
Model-Driven Development: Piecing Together the
MDA Jigsaw Puzzle

Oscar Pastor, Sergio España, José Ignacio Panach, Nathalie Aquino

Centro de Investigación en Métodos de Producción de Software (ProS)
Universidad Politécnica de Valencia

Camino de Vera s/n, 46022, Valencia, Spain
{opastor, sergio.espana, jpanach, naquino}@pros.upv.es

Phone: +34 96 387 7000, Fax: +34 96 3877359

Abstract. The Model-Driven Architecture (MDA) paradigm is well-known
and widely used in the field of model-based software development. How-
ever, there are still some issues that are problematic and that need to be
dealt with carefully. In this paper we present a metaphor that aims to help to
understand how MDA grows in complexity as problems faced become more
difficult or ‘wicked’ and how a method designed to be powerful, flexible
and MDA-compliant can eventually become, in effect, a ‘jigsaw puzzle’.
This jigsaw puzzle is not merely the result of having a collection of meth-
odological ‘pieces’ with routes across them, but also arises as a result of the
criteria underlying the MDA abstraction layers. We compare MDA to other
research fields such as Human-Computer Interaction, Model Management
and Method Engineering, and we use as an example the OO-Method, a
software development method based on MDA-compliant model transforma-
tions. We focus on a methodological piece that is conceived to allow the
specification of interaction requirements by means of interface sketches.
These sketches are supported by a task model that serves as a sound basis
for formalization and allows the application of model transformation in or-
der to obtain subsequent models. A case study illustrates the requirements
capture method together with the software development process defined by
the OO-Method. The whole process presented in the case study represents
one of the possible routes that can be followed when developing a software
system with the OO-Method.

1 Introduction

The MDA paradigm [21] is extensively used by the Software Engineering (SE)
community. There are a large number of methods, such as USIXML [33] or
OOWS [14], that are based on the MDA paradigm and that apply model transfor-
mations during the development process. The MDA paradigm proposes several
models to represent the system. Each model describes the system from a different
abstraction level. According to MDA, the first model to be built during the soft-
ware development process is the Computation Independent Model (CIM). The

2 Oscar Pastor, Sergio España, José Ignacio Panach, Nathalie Aquino

CIM is a viewpoint focused on the environment and system requirements; it disre-
gards the computerisation of the system being modelled. The next level of abstrac-
tion is called the Platform Independent Model (PIM). This model takes into ac-
count which parts of the system will be computerised, but it still does not
determine the technological platform that will support the implementation. After
these models have been built, a platform-specific viewpoint is needed. This layer
is called Platform Specific Model (PSM) and it describes the system attending to
the specific characteristics of the platform that will support it. Finally, the Code
Model is derived from the PSM. Transformations among all these MDA models
are (semi)automatic, depending on the MDA environment that supports them.
Moreover, some MDA environments implement MDA models with a combination
of several models. The route from the CIM to the Final Code can be quite tortu-
ous, because the analyst has to construct a large number of models.

Furthermore, depending on a number of contingencies, the sequence in which
the analyst fills out the models may change. For example, a CIM can be composed
of several requirements models. The order in which they are built may be deter-
mined by the type of user that is formulating the requirements. Certain require-
ments models can be more appropriate for initiating capturing requirements with
an expert computer user than others.

Fig. 1. Comparison between MDA and the OO-Method

One contribution of this paper is to show that there are various ways of auto-
matically generating the Final Code in an MDA environment called the OO-
Method [27]. The OO-Method is a software development method that models the
system at different abstraction levels, distinguishing between problem space (the
highest abstract level) and solution space (the lowest abstract level). The software
generation process of the OO-Method is shown in Figure 1. This figure also shows
the correspondence between each OO-Method model and the MDA models. It is
important to note here that some models belonging to the same stage in the OO-
Method software development process correspond to different MDA models. This
issue will be discussed in section 3. Each OO-Method model can be seen as a

Model-Driven Development: Piecing Together the MDA Jigsaw Puzzle 3

piece of a jigsaw puzzle that has to fit together with the rest, depending on a num-
ber of factors. All pieces together represent the system being built.

From all the pieces that compose the OO-Method jigsaw, this work focuses on
the pieces (models) that capture interaction requirements, which are very impor-
tant non-functional requirements when producing high-quality software. A system
with an inadequate interaction is likely to be rejected by the user, even though the
system is functionally correct. Many MDA-based approaches disregard interaction
requirements; in doing that, we argue, they disregard a key factor for success.

Our proposal to capture interaction requirements is based on a formal notation
proposed by Paternò called ConcurTaskTree (CTT) [28]. A task defines how the
user can reach a goal in a specific application domain. The main reason for using
this notation is the fact that it is a formal language that provides a formal semantic,
makes the model verifiable, and avoids ambiguity in the specification.

However, creating task trees during requirements modelling is an arduous en-
deavour. This notation is not friendly with regard to medium-sized systems. For
this reason, this paper proposes to superimpose a more manageable model over the
task trees (although it adds a new piece to the jigsaw puzzle). The proposed model
is based on sketches, i.e. drawings that represent the final system interface. Each
part of a sketch corresponds to a part of a CTT tree. In order to guarantee the cor-
respondence between sketches and CTTs, syntactic rules have been defined. These
rules limit the degree of freedom when producing the sketches, but they allow
derivation of the CTTs from the sketches. CTTs are synchronously created while
the analyst is creating the sketches.

To accomplish these goals this paper is structured as follows. Section 2 shows a
set of related works based on Method Engineering and interaction requirements
capture. Section 3 reflects on the complexity of using MDA methods with their
multiple models and multiple routes for modelling, and the MDA jigsaw metaphor
is introduced. Section 4 focuses on interaction requirements capture. Section 5
shows a case study using the pieces of the OO-Method jigsaw puzzle that support
user-system interaction modelling. Finally, section 6 provides our conclusions and
outlines possible future work.

2 Related Works

This work is related to the application of situational method engineering to re-
quirements elicitation, alternative routes for following the OO-Method, and cap-
turing interaction requirements by means of sketches. In this section a brief review
of these related works is presented.

Method Engineering represents a structured framework in which methods for
software development activities can be designed, constructed, and adapted. Meth-
ods are assembled from multiple individually identifiable parts, often referred to
as “method fragments” or “method chunks”. Situational Method Engineering is
therefore the configuration of these resultant methods specifically for individual
projects [5]. This topic is especially relevant and useful in areas such as require-

4 Oscar Pastor, Sergio España, José Ignacio Panach, Nathalie Aquino

ments engineering where various situation-specific factors, e.g. project objective,
application domain, features of the product to be developed, stakeholders in-
volved, and technological conditions and constraints, exert a significant influence
[2].

Ågerfalk and Ralyté [2] have identified an initial and traditional assembly-
based approach in method engineering. In their work the procedure has been used
to describe methods and processes in meta-models to be used as a basis for com-
puter supported instantiation of situational methods, typically through the assem-
bly of a number of method fragments from different methods stored in a method
base [6][20]. Recently, however, method engineering research and practice have
extended beyond the traditional assembly-based approach to address a variety of
issues including method requirements specification [15], method configuration
[17] and roadmap-driven approaches [22]. Recent works [1][18] also pay more at-
tention to method rationale (i.e. the reasons behind and arguments for the method)
and the tension between method-in-concept (as described in method handbooks)
and method-in-action (as enacted in actual engineering practice).

Taking into consideration the ideas behind situational method engineering and
requirements engineering, this paper is a first step to analyze different routes or di-
rections taken when following the OO-Method. This is where a useful connection
can be made between MDA and situational method engineering. Different starting
points in the requirements phase, as well as different routes for continuing the
software development process, could represent an improvement, depending on the
characteristics of the specific project to be developed. In this work, the analysis is
limited to possible alternatives, but always within the same software development
method: the OO-Method.

Regarding interaction requirements, it can be said that no widely accepted
method for capturing them currently exists, and that the drawing of user interface
sketches is becoming more important in this field. A significant variety of tools
now exist for drawing interface sketches which are then used to automatically (or
semi-automatically) generate the final interface.

DEMAIS [3] and DENIM [25] are tools for designing a particular kind of ap-
plication. DEMAIS was specially designed for multimedia applications design.
This tool allows the designer to shape interaction and temporality ideas and to see
the result obtained. DENIM helps web site designers in the preparation of sketches
at different levels: site map, storyboard and individual pages. The levels are uni-
fied through views.

On the other hand, more general tools exist for designing any type of applica-
tion. One of these tools is SILK [19] which provides four primitives: rectangle,
free line, straight line, and ellipse. Interface prototypes are formed combining
primitives. The designer can choose the interface components style once the tool
has recognized each component (i.e. button type). Storyboards are used to illus-
trate navigation between interfaces. JavaSketchIt [7] uses a combination of simple
figures for representing each possible widget (interface component). FreeForm
[30] is another tool for creating sketches. Storyboards are used to navigate be-
tween sketches. The tool has an execution mode in which the user can test naviga-

Model-Driven Development: Piecing Together the MDA Jigsaw Puzzle 5

tions, and offers a facility to align and determine a standard size for the created
controls.

On one hand, all the previously presented tools generate code for a specific
programming language which varies according to the tools. On the other hand,
SketchiXML [9] generates user interface specifications in UsiXML [33], a plat-
form-independent language for user interface description. This tool is able to ad-
vise the user about potential usability problems in the sketches that are produced.
Besides, the figure representations can be configured by the user.

All the previously described tools share a common limitation: they only gener-
ate the software system interface, and in some cases, support navigation between
interfaces. The approach proposed in this work was designed to be incorporated
into a completely functional automatic code generation process which uses a
Model Compiler to generate not only the software user interface, but all the infor-
mation system functionality too. Other relevant characteristic of the approach is
the independence of the code language, which is generated to support different
platforms.

3 The MDA Jigsaw Puzzle and the OO-Method

Software development methods usually offer several modelling techniques. The
aim is that models complement each other and offer various perspectives on real-
ity. In some cases, the complementary nature of the perspectives is horizontal. For
example, aspect-oriented methods seek to segregate cross-cutting concerns that are
observable at a certain abstraction level. In other cases, the complementary nature
of the perspectives is vertical. The aim is to segregate the different abstraction lev-
els of the descriptions. For example, Data Flow Diagrams allow the level of detail
of system descriptions to be increased by means of stepwise refinement. The four
views of the OO-Method Conceptual Model (Object, Dynamic, Functional and
Presentation Models) also specify complementary perspectives on reality. For ex-
ample, the Functional Model offers a horizontal complementary perspective with
respect to the other three models. The Functional Model deals with aspects related
to Information System (IS) reaction while the other models specify IS memory
and IS interface. However, the Object Model already has a dynamic part that
structures IS reaction in terms of class methods. The Functional Model refines
class methods by decomposition so, in this sense, it also offers a vertical comple-
ment to the Object Model. Further argumentation on the use of complementary
perspectives can be found in [26].

The MDA paradigm proposes criteria to structure system descriptions in differ-
ent layers. Having reached this point, a question arises: whether the complemen-
tary nature of the MDA layers is horizontal or vertical. MDA model definitions do
not clarify this issue. Another question is whether the MDA criteria are pragmatic
in real projects. As Figure 2 depicts and we later argue, the MDA frontier between
CIM and PIM layers cuts across the OO-Method requirements models diagonally.
Figure 2 zooms in on the first two MDA layers shown in Figure 1.

6 Oscar Pastor, Sergio España, José Ignacio Panach, Nathalie Aquino

CONCEPTUAL MODEL

OBJECT MODEL

FUNCTIONAL REQUIREMENTS
MODEL

MISSION STATEMENT

DYNAMIC MODEL FUNCTIONAL MODEL

Attr
Class

Event Effect Cond

USE CASE
TEMPLATES

.......

.......

SEQUENCE
DIAGRAMS

COMPUTATION INDEPENDENT MODEL

PLATFORM INDEPENDENT
MODEL

 INTERACTION
 REQUIREMENTS MODEL

[]>> []>>

[]
···

TASK TREE UI SKETCH

USE-CASE MODEL

PRESENTATION
MODEL

FUNCTIONS REFINEMNT TREE

Fig. 2. The MDA layers and the OO-Method – pragmatics going beyond frontiers

The MDA paradigm would be extremely easy and powerful if it were possible
to follow a cascade software-development lifecycle. For this to work, one person
would start building the models of the highest abstraction level. The subsequent
models would then be manually or automatically derived, each time adding the de-
tails related to the new abstraction level. However, since reality is often very com-
plex, the iterative and incremental development paradigm is more practical and
popular. MDA adapts well to this way of working. One can start by modelling one
part of the system and feeling one’s way down the abstraction ladder. When this
part of the system is more or less consolidated and perhaps even implemented and
deployed, a new iteration starts. Another part of the system is modelled top-down.
In an MDA-based iterative software development, either it is possible to partition
the system with surgical precision, seeking a high cohesion and minimal coupling
between the parts, or automatic transformations arise as a strong need.

Furthermore, in the area of ISs we often have to deal with so-called ‘wicked
problems’. Wicked problems are often not fully understood until a solution has
been found, since every wicked problem is essentially unique and novel. Solutions
to these problems are not right or wrong, simply "better," "worse," "good enough,"
or "not good enough” [31]. Indeed, it is the social complexity of these problems,
not their technical complexity, which overwhelms most current problem-solving
approaches. To appropriately deal with wicked problems, it is common to carry
out opportunity driven problem solving. At any given time the developers are
seeking the best opportunity to progress toward a solution, regardless of whether
they are going up or down in the abstraction ladder. Rittel [31] identified a type of
problematic situation that can only be solved if representatives of all the stake-
holders participate in a joint effort. Models are specifications of the shared knowl-
edge about the problem and they serve as an agreement. Therefore, it is important
that some specific models are understandable for the users.

Model-Driven Development: Piecing Together the MDA Jigsaw Puzzle 7

The consequence of this tangle of cognitive, social and abstraction-level issues
is that no single ingenuous solution is adequate. Methodologists need to offer
software-development strategies that facilitate opportunity-driven problem solv-
ing. An evident corollary is that it is important to deal with contingency in soft-
ware development. Methods must be flexible in the sense that the techniques to be
applied in each moment are determined by various factors: the characteristics of
the system to be computerised (i.e., automatic teller machines are not dealt with
the same way as ISs), the nature of a specific problem presented at a given mo-
ment (e.g. to design a user interface, to specify business objects, to design strate-
gic-level reports), the expertise of the development team (which techniques they
know best), the maturity of the organisational system, the users’ organisational
and technological knowledge, the predisposition of the stakeholders to be involved
in development, etc.

With regards to the MDA paradigm, the number and variety of these issues
give it a complexity akin to a jigsaw puzzle. Methodological confusion among
practitioners appears, worsened by the fuzziness with which most methods and
techniques are defined. Because of the lack of sound criteria, gurus proliferate,
and practitioners try to make up for a lack of adequate methodological guides by
generalising from examples and case studies. The solution to all of this, i.e. piec-
ing together a well founded method requires a number of issues to consider:
1. A theoretical soundness should be assured. This requires the basing of argu-

mentations on unambiguous and well-defined concepts.
2. The usage of techniques should be specified. Modelling techniques are often

offered by their authors as a panacea for all problems. Also, many modelling
primitives can be used to describe things at different abstraction levels; tech-
niques should be located in the methodological jigsaw puzzle, reducing the de-
grees of freedom with which they are marketed.

3. Method design that aims to facilitate opportunity-driven problem solving.
4. Provision is made for contingencies. This may be achieved by offering several

alternative routes aimed at completing the methodological jigsaw puzzle. The
routes should be appropriate for overcoming problems during complex projects.

5. To empirically assess all the alternative methodological routes. It is convenient
to carry out a series of empirical tests to evaluate their viability, pros and cons.
We will now clarify the issues commented above with an example using some

of the methodological pieces of the OO-Method (see Figure 3). Firstly (issue 1),
one way of gaining deeper knowledge about a method is to conceptually align it
with an ontology, a set of well-defined related concepts. This ontology must be
appropriate for the type of problem that will be solved using the method. For ex-
ample, in [26] the OO-Method Conceptual Model is aligned with regard to a con-
ceptual framework concerning Information Systems.

Each method must locate and place the pieces of its puzzle depending on the
semantics associated with the modelling techniques being proposed (issue 2). For
example, there is no consensus with regard to the criteria underlying Use Cases.
As things stand, the Rational Unified Process (RUP) proposes to distinguish be-
tween business use cases and (computerised system) use cases. In the case of the
OO-Method Functional Requirements Model, use cases are located at the CIM

8 Oscar Pastor, Sergio España, José Ignacio Panach, Nathalie Aquino

level (as the RUP business use cases), as Figure 2 shows. This implies that no
computerisation aspects should be considered at this level. Use-Case Templates
are also designed to be computation-independent. However, Sequence Diagrams
decompose the IS in terms of objects that react to external and internal messages
and many of them presuppose a computerisation of the system; for this reason,
Sequence Diagrams in the OO-Method are not located at the CIM level, but rather
at the PIM level. Particularly interesting is the case of the Interaction Require-
ments Model. While task trees can be argued to focus on the interaction between
the user and the system, it is still arguable whether the system refers to an Infor-
mation System or a Computerised Information System. In our proposal, the CTT
notation is used as a computation-independent description of the interaction. By
determining the semantics of each modelling primitive in a computationally inde-
pendent way, we can fix the task model at the CIM. However, the sketch of the in-
terface is evidently oriented towards a computerisation. Our sketching primitives
are still independent of the particular programming and runtime environment, so
the user interface sketches are claimed as part of the PIM. Figure 2 shows how the
Functional and the Interaction Requirements Model are crossed diagonally by an
MDA frontier.

Fig. 3. The MDA jigsaw puzzle in the OO-Method – aiming to support contingency

In the OO-Method we confront the challenge in order to facilitate opportunity-
driven problem solving (issue 3). We offer the chance to go up and down in the
abstraction layers depending on the specific problems that the developers come
across during a software project. Automatic transformations and the compilation
of the Conceptual Model allow for an incremental development. Also, these trans-
formations permit the testing and validation of partial solutions at a low cost. For a

Model-Driven Development: Piecing Together the MDA Jigsaw Puzzle 9

real opportunity-driven approach to be possible, the problem of inter-model inco-
herence must be dealt with. Sometimes a model B has been derived from a model
A that is of a higher abstraction layer. Later, B is modified and details are added to
it. Then it may occur that models A and B are no longer consistent. This problem
is solved by round-trip engineering; that is, by offering support for the bottom-up
propagation of changes in the models. In the case of the OO-Method Conceptual
Model and the Code Model, the stress is put in the Extreme Non-Programming
paradigm [24]; that is, no changes should be made to the code. However, current
tools are not so refined, and when this is really needed, a Tweaking application
solves the round-trip problem. Between the Conceptual Model and the Require-
ments Models, the round-trip problem is an issue still requiring a great deal of re-
search, although some promising strategies are being tested.

When solving complex problems, contingencies must be dealt with appropri-
ately. The development team may need to take different routes through the method
(issue 4). All these methodological routes must be theoretically and practically
achievable. Within the MDA paradigm, the routes usually involve manual deriva-
tions and (semi)automatic transformations among the models. In the OO-Method,
we offer several routes (see Figure 2). In the case of the OO-Method Functional
Requirements Model, the analyst can chose between describing use cases via
specification templates or via sequence diagrams. The Interaction Requirements
Model is optional; it will not be necessary whenever the system being developed
does not have demanding user interface requirements. However, it is recom-
mended to specify the interaction requirements of those use cases that are not
CRUD-like1. Furthermore, on some occasions, it is even convenient to start with
the Interaction Requirements Model for those parts of the system where the users
already predispose some user interface sketches. This model then serves to estab-
lish a degree of shared knowledge between the users and the developers.

See Figure 3 for a graph where the vertices represent the proposed models
(methodological pieces) and the arcs represent transformations and mappings
among the models. The core of the OO-Method is the Conceptual Model. Above
it, at the functional requirements level, there are several proposals. In this paper
we only present those proposals related to use cases. A different approach is de-
scribed in [10], where the authors present an adaptation of BPMN to fit the OO-
Method. The analyst will choose the most appropriate technique depending on the
problem being solved (i.e., the system being developed). The OO-Method is also
being extended at the lower abstraction levels. In order to give more expressive-
ness to the interface modelling, a concrete interface model [29] is being re-
searched to deal with issues like widgets, alignment, look and feel, etc.

We can argue that our approach is theoretically valid. The different methodo-
logical routes are well-founded and the corresponding derivations and transforma-
tions are offered. However, not all of the routes necessarily give good results in all
cases. We acknowledge that it is even possible that some routes are not convenient
at all. This is closely related to empirical validation of methodological routes (is-

1 Create, Read, Update and Delete are typical actions in Information Systems

10 Oscar Pastor, Sergio España, José Ignacio Panach, Nathalie Aquino

sue 5). Evaluating situational methods (what we have called routes across the jig-
saw puzzle) is one of the topics of interest of Method Engineering [13][32].

For the sake of brevity, the following section focuses only on one of the OO-
Method methodological pieces. Interaction modelling is chosen because of it is
still a pending issue in Software Engineering. To understand its context for use, in
section 5 we offer an overview of a methodological route within the technique
makes sense. The route starts with the Functional Requirements Model (see Figure
3). The Use-Case Templates branch is taken. Then the Interaction Requirements
Model is created; the interface sketches are manually mapped to the use case tem-
plate. The derivation of the Object Model from Use-Case Templates is described
in [11]. The strategy for deriving the Presentation Model from the Interaction Re-
quirements Model is described in [12]. Then a manual mapping could be carried
out relating the Presentation Model and the Object Model. However, we are con-
sidering applying model management techniques and tools [4] to automatically
obtain this mapping. Once the rest of the views of the Conceptual Model are cre-
ated, the final application is automatically generated by a Model Compiler [8].

4 A Method for Capturing Interaction Requirements: Sketches

From all the pieces which compose the OO-Method jigsaw puzzle, this paper fo-
cuses on those pieces that specify the system interaction abstractly. This section
proposes a method for capturing interaction requirements in an MDA environ-
ment. We have selected, as a starting point, the pieces of the OO-Method jigsaw
puzzle devoted to interaction modelling due to the importance of modelling inter-
action to build usable systems. Following ISO 9126-1[16], usability is a software
characteristic that strongly influences software quality. Usability is related to
modelling and implementing interaction according to user requests. Therefore, a
requirements model to formally capture user interaction requests is appropriate.

The technique that the OO-Method proposes for capturing interaction require-
ments is based on Paternò’s ConcurTaskTrees (CTT) [28]. The original grammar
is extended to suit the OO-Method. This has the following layers:
• Lexical: This is provided by CTT notation (interaction tasks, system tasks, and

abstract tasks).
• Syntactic: This is made up of structural task patterns that are structures of tasks

related to each other by means of temporal operators.
• Semantic: This is provided by the correspondence between task patterns and

Model Presentation patterns of the OO-Method.
Structural task patterns have been defined generically. Therefore, they offer ar-

guments that are instantiated when patterns are used to model a specific interface.
In the following figures, these arguments are shown in cursive format, indicating
that their names and values should be instantiated. Arguments with variable cardi-
nality are represented with ellipses (i.e., 1...N).

However, manual construction of these structural task patterns is very difficult,
even though there is a tool to support the drawing thereof. Moreover, for small ap-

Model-Driven Development: Piecing Together the MDA Jigsaw Puzzle 11

plications, the structural task patterns become illegible due to the huge number of
CTTs that are created. This paper proposes a different abstraction level to repre-
sent the interface by means of sketches. The analyst, with the help of the user,
draws sketches that represent the final interfaces. As the sketches are drawn, the
structural task patterns are built automatically.

Sketches are an early model to represent the user interface. In order to define a
new model, the first step is to establish a set of basic builders. In other words, the
primitives for building up a sketch to represent the interface should be defined.
The CTTs are built at the same time that the sketches are drawn. The second step
is then to define a biunivocal relationship between sketch primitives and structural
task patterns. For each structural task pattern, a sketch primitive is defined.

Therefore there are two models to represent system interaction, in other words,
two pieces of the jigsaw puzzle to represent the interaction. On the one hand,
CTTs have the advantage of being a formal language. A formal language provides
a formal semantic, makes the model verifiable, and avoids ambiguity in specifica-
tion. On the other hand, sketches are very simple. Therefore they are easy to create
and can be understood by the final user.

For the sake of brevity, this work is based on the structural task patterns related
to a list of instances (Population IU and the Elemental Patterns [23] related to it):
• Filter:

Fig. 4. Graphical primitive and structural task pattern for Filter

Filter primitives for sketches specify a filter criterion for the listed instances in
the population. The analyst must place a symbol above the columns that the user
wants to use in the filter (the letter F in Figure 4). These marked columns instanti-
ate the arguments of the corresponding structural task pattern.
• Order criteria:

Fig. 5. Graphical primitive and structural task pattern for Order criteria

The Order criteria is defined in a manner similar to the Filter primitive. Some
symbols are placed above the columns (the letter O in Figure 5) to order the listed
instances. These symbols provide values for the arguments of the pattern.

12 Oscar Pastor, Sergio España, José Ignacio Panach, Nathalie Aquino

• Actions:

Fig. 6. Graphical primitive and structural task pattern for Actions

The Actions, shown in Figure 6, represent operations that can be made with the
selected instance in the population list. Some actions are very common (i.e., create
a new instance, modify it, or delete it); others are specific to the system that is be-
ing sketched. Actions instantiate the arguments of the structural task pattern.
• Navigations:

Fig. 7. Graphical primitive and structural task pattern for Navigation

The analyst draws the navigation to system interfaces that implement queries or
editions of objects related to the object source (Figure 7). For example, starting
from an invoice line list, the user can navigate to the client data. The set of possi-
ble destinations builds the arguments of this pattern. Once the arguments are built,
the system task is in charge of carrying out the navigation.
• Display set:

Fig. 8. Graphical primitive and structural task pattern for Display set

The display set primitive (Figure 8) specifies the columns of the population in-
stances that will be shown graphically. This primitive is a set of columns that the

Model-Driven Development: Piecing Together the MDA Jigsaw Puzzle 13

analyst can assign a name to. The names of the columns inserted in the sketch
provide the values of the structural task pattern arguments.
• Population:

Once the correspondences between the structural task patterns and the third
level of the Presentation Model patterns [23] are defined, the next step is to do the
same with the second level of the Presentation Model patterns.

Fig. 9. Graphical primitive for Population

The Population primitive presents to the user a list of instances from a business
object class (i.e., a list of customers). As Figure 9 shows, it may include all the
primitives that represent elements of the third level in the OO-Method Presenta-
tion Model through structural task patterns. Figure 10 presents the corresponding
structural task pattern. The numbers in circles show the common parts.

Fig. 10. Population with CTT notation

As Figure 10 shows, the CTT that represents the population pattern includes in-
teraction tasks that are in charge of filtering (Filter) and arranging (Order) the in-
stances. The brackets represent grammatical-composition rules. In other words,
they are points at which to hook the leaves to other structural task patterns. A sys-
tem task is then used to show the instances of the objects (Display), which are fil-
tered and ordered by the selected criteria on the screen. Finally, the user can carry
out Action and Navigation operations with these instances, which are represented

14 Oscar Pastor, Sergio España, José Ignacio Panach, Nathalie Aquino

in the diagram by means of abstract tasks. All of these structural task patterns can
be composed to model the interaction with a list of instances.

5 Case Study

This section shows the development process of a real system with the OO-Method
methodology. This system is called AguasDeBullent, a water supply management
system. In this case study, one of the possible routes across the MDA jigsaw puz-
zle is followed, using many of the models proposed by the OO-Method. The case
study starts with the stage of requirements capture. First, the analyst creates the
Use Case Model. To keep the example simple, this paper focuses on one use case,
List meters. This use case represents the functionality of showing a list with all
the information about the water meters stored in the system.

Fig. 11. Use Case Model

Figure 11 shows the Use Case Model with a template that specifies the steps
required to accomplish the goal of this use case. Again, for the sake of simplicity,
the template does not fully comply with the notation described in [11] but it does
specify the use case in detail.

Fig. 12. Sketch

Model-Driven Development: Piecing Together the MDA Jigsaw Puzzle 15

Once the functional requirements have been captured, the last step in require-
ments capture is to model interaction requirements using sketches (see Figure 12)

The CTT that represents the sketch is automatically built (see Figure 13).

Fig. 13. CTT Model

Some of the views that compose the Conceptual Model (Object, Functional and
Dynamic Models) can be derived from functional requirements applying the trans-
formation rules detailed in [11]. The Presentation Model can be derived from the
CTTs by applying transformation rules explained in [12]. This case study focuses
on the Object Model (Figure 14a) and Presentation Model (Figure 14b).

Fig. 14. a) Object Model; b) Presentation Model

16 Oscar Pastor, Sergio España, José Ignacio Panach, Nathalie Aquino

Finally, the Model Compiler automatically generates the source code of the
fully-functional application. The generated window for the use case “List meters”
is shown in Figure 15.

Fig. 15. Final system

6 Conclusions and Future Work

The MDA paradigm is modelled in four layers: CIM, PIM, PSM and Code Model.
This paradigm is used in several software production methods that distinguish be-
tween the various abstraction levels with varying degrees of automation. In many
cases, each MDA model is supported by a set of different models. Moreover, the
specific models of each method can be built in a variable order, depending on a
number of factors. These factors include: analyst’s preferences, user’s knowledge
of computer systems, system size, and clarity of requirements. This fact, together
with the large number of models proposed by the methods, results in a huge num-
ber of possible combinations for abstract modelling of the system. Independently
of the chosen order, all the models must be coherent with the user’s requirement
and must represent a full system. This problem could be described as a ‘jigsaw
puzzle’ construction, with each model of the method representing a piece of the
jigsaw that must be joined to other pieces for the whole to succeed.

This issue is discussed in this paper using the example of the OO-Method ap-
proach, a software production method based on the MDA paradigm. From among
all the pieces of the OO-Method jigsaw puzzle, this paper focuses on those pieces
designed to capture interaction requirements. The main reason for selecting these
pieces is the fact that interaction modelling is often disregarded by the Software
Engineering community. However, the Human-Computer Interaction Community
has offered many successful techniques for capturing interaction requirements, a
prime example are sketches. Sketches have been chosen to capture the interaction
requirements in the OO-Method due to their simplicity. However, sketches cannot
be used in an automatic transformation process unless we formalize their underly-
ing language. We have chosen the ConcurTaskTree (CTT) notation to formally

Model-Driven Development: Piecing Together the MDA Jigsaw Puzzle 17

represent the sketches. CTTs allow the sketches to represent interaction unambi-
guously; they can be validated and then transformed into the OO-Method Presen-
tation Model. The implementation of the tool to draw sketches and to synchro-
nously generate CTTs is planned as future work. This functionality, together with
the transformation of the task model into the Presentation Model, will offer effi-
cient technological support for automatically generating application interfaces and
will allow early feedback from the user. This provides an interesting and specific
example of how to put together the various pieces needed to create a complete,
MDA-compliant software production process, the so-called ‘MDA jigsaw puzzle’.

We also plan to assess the efficiency of the proposed interaction-requirements
technique, as well as the various alternatives for building the rest of the models.
This will be done by means of empirical evaluation. Moreover, a case-base with
the various methodological routes should be defined together with the factors that
lead the analyst to choose one specific route.

References

[1] Ågerfalk PJ, Fitzgerald B (2006). Exploring the concept of method rationale: A concep-
tual tool for method tailoring. In Advanced Topics in Database Research, Vol. 5., Siau
K (ed.). Idea Group: Hershey, PA.

[2] Ågerfalk PJ, Ralyté J (2006). Situational Requirements Engineering Processes: reflect-
ing on method engineering and requirements practice. Software Process: Improvement
and Practice. John Wiley & Sons, Ltd. Online ISSN: 1099-1670.

[3] Bailey BP, Konstan JA (2003). Are Informal Tools Better? Comparing DEMAIS, Pen-
cil and Paper, and Authorware for Early Multimedia Design. Human Factors in Com-
puting Systems CHI’2003. New York,: ACM Press.

[4] Bernstein PA (2003) Applying Model Management to Classical Meta Data Problems.
Proc. of Conference on Innovative Data Systems Research (CIDR) 2003.

[5] Brinkkemper S (1996). Method engineering: engineering of information systems devel-
opment methods and tools. Information and Software Technology 38: 275–280.

[6] Brinkkemper S, Saeki M, Harmsen F (1999). Metamodelling based assembly techniques
for situational method engineering. Information Systems 24(3): 209–228, DOI:
10.1016/S0306-4379(99)00016-2.

[7] Caetano A, Goulart N, Fonseca M, Jorge J (2002). JavaSketchIt: iIssues in Ssketching
the lLook of Uuser iInterfaces. AAAI Spring Symposium. - Sketch understanding.
AAAI Press: ; pp. 9–-14.

[8] Care Technologies: http://www.care-t.com. Last visited: July-2007.
[9] Coyette A, Vanderdonckt J (2005). A Sketching Tool for Designing Anyuser, Anyplat-

form, Anywhere User Interfaces. INTERACT 2005, LNCS 3585; pp. : 550-564.
[10] DeLaVara, J. L. and J. Sánchez (2007). Business process-driven requirements engi-

neering: a goal-based approach. In 8th Workshop on Business Process Modeling, De-
velopment, and Support (BPMDS'07), CAiSE'07, Trondheim, Norway.De La Vara JL,
Sánchez J (2007) Business process-driven requirements engineering: a goal based ap-
proach. In Proc. of the 19th International Conference on Advanced Information Sys-
tems Engineering (CAiSE’07). Norway (in press).

[11] Díaz I, Losavio F, Matteo A , Pastor O (2003). A Specification Pattern for Use Cases.
Information & Management Journal, (Elsevier Science B.V.) (0378-7206).

18 Oscar Pastor, Sergio España, José Ignacio Panach, Nathalie Aquino

[12] España S, Pederiva I, Panach JI (2007) Integrating Model-Based and Task-Based Ap-
proaches to User Interface Generation. In Calvary, C. Pribeanu, G. Santucci, J. Vander-
donckt (eds.) "Computer-Aided Design of User Interfaces VI". Kluwer: 255-263.

[13] Fitzgerald G (1991). Validating new information systems techniques: a retrospective
analysis. In: Information Systems Research: Contemporary Approaches and Emergent
Traditions (eds. H.-E. Nissen, H.K. Klein, R. Hirschheim), Elsevier Science Publishers
B.V, pp. : 657-672.

[14] Fons J, Valderas P, Albert M, and Pastor O (2003). Development of Web Applications
from Web Enhanced Conceptual Schemas. ER 2003, LNCS. Springer.pp. : 232-245.

[15] Gupta D, Prakash N (2001). Engineering methods from method requirements specifi-
cations. Requirements Engineering 6(3): 135–160, DOI: 10.1007/s007660170001.

[16] ISO/IEC 9126-1 (2001), Software engineering - Product quality - 1: Quality model.
[17] Karlsson F, Ågerfalk PJ (2004). Method configuration: Adapting adapting to situ-

ational characteristics while creating reusable assets. Information and Software Tech-
nology 46(9): 619–-633, DOI:10.1016/j.infsof.2003.12.004.

[18] Karlsson F, Wistrand K (2006). Combining method engineering with activity theory:
Theoretical grounding of the method component concept. European Journal of Informa-
tion Systems 15(1): 82–90, DOI: 10.1057/palgrave.ejis.3000596.

[19] Landay J, Myers BA (2001). Sketching Interfaces: Toward More Human Interface De-
sign. IEEE Computer 34. pp. 56–64.

[20] Lyytinen K, Welke R (1999). Guest editorial: Special issue on meta-modelling and
methodology engineering. Information Systems 24(2): 67–69, DOI: 10.1016/S0306-
4379(99)00005–8.

[21] MDA: http://www.omg.org/mda Last visited: JulyJune-20072008.
[22] Mirbel I, Ralyté J (2006). Situational method engineering: Combining assembly-based

and roadmap-driven approaches. Requirements Engineering 11(1): 58–78, DOI:
10.1007/s00766-005-0019-0.

[23] Molina P (2003), User interface specification: from requirements to automatic genera-
tion, PhD Thesis, DSIC, Universidad Politécnica de Valencia, (in Spanish).

[24] Morgan T (2002) "Business Rules and Information Systems – Aligning IT with Busi-
ness Goals", Addison-Wesley

[25] Newman MW, Lin J, Hong JI, Landay JA (2003). DENIM: An Informal Web Site De-
sign Tool Inspired by Observations of Practice." Human-Comp. Interaction Inter. 18;
pp. 259–324.

[26] Pastor O, González A, España S (2007). Conceptual alignment of software production
methods. In Krogstie, J., Opdahl, A., & Brinkkemper, S. (eds.) “Conceptual modelling
in information systems engineering”. Springer-Verlag: 209-228.

[27] Pastor Ó, Insfrán E, et al. (1997). OO-Method: An OO Software Production Environ-
ment Combining Conventional and Formal Methods. Lecture Notes in Computer Sci-
ence. 9th Conference on Advanced Information Systems Engineering (CAiSE'97). A.
Olive and J. A. Pastor. Barcelona, Spain, Springer-Verlag.

[28] Paternò F, Mancini C, et al. (1997). ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models. In Proc. of the IFIP TC13 International Conference on Hu-
man-Computer Interaction, Chapman & Hall, Ltd.: 362-369.

[29] Pederiva I, Vanderdonckt J, España S, Panach JI, Pastor O (2007) The Bbeautification
of Aautomatically Ggenerated uUser iInterfaces. In Proc. Of of XI IFIP TC13 Interna-
tional Conference on Human-Computer Interaction (INTERACT 2007). Brasil (in
press); LNCS 4662:. 209-422

[30] Plimmer BE, Apperley M (2003). Software for Students to Sketch Interface Designs.
Proc. Conf. on Human-Computer Interaction INTERACT’2003, IOS Press; pp.: 73–80.

Model-Driven Development: Piecing Together the MDA Jigsaw Puzzle 19

[31] Rittel H and Webber M (1973). "Dilemmas in a general theory of planning." Policy
Sciences 4: 155-169.

[32] Schipper M, Joosten S (1996). A validation procedure for information systems model-
ling techniques. In: Workshop on Evaluation of Modeling methods in Systems Analysis
and Design, 8th Conf. on Advanced Information Systems Engineering (CAISE’96).

[33] Vanderdonckt J, Limbourg Q, et al. (2004). USIXML: a User Interface Description
Language for Specifying Multimodal User Interfaces. Proceedings of W3C Workshop
on Multimodal Interaction WMI'2004, Sophia Antipolis, Greece.

