method

SPL

CaO

Figure 6: (a) Results after applying GLM to Efficiency. (b) Box-Plot
for Efficiency. (c) Histogram for Efficiency.

ter finishing the execution of all tasks, so we only have
one measure of Satisfaction per subject. In this case,
the block variable Task cannot be included in the statis-
tical model since we did not distinguish the satisfaction
for each task. The p-value in Figure 7(a) is less than
0.05 for the factor Method, which means that there are
significant differences between the two treatments. The
effect-size of 0.96 is a large effect, which means that
these differences are considerable. The statistical power
is the highest, which means that we can reject the null
hypothesis without error.

Figure 7(b) shows the box-and-whisker plot for the
response variable Satisfaction. The median, the first
quartile, and the third quartile are clearly better for SPL.
There is also a great difference between the averages of

13

100

80

60

40

20

0

Method
SPL CaO

S
a
ti

sf
a
ct

io
n

 (
%

)

Satisfaction (%)
0 20 40 60 80 100

4

3

2

1

0

F
r
eq

u
e
n

c
y

(b)

(c)

(a)

Method

SPL

CaO

SPL

Mean = 75,00

Std. Dev. = 7,70

N= 5

CaO

Mean = 24,00

Std. Dev. = 15,77

N= 5

Variable P-Value Partial Eta Squared Observed Power
Method 0.00 0.96 1

Figure 7: (a) Results after applying GLM to Satisfaction. (b) Box-Plot
for Satisfaction. (c) Histogram for Satisfaction.

the two treatments (represented by the ends of the line
that connects the two boxes). Figure 7(c) shows the his-
togram for Satisfaction. Note that since satisfaction was
not measured per task but at the end of all of the tasks,
we have reduced the number of samples per treatment
to the number of subjects (5). There is no overlapping
between the measures of Satisfaction for SPL and CaO.
The 5 samples of SPL are above 70 and the 5 samples
of CaO are between 10 and 50. The normal curve shows
that measures are distributed equitably through all of the
possible values between 0 and 100.

According to our analysis, we can state that there are
significant differences between SPL and CaO in terms
of Satisfaction. The values for SPL are better than the
values for CaO. Therefore, we reject H03, which claims

that the satisfaction working with SPL is the same as
working with CaO.

6. Discussion

The interviews by the instructor, the results presented
in Section 5, and the recordings of the experiment al-
lowed us to improve the knowledge of the results in or-
der to compare the two approaches:

1. For both approaches (SPL and CaO), the subjects
wanted to check the correctness of the task per-
formed. Since this checking increased the time to
finish the tasks, the efficiency decreased. These
checking actions are used with higher frequency
when new software products are created (tasks T1
and T2). The checking actions had higher fre-
quency with the SPL approach. Specifically, in the
SPL approach, the subjects checked both the cor-
rectness of the task and the SPL state; i.e., wrong
features or mistakes in the software products. The
time spent on the checking actions is higher in the
SPL approach. However, efficiency is still better
with this approach.

2. For the SPL approach, the subjects tried to control
the impact on the SPL products with every mod-
ification. Specifically, they checked if a modifi-
cation could negatively affect other software prod-
ucts. The subjects acknowledged that the SPL ap-
proach generated trust. For example, a subject who
used the SPL approach declared ”The SPL gives
me confidence, I doubt that it can develop any for-
bidden product configuration. To avoid this cir-
cumstance, I need to check the generated code”.
To improve the trust in their actions, three subjects
(two with the SPL approach and one with the CaO
approach) stated that they would like to control the
changes performed in a software product, who has
performed them, and the possibility of returning to
a previous situation.

3. When the subjects stated their opinion about the
CaO approach, they claimed that ”it is easy to
use”. In contrast, they declared ”There is too much
information because the number of elements (in-
duction hobs and their components) is very high”.
Similarly, two subjects commented ”I did not find
the same difficulty in all of the processes; the dif-
ficulty increases when the amount of information
I must manage is large”. Thus, the subjects con-
sider the CaO approach to be easy to use and ef-
ficient when the number of software products to
manage is small. The subjects who used the CaO

14

approach considered ”a way to improve the man-
agement of the situations with a large amount of in-
formation could be to dispose of help about search-
ing and traceability”. The subjects agreed that cur-
rent search capabilities are not up to the task to per-
form CaO in an industrial context.

4. The subjects want the approach used to develop
their daily work performance in the best possible
way. In this sense, one subject claimed ”I want a
solution to generate real software products. I do
not need a solution to generate very complicated
configurations”.

5. In both approaches, the subjects declared that they
would like to be able to see if there are software
products that have stopped being used. The sub-
jects were not sure if the unused software should
be eliminated or denoted in any way. In the case
of the SPL approach, two subjects detected unused
features as a consequence of the task performance.

6. It is remarkable the high value obtained from the
variance for Efficiency with the SPL approach. The
analysis of the subjects’ performance shows that
the subjects with minor values of Effectiveness
spent more time to perform the tasks, producing an
increase in the variance for Efficiency. In order to
improve the adoption of the SPL approach, it will
be necessary address in greater depth the decrease
of Efficiency in concrete circumstances.

7. Threats to Validity

We use the classification of threats to validity in [45].
This classification distinguishes four aspects of validity:

Conclusion validity: This aspect is concerned with
issues that affect the ability to draw the correct conclu-
sion about relations between the treatment and the out-
come of an experiment.

• Low statistical power: To minimize this threat, we
have used a confidence interval where conclusions
are 95% representative. This means that if they fol-
lowed a normal distribution, the results would be
true 95% of the times.

• Error rate: To minimize this threat, we have re-
viewed the recordings to obtain the data. The
variables depend on well-known metrics, and we
have used the most suitable statistical test (GLM)
according to our design to perform the statistical
analysis.

• Reliability of measures: In order to minimize this
threat, the measurements have been obtained from

the recordings. Furthermore, this threat was allevi-
ated by applying the same procedure to each indi-
vidual experiment when the data was extracted and
by using the same formula to calculate response
variable values.

• Reliability of treatment implementation: To mini-
mize this threat, the experiment was conducted in
the same way with every subject.

• Random heterogeneity of subject: The experiment
was affected by this threat because the knowledge
and the background of the subjects were different
to each other. The fact that all of the subjects were
engineers with a high level of experience in indus-
try reduced the threat considerably.

Internal validity: This aspect of validity concerns
influences that can affect the factor with respect to
causality without the researcher’s knowledge.

• History: Different treatments were applied on dif-
ferent days; however, this threat was minimized
because every subject only participated in the ex-
periment on one day.

• Selection: Outcomes can be biased by the chosen
subjects if the subjects are not suitable for the ex-
periment. To minimize this threat, all of subjects
were recruited by BSH staff, who have great expe-
rience in dealing with processes similar to the ones
used in our experimental problem.

• Compensatory rivalry: This threat is minimized
because the subjects did not know the outcomes
achieved with the different treatments.

• Resentful demoralization: This threat occurs be-
cause only one approach is applied by each sub-
ject, so some subjects might prefer to work with
the other approach. To minimize this threat, the
subjects never know the outcomes of the other sub-
jects who worked with the other approach.

Construct validity: This aspect of validity concerns
generalizing the result of the experiment to the concept
or theory behind the experiment.

• Mono-operation bias: The experiment is affected
by this threat because we have used a different de-
velopment tool for each approach (SPL and CaO).
Note that the experiment is based on existing tools
in the company and there is not a single tool that
implements both approaches. The generalization
of results to other tools must be made with caution.

15

• Mono-method bias: Experiments with a single
type of measure can result in measurement bias
[34]. Effectiveness and efficiency are affected by
this threat. We minimize its effect using the record-
ings to calculate the time spent and the success
of the task. This threat was avoided for satisfac-
tion because the satisfaction questionnaire includes
questions that are expressed in a both a positive and
a negative way.

• Evaluation apprehension: When the subjects are
evaluated, they may be afraid. To minimize this
threat, at the beginning of the experiment, the in-
structor told every subject that it was not a test of
their abilities.

• Hypothesis guessing: To minimize this threat, the
subjects did not know the objective of the experi-
ment.

• Task design: The proposed tasks do not have a
true/false answer; it is very difficult for users to
develop the software product correctly if they do
not understand the task. On the other hand, the
task statements are real tasks that were extracted
from the daily work in the BSH induction hob di-
vision. This threat is minimized because the tasks
are non-trivial. This threat was minimized because
the tasks were non trivial. To correctly perform a
task the software engineers should know the soft-
ware products. The catalogue contains 46 software
products with 81 features, each of the induction
hob models is composed of more than 500 ele-
ments, including around 100 class elements on av-
erage. The values achieved for software engineers
for the Effectiveness show that only one engineer
with SPL approach and other engineer with CaO
approach performed the tasks correctly, then the
tasks are non-trivial.

External validity: This aspect of validity is con-
cerned with to what extent it is possible to generalize
the findings, and to what extent the findings are of rele-
vance for other cases.

• Population: The number of subjects is not enough
high to generalize the results to all companies.
However, it is important to note that the role of the
subjects (software engineers) makes an interesting
contribution in an area where most experiments are
conducted using students as subjects. Further work
would be to replicate this experiment with a larger
number of subjects in different environments in or-
der to mitigate this threat.

• Interaction of selection and treatment: The role
of subjects (software engineers) is interesting, but
it would be necessary to replicate the experiment
with different roles in order to mitigate this threat.

• Generalizability: Since this experiment has been
conducted in a specific domain, we think that the
generalizability of findings should be undertaken
with caution. Other experiments in different do-
mains should be performed to validate our find-
ings.

8. Conclusion

The Cao and SPL approaches have been shown to
be two good software development methodologies for
software development in certain contexts. These con-
texts are when the software products to develop can be
built from small variations in previous existing software
products.

In the context of the software development for induc-
tion hobs of our industrial partner, BSH group, we have
designed an experiment to compare software develop-
ment using two approaches: SPL and CaO. We designed
an experiment with a single factor (the approach used
for software development). In this experiment where
software engineers performed a series of tasks to de-
velop software from legacy product software, we mea-
sured effectiveness, efficiency, and satisfaction.

Our results show that software engineers achieve bet-
ter values for effectiveness, efficiency, and satisfaction
with the SPL approach. Furthermore, the results show
the following findings revealed by this work:

• The SPL approach is more efficient than the CaO
approach. The SPL approach is more efficient even
though this approach requires a larger number of
checks than the CaO approach.

• The software engineers acknowledged that the SPL
approach offers more possibilities those they need
to perform daily tasks. Even though checking was
required when they performed the tasks with the
SPL approach, they trusted the SPL approach.

• The software engineers asked for better search ca-
pabilities from the CaO approach.

In the near future, we plan to replicate this experiment
in other contexts and increase the number of subjects.
These replications will allow us to generalize the results
regardless of the domain.

16

Acknowledgments

This work has been partially supported by the Min-
istry of Economy and Competitiveness (MINECO)
through the Spanish National R+D+i Plan and ERDF
funds under the Project ALPS (RTI2018-096411-B-
I00).

References
[1] ISO/IEC 25000:2014, Software Engineering - Software Prod-

uct Quality Requirements and Evaluation (SQuaRE). Standard
ISO/IEC 25000:2014, International Organization for Standard-
ization, Geneva, Switzerland, 2014.

[2] S. Adam and K. Schmid. Effective Requirements Elicitation in
Product Line Application Engineering – An Experiment, pages
362–378. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[3] ANSI/NCITS. Ansi/ncits-354 common industry format (CIF)
for usability test reports. Technical report, NIST Industry Us-
ability Reporting, 2001.

[4] W. K. G. Assunção, R. E. Lopez-Herrejon, L. Linsbauer, S. R.
Vergilio, and A. Egyed. Reengineering legacy applications into
software product lines: a systematic mapping. Empirical Soft-
ware Engineering, 22(6):2972–3016, Dec 2017.

[5] E. Bagheri and D. Gasevic. Assessing the maintainability of
software product line feature models using structural metrics.
Software Quality Journal, 19(3):579–612, 2011.

[6] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated anal-
ysis of feature models 20 years later: A literature review. Infor-
mation Systems, 35(6):615 – 636, 2010.

[7] R. Bonifácio, P. Borba, C. Ferraz, and P. Accioly. Empirical
assessment of two approaches for specifying software product
line use case scenarios. Software & Systems Modeling, pages
1–27, 2015.

[8] J. Brooke. SUS: a retrospective. Journal of usability studies,
8(2):29–40, 2013.

[9] R. Christensen. Plane Answers to Complex Questions The The-
ory of Linear Models. Springer Science+Business Media, New
York, USA, 2002.

[10] P. C. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. SEI Series in Software Engineering.
Addison-Wesley, August 2001.

[11] K. Constantino, J. A. Pereira, J. Padilha, P. Vasconcelos, and
E. Figueiredo. An empirical study of two software product line
tools. In ENASE 2016 - Proceedings of the 11th International
Conference on Evaluation of Novel Approaches to Software En-
gineering, Rome, Italy 27-28 April, 2016., pages 164–171, 2016.

[12] D. Dermeval, T. Tenório, I. I. Bittencourt, A. Silva, S. Isotani,
and M. Ribeiro. Ontology-based feature modeling. Expert Syst.
Appl., 42(11):4950–4964, July 2015.

[13] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and
K. Czarnecki. An exploratory study of cloning in industrial
software product lines. In Proceedings of the 2013 17th Euro-
pean Conference on Software Maintenance and Reengineering,
CSMR ’13, pages 25–34, Washington, DC, USA, 2013. IEEE
Computer Society.

[14] A. Durán, D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-
Cortés. Flame: A formal framework for the automated analysis
of software product lines validated by automated specification
testing. Softw. Syst. Model., 16(4):1049–1082, Oct. 2017.

[15] F. Faul, E. Erdfelder, A.-G. Lang, and A. Buchner. G* power 3:
A flexible statistical power analysis program for the social, be-
havioral, and biomedical sciences. Behavior research methods,
39(2):175–191, 2007.

[16] S. S. M. Fauzi, M. hairul Nizam Nasir, N. Ramli, and
S. Sahibuddin. Software Process Improvement and Manage-
ment: Approaches and Tools for Practical Development. In-
formation Science Reference, 2012.

[17] W. Fenske, J. Meinicke, S. Schulze, S. Schulze, and G. Saake.
Variant-preserving refactorings for migrating cloned products to
a product line. In 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER),
pages 316–326, Feb 2017.

[18] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro,
U. Kulesza, A. Garcia, S. Soares, F. Ferrari, S. Khan, F. Cas-
tor Filho, and F. Dantas. Evolving software product lines with
aspects: An empirical study on design stability. In Proceedings
of the 30th International Conference on Software Engineering,
ICSE ’08, pages 261–270, New York, NY, USA, 2008. ACM.

[19] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed.
Enhancing clone-and-own with systematic reuse for develop-
ing software variants. In 2014 IEEE International Conference
on Software Maintenance and Evolution, pages 391–400, Sep.
2014.

[20] J. Font, M. Balları́n, O. Haugen, and C. Cetina. Automating the
variability formalization of a model family by means of com-
mon variability language. In Proceedings of the 19th Interna-
tional Conference on Software Product Line, SPLC ’15, page
411–418, New York, NY, USA, 2015. Association for Comput-
ing Machinery.

[21] E. Ghabach, M. Blay-Fornarino, F. E. Khoury, and B. Baz.
Clone-and-own software product derivation based on devel-
oper preferences and cost estimation. In 2018 12th Interna-
tional Conference on Research Challenges in Information Sci-
ence (RCIS), pages 1–6, May 2018.

[22] J. Gonzalez-Huerta, E. Insfran, S. Abrahão, and G. Scanniello.
Validating a model-driven software architecture evaluation and
improvement method: A family of experiments. Information
and Software Technology, 57:405 – 429, 2015.

[23] V. Guana and D. Correal. Improving software product line con-
figuration: A quality attribute-driven approach. Information and
Software Technology, 55(3):541 – 562, 2013. Special Issue on
Software Reuse and Product LinesSpecial Issue on Software
Reuse and Product Lines.

[24] R. Heradio, H. Perez-Morago, D. Fernandez-Amoros,
F. Javier Cabrerizo, and E. Herrera-Viedma. A bibliomet-
ric analysis of 20 years of research on software product lines.
Inf. Softw. Technol., 72(C):1–15, Apr. 2016.

[25] N. J. Juzgado and X. Ferré. How to integrate usability into the
software development process. In 28th International Conference
on Software Engineering (ICSE 2006), Shanghai, China, May
20-28, 2006, pages 1079–1080, 2006.

[26] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-oriented domain analysis (foda) feasibility
study. Technical report, Carnegie-Mellon University Software
Engineering Institute, November 1990.

[27] D. Kieras. Using the keystroke-level model to estimate execu-
tion times. University of Michigan, 2001.

[28] H. Koziolek, T. Goldschmidt, T. de Gooijer, D. Domis, S. Se-
hestedt, T. Gamer, and M. Aleksy. Assessing software product
line potential: an exploratory industrial case study. Empirical
Software Engineering, 21(2):411–448, 2016.

[29] S. Krishnan, R. R. Lutz, and K. Goševa-Popstojanova. Empiri-
cal evaluation of reliability improvement in an evolving software
product line. In Proceedings of the 8th Working Conference on
Mining Software Repositories, MSR ’11, pages 103–112, New
York, NY, USA, 2011. ACM.

[30] J. Krüger, L. Nell, W. Fenske, G. Saake, and T. Leich. Find-
ing lost features in cloned systems. In Proceedings of the 21st

17

International Systems and Software Product Line Conference -
Volume B, SPLC ’17, pages 65–72, New York, NY, USA, 2017.
ACM.

[31] R. Lapeña, M. Balları́n, and C. Cetina. Towards clone-and-own
support: locating relevant methods in legacy products. In Pro-
ceedings of the 20th International Systems and Software Product
Line Conference, SPLC 2016, Beijing, China, September 16-23,
2016, pages 194–203, 2016.

[32] A. Marcolino, E. Oliveira, I. Gimenes, and T. U. Conte. Towards
validating complexity-based metrics for software product line
architectures. In 2013 VII Brazilian Symposium on Software
Components, Architectures and Reuse, pages 69–79, Sept 2013.

[33] B. Michalik, D. Weyns, N. Boucke, and A. Helleboogh. Sup-
porting online updates of software product lines: A controlled
experiment. In 2011 International Symposium on Empirical
Software Engineering and Measurement, pages 187–196, Sept
2011.

[34] J. I. Panach, S. España, Ó. D. Tubı́o, O. Pastor, and N. J. Juz-
gado. In search of evidence for model-driven development
claims: An experiment on quality, effort, productivity and satis-
faction. Information & Software Technology, 62:164–186, 2015.

[35] C. A. Pierce, R. A. Block, and H. Aguinis. Cautionary note
on reporting eta-squared values from multifactor anova designs.
Educational and psychological measurement, 64(6):916–924,
2004.

[36] F. Pérez, M. Balları́n, R. Lapeña, and C. Cetina. Locating
clone-and-own relationships in model-based industrial families
of software products to encourage reuse. IEEE Access, 6:56815–
56827, 2018.

[37] I. Reinhartz-Berger and A. Sturm. Comprehensibility of uml-
based software product line specifications. Empirical Software
Engineering, 19(3):678–713, 2014.

[38] J. Santos and U. Kulesza. Quantifying and assessing the merge
of cloned web-based system: An exploratory study. In The 28th
International Conference on Software Engineering and Knowl-
edge Engineering, SEKE 2016, Redwood City, San Francisco
Bay, USA, July 1-3, 2016., pages 583–588, 2016.

[39] A. Schlie, D. Wille, S. Schulze, L. Cleophas, and I. Schaefer.
Detecting variability in matlab/simulink models: An industry-
inspired technique and its evaluation. In SPLC, 2017.

[40] L. P. Tizzei, M. O. Dias, C. M. F. Rubira, A. Garcia, and
J. Lee. Components meet aspects: Assessing design stability
of a software product line. Information & Software Technology,
53(2):121–136, 2011.

[41] T. S. Tullis and J. N. Stetson. A comparison of questionnaires
for assessing website usability. In Usability Professional Asso-
ciation Conference, pages 1–12. Citeseer, 2004.

[42] G. Vale, D. Albuquerque, E. Figueiredo, and A. Garcia. Defin-
ing metric thresholds for software product lines: A comparative
study. In Proceedings of the 19th International Conference on
Software Product Line, SPLC ’15, pages 176–185, New York,
NY, USA, 2015. ACM.

[43] K. Villela, A. Silva, T. Vale, and E. S. de Almeida. A survey on
software variability management approaches. In Proceedings of
the 18th International Software Product Line Conference - Vol-
ume 1, SPLC ’14, pages 147–156, New York, NY, USA, 2014.
ACM.

[44] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in Software Engineering: An In-
troduction. Kluwer Academic Publishers, Norwell, MA, USA,
2000.

[45] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wessln. Experimentation in Software Engineering. Springer
Publishing Company, Incorporated, 2012.

18

