
O

E
s
J
D

A

K
E
W
H
W

C

h
R

SoftwareX 27 (2024) 101809

A
2
n

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

mintWeb: Creation of embedded web applications in C++ for specific
ystems
uan Domingo ∗, Jose Ignacio Panach, Esther Dura
epartment of Informatics, University of Valencia, Avda. de la Universidad, s/n, 46100 Burjasot, Valencia, Spain

R T I C L E I N F O

eywords:
mbedded web applications
eb development
igh load web applications
eb application security

A B S T R A C T

Most contemporary web applications are primarily coded in interpreted languages (JavaScript, PHP, Python...)
and are initiated by the web server. This requires solving the persistence issue: HTTP/HTTPS is a stateless
protocol but user identity and computational state across consecutive requests must be preserved, typically
using cookies and/or backend database servers.

This work develops embedded web applications: single compiled executable programs that encapsulate a
web server. These applications are coded in a compiled language (in our case, C++). They initiate a separate
thread for each session to establish optionally encrypted communication with the client and the HTML5 code
for each page is dynamically generated at runtime.

This approach offers several advantages: it enhances security on both the server and client sides. On the
server side there is only one file on disk (the executable) that can be altered. On the client side cookies are
not needed and client-side code execution can be eliminated. Also, the use of compiled code enhances speed
and faster application performance compared to interpreted languages.

This methodology is realized through a framework named EmintWeb (Embedded Interactive Web Devel-
opment) which comprises a C++ code generator to create the HTML5 pages at runtime and link them with the
business logic code of the application. Subsequently, it generates the executable that serves the application.
An example of the same application developed using EmintWeb and PHP is provided to evaluate the speed
and robustness of both implementations. This approach is not a replacement for current web frameworks but
a software system to build web applications using C++ for systems that require the specific characteristics
mentioned before.
ode metadata

Current code version v1.0
Permanent link to repository for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-24-00180
Permanent link to Reproducible Capsule
Legal Code License GNU General Public License v. 3
Code versioning system used git
Software code languages, tools, and services used C++
Compilation requirements, operating environments & dependencies Any Linux distribution, g++ compiler.

Depends on:
gumbo parser
https://github.com/google/gumbo-parser/
Qt5 libraries
https://www.qt.io/
Generated code uses:
Poco C++ libraries
https://pocoproject.org/

If available Link to developer documentation/manual
Support email for questions Juan.Domingo@uv.es
∗ Corresponding author.
E-mail addresses: Juan.Domingo@uv.es (Juan Domingo), joigpana@uv.es (Jose Ignacio Panach), Esther.Dura@uv.es (Esther Dura).
ttps://doi.org/10.1016/j.softx.2024.101809
eceived 20 March 2024; Received in revised form 12 June 2024; Accepted 21 Jun

vailable online 4 July 2024
352-7110/© 2024 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).
e 2024

ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://github.com/ElsevierSoftwareX/SOFTX-D-24-00180
https://github.com/google/gumbo-parser/
https://www.qt.io/
https://pocoproject.org/
mailto:Juan.Domingo@uv.es
mailto:Juan.Domingo@uv.es
mailto:joigpana@uv.es
mailto:Esther.Dura@uv.es
https://doi.org/10.1016/j.softx.2024.101809
https://doi.org/10.1016/j.softx.2024.101809
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2024.101809&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Juan Domingo et al. SoftwareX 27 (2024) 101809
1. Motivation and significance

The arising of the Internet made it possible to execute interactive
programs in two different locations: the server handles the business
logic, while the client takes charge of the presentation/GUI [1]. The
use of a web browser, due to its ubiquity, has become widely accepted
as the default solution to run web systems. States are presented as
web pages written in HTML, and the business logic is executed partly
by the server in the form of interpreted code in PHP or a similar
language, and partly by the client, mostly as JavaScript snippets of
code. However, this approach brings about some obvious problems:
slowness (interpreted vs. compiled code) and security concerns. The
client is required to execute code (JavaScript), which could be mali-
cious, and is obligated to accept and provide information to account
for the computation state (cookies, habitually used for other, spurious
purposes) [2]. Additionally, flaws in the server code can be exploited
through the introduction of treacherous data, as seen in SQL injection
attacks [3].

Additionally, from the developer’s perspective, a significant chal-
lenge arises due to the stateless nature of the HTTP/HTTPS protocols
that underpin web navigation [4]. Consequently, adequate measures
must be implemented to maintain continuity in computation between
successive states. Regarding efficiency, multithreaded servers are em-
ployed to handle simultaneous requests, aiding in balancing the com-
putational load [5]. In terms of security, a server attack with privilege
escalation can modify web pages (HTML or PHP code), potentially
affecting all users and sessions [6].

The EmintWeb software aims to address these concerns by devel-
oping embedded web applications. An embedded web application is
an executable program, entirely written in a high-level language (in
our case, C++), encompassing a simple web server and the business
logic. It dynamically generates HTML5 code sent to the client at each
moment. An embedded web application initiates a session with a client
and exclusively handles its requests. Similarly to a traditional graphical
program, it generates graphical input/output screens and navigates
through them based on user responses. The key distinction is that these
screens are not graphical pixel screens but HTML5 pages with forms.
Like in most servers, we utilize multiple threads, but each one is associ-
ated with a specific user and terminates when the interaction with that
user ends—either voluntarily or due to the expiration of an inactivity
period. According to the OWASP top ten security ranking [7] the devel-
oped software directly solve the following risks: Broken access control;
Vulnerable and Outdated Components; Security logging and monitoring
failures; Server-Side Request Forgery. Additionally, there are other risks
that are not directly addressed but can be easily mitigated: Injection;
Security Misconfiguration; Identification and Authentication Failures;
Software and data integrity failures. Finally, the risks of Cryptographic
failures and Insecure design are still present. The main benefits of using
EmintWeb rely on its security characteristics and efficiency. Since the
web application is in binary, it should be faster than one written in an
interpreted language.

Our application starts from a workflow of the task that includes
nodes representing the different graphical outputs/forms to be shown
(states) and arches between them which represent the data processing
done when moving form one state to another (transitions). Obviously,
depending on the data introduced by the user in the former state the
destination state of a transition may vary.

Similar concepts to those previously described have indeed been
explored in the past. The software engineering community has been
dealing with the concept of generating web systems from conceptual
models for many years. One notable contribution in this area has
been made by Brambilla et al. [8], who present a set of models for
generating various components of web systems. Another approach, as
suggested by Zafar et al. [9], involves the generation of web services
from Business Process Modeling Notation (BPMN). Li et al. [10] present

a method for creating an executable model to build web systems.

2
These proposals aim to generate web systems or tests using languages
specifically tailored for them, requiring execution on a web server.
While the use of models enhances the abstraction layer for analysts, it is
important to note that the code running on the server remains specific
to each web technology.

There are other works that generate web systems from a workflow.
One of these works is the one developed by Haller et al. [11]. This
work makes the integration of XPDL (a process model) with BPMN to
use workflows to abstractly represent choreography interfaces of web
systems. The work of Li et al. [12] is called AFlow, an automated ser-
vice combination system combining artificial intelligence and workflow
techniques to build web services. Guerrero-García [13] suggests lever-
aging workflows to generate web user interfaces. structure, workflow,
process, and tasks. All these works use workflow models to help in code
generation. However, they focus on specific elements, i.e., web services
or user interfaces. There is not a holistic method that generates fully
functional web systems.

There are other works aimed at developing web systems using
C++. Lima and Eler [14] have defined a C++ Web Framework, which
combines C++ with Qt and a tag library called CSTL. Okamoto and
Kohana [15] developed a C++ library that serves as an API to build
systems in Node.js and Express.js. Szabó and Nehéz [16] defined the
Emscripter compiler, which translates C++ code into JavaScript. There
are other languages that aim to imitate C++ for the web development.
For example, the Rust language, authored by Anderson et al. [17].
Rust is a language that works for a specific browser named Servo.
All these works use C++ as source code, but they translate C++ into
other languages specific to web systems. Moreover, evaluations have
not considered performance tests to study how several clients in several
threads may affect the execution of the web system.

After analyzing the related works, we can conclude that the idea
of constructing web systems without specific languages for this context
has emerged in recent years. This idea aims to assist in the development
of web systems for experts in desktop systems without the need to learn
a plethora of languages, each specific to a particular context. There
are two perspectives: the generation of web code from models and the
generation of web code from C++. However, to the best of the authors’
knowledge, there are no software packages that generate a web system
in native C++ without the use of a web server and without generating
code for a web environment. The primary contribution of this paper is
to address this gap by proposing EmintWeb, a method to implement
web systems in C++ with the assistance of a workflow model. Em-
intWeb is not a new paradigm to change how web applications are
currently developed, but rather as a new framework to be used by web
systems that require some of the characteristics it offers.

2. Software description

EmintWeb is a framework to generate embedded web applications.
Several libraries are combined and a graphical interface has been
programmed to integrate and facilitate the development process. Its
main components are:

1. A routine for generating C++ code from HTML5. This includes
a HTML5 parser built with the Gumbo libraries and a library
(libhtcpp) that produces a C++ function (source code) for the
state represented by the HTML page. The C++ function takes
inputs from the .html file as parameters and returns a string
containing the web page (written in HTML) that will be sent to
the client. A separate C++ function is generated for each state,
and all of them are compiled and integrated into the embedded
application.

2. A simple server, either HTTP or HTTPS (at the developer’s
choice), built with the Poco libraries. This server receives vari-
ables instantiated by the client in the response URL, executes
the required process with them, and sends the generated page
for the next state to the client.

Juan Domingo et al.

b
U
H
l
t
i
F
(
M
i
s
f
g

t
g
a
E
d
t
W
t
t
T
t

c
a

SoftwareX 27 (2024) 101809
Fig. 1. Architecture of the development framework.
3. Snippets of code, referred to as wrappers, that connect the
aforementioned parts with the code written by the developer to
implement their business logic.

4. A metaserver, also built with the Poco libraries, that receives
the initial request from a client, chooses a port, and launches
an instance of the application to serve it. These instances are
distinct threads that naturally end when the client voluntarily
closes the session or automatically expire after a timeout if no
client activity is received.

5. A graphical user interface (GUI) written using the Qt5 libraries to
facilitate the drawing of the workflow diagram, automate code
generation, and compile it using the Make utility. A screenshot
of the GUI is shown in Fig. 2. Alternatively, a command-line
interface with the same functionality is also provided.

Automated generation of C++ code covers points 1 to 4, facilitated
y a Makefile for compiling both the final server and the metaserver.
sers are tasked with crafting HTML pages for individual states (in
TML5) and writing C++ code for transitions between states. Nonethe-

ess, automatic generation also provides prototypes for transition func-
ions and an initial code framework. These components and their
nterconnections are depicted in the architecture diagram shown in
ig. 1. Steps 1 to 4 can be executed using a command line application
eiwcli) so strictly only a text editor, a C++ compiler and the
ake utility are needed. Despite this, the use of the GUI (point 5)

s very helpful because it opens the HTML and C++ editors for each
tate/transition and helps in organizing the flow of the application and
orcing the developer to think on it exactly the same way as for classical
raphical applications: a succession of states and transitions.

The deployment process for the embedded application differs from
raditional applications. The sole prerequisites entail installing the
enerated executable (the metaserver) under a non-privileged user
nd executing it either via the command line or as a scheduled task.
mintWeb-generated embedded applications operate independently,
evoid of any necessity for a global web server or additional services
o function. EmintWeb works with several threads, each one for a user.

hen an error arises in one threat, we capture the signals and process
hem at the beginning of each thread, before any other code susceptible
o failures is executed. This is done by the automatic code generator.
he default action for most signals is simply to exit gracefully of the
hread and let the other threads go on.

A schema of the application running is depicted in Fig. 3. Each new
lient initiates a request to the metaserver to open a new thread for it

nd is redirected to the assigned address and port. This thread remains

3
active as long as the client does not exit from the application or ceases
interaction for a while.

Regarding additional content, it depends on the application. If it
requires access to additional files (such as images or multimedia con-
tent to be served), they must be placed in any pre-configured directory.
If it needs a database to manage the data provided by the users, it
would require a database server, and communication with it can be
established either through local ports or any other method the database
accepts. The code to implement these additions is part of the so-called
context and must be written by the developer of the application.

The concrete details of building an interactive web application using
our framework are outside the limited extension of this text, but a video
has been included with exemplifies step by step the development of a
simple application, in the style of a ‘‘Hello, world!’’ for programming
languages. Please, see section ‘‘Additional Material’’.

3. Example test

To test the feasibility and capability of the framework, a simple web
application was developed in EmintWeb and rewritten with the same
appearance and functionality in PHP. This fictitious system manages
bus transport routes, storing names and identifiers of cities, buses,
passengers, reviewers, and reviews in a database. A bus connects two
cities, and at any given time, a generic person (the manager) can board
or disembark a passenger from any bus. Additionally, the manager can
launch a review of a bus to obtain the list of passengers currently on
board. Finally, the manager can retrieve the list of all passengers on
board of all non-empty buses. The manager represents a user making
these requests to the system, and multiple users are assumed to be
performing these actions simultaneously. In the test, this is referred to
as the ’Number of clients.’

Experiments were conducted using JMeter [18] to simulate an
increasing number of simultaneous clients, ranging from 98 to 20,006.
For each request, the response time is measured for those requests
answered by the system. Additionally, a record is kept of requests that
were not answered (failures).

Table 1 shows the mean and median time in ms. as function of the
number of clients, as long as the percentage of attended requests. Each
client makes several requests, as needed to complete its task. The same
results are shown graphically as boxplots in Fig. 4. A more detailed
analysis is included as Additional Material.

The response time for EmintWeb is superior until reaching 12 500
clients. Beyond this threshold, PHP exhibits faster performance. How-

ever, this increased velocity is attributed to PHP ignoring 86% of the

Juan Domingo et al. SoftwareX 27 (2024) 101809
Fig. 2. The GUI with an example project loaded.
Fig. 3. Schema of an EmintWeb application running.
Table 1
Response time and percentage of failures for EmintWeb and PHP as a function of the number of clients.

Number of clients

98 504 1008 5012 7504 10 010 12 502 15 008 17 500 20 006

EmintWeb
Mean (ms) 49.49 43.23 48,02 3835.05 6710.60 9183.40 11 881.88 14 266.56 16 534.57 18 760.15
Median (ms) 16.00 16.00 16.00 581.00 850.00 1016.00 1880.00 2485.00 3154.00 3638.00
Att. req. (%) 100.00 100.00 100.00 99.76 99.42 98.66 97.99 97.25 96.44 95.71

PHP
Mean (ms) 21.88 17.51 22.46 6913.91 11 477.90 17 417.37 1868.65 3071.36 2347.01 2636.07
Median (ms) 13.00 12.00 12.00 6512.00 11 229.00 2902.00 428.00 486.00 610.00 694.00
Att. req. (%) 100.0 99.99 99.99 71.19 46.80 33.23 13.11 12.80 13.24 13.44
requests, whereas EmintWeb successfully responds to 98% of them.
Notably, with 20 000 clients, EmintWeb attends to 96% of requests,
while PHP only handles 14%. Note that PHP is slightly faster for a small
number of connections (under 5.000 connections). This is mainly due
4
to the time needed to negotiate a secure connection every time a new
client goes into the system using https. We explicitly check the key files
and generate a secure socket with encrypted data for the rest of the
interaction, which seems to take some time.

Juan Domingo et al. SoftwareX 27 (2024) 101809
Fig. 4. Box-plots for each number of clients of response time (only for attended requests) of EmintWeb and PHP.
4. Impact

The EmintWeb system is designed to have its main impact in two
aspects: security and high availability.

Impact on security:

• The concept of executing each session through a dedicated, in-
dividually encrypted channel on a dedicated port for each user
enhances security by making attacks more challenging. Imper-
sonation and man-in-the-middle attacks are mitigated through
establishing a SSL encrypted connection at all times and checking
that client IP does not change during an established session. This
makes session cookies unnecessary.

• No code needs to be executed in the client-side, which only
renders HTML code (with forms) which constitutes the interface
of the application. In fact, JavaScript execution can be disabled,
completely avoiding exposure of the server’s business logic and
enhancing client-side security. Nonetheless, the framework pro-
vides the option to include JavaScript in the generated pages if
the developer chooses to do so.

• No web pages or server code are present as explicit HTML or JS
files in the server so they cannot be altered. They are embedded
inside the compiled code (indeed, generated at run time), so their
alteration is not directly possible. The attacker would have two
options: either build a new executable that reproduces exactly
the behavior of the legitimate application and substitute it or
alter the executable itself (for instance changing the area of
static variables where the javascript code of the page, if any,
would be stored as text). To prevent these kind of attacks the
application generated by EmintWeb (the executable) should be
installed as owned by a special user which has read and execute,
but not write permissions. For an even more secure environment
the use of tools for file monitoring and integrity checking like
AIDE (Advanced Intrusion Detection Environment, [19]) is also
advisable.

• The stateless of HTTP/HTTPS does not arise: a single program
contains variables, which are in memory during all its execution.
No database or additional provisions are needed to keep their
values.
5
• Injection of spurious data by an authenticated, malicious user is
still possible, and must be checked by the application’s program-
mer, but it is more likely to provoke a crash of the thread of a
particular session and not a global breach.

• There is only one entry point to the server: the URL with variables
sent by the client. First, a default check is in place to prevent
overflow of the URL+variables string and it is straightforward to
check that only the expected variable names and sensible values
for them are provided.

• The lines of code automatically generated by EmintWeb have
been carefully written to be as robust and safe as possible, in-
corporating thorough error checks and exception handling [20].
Note that errors are not the only downfall of threads; memory
leaks and stack leaks, are prevalent and are not directly dealt with
by EmintWeb, even the usual precautions taken by the compilers,
namely Address Space Layout Randomization (ASLR) and stack
canaries, are applied by default.

Impact on availability and speed:

• Compiled code runs faster than current interpreted code so the
same server can attend a higher number of simultaneous requests.

• Load distribution within the server is automatically managed by
the operating system scheduler, which fairly allocates threads
(i.e., clients) among the multiple cores of modern processors.
Since in a real application these threads will be most of the time
awaiting for user interaction, the hyperthreading capability of
some current processors is also beneficial.

Limitations:

• Use of threads, even beneficial for efficiency reasons, opens the
door to stack overflow attacks in one thread that could compro-
mise the security of the whole server. The only way to mitigate
this would be the use of full processes instead of threads. The
changes in the automatically generated code are not drastic and
will be introduced in a future version so the user will be allowed
to choose between a multi-process and a multi-threaded version.

Summarizing, EmintWeb is suitable for web applications that re-
quire the parallel connection of many clients, quick response times, and
secure connections to the server. An example of an application with

Juan Domingo et al.

C

SoftwareX 27 (2024) 101809
such requirements is an online banking platform. This type of applica-
tion handles sensitive financial information, must process transactions
quickly, and support access by thousands of users simultaneously. Also,
it would be suitable for those clients who prefer not to allow any
external code, not even Javascript scripts, to run in their own machines,
either by security or by license-related reasons.

5. Conclusions

This work focuses on the development of EmintWeb, a methodology
for building web systems using C++ and a workflow model. The core
concept revolves around reversing the conventional approach: instead
of the server launching the application, the application is written as
a traditional, fully sequential program responsible for executing the
server. While previous discussions have highlighted the advantages of
this approach, such as enhanced security, simplified deployment, and
improved execution speed, it is crucial to acknowledge some limitations
as well:

• The number of simultaneous clients is limited by the design of the
TCP/IP protocol which allows up to 65,535 ports (and the first
1024 privileged ports must be excluded). However, it is possible
to instruct the metaserver to redirect new clients to other servers
(in different machines) simply by sending to such servers a signal
to open a new thread on any desired port. This approach is also a
viable method for load balancing, which will be implemented in
future work.

• Each thread consumes a certain amount of memory, and having
too many threads could lead to memory exhaustion. Developers
must exercise discipline and use constructors and destructors
of objects judiciously. A future modification is planned to pre-
compile web pages in memory, reducing the need for extensive
memory usage, as only string substitution will be required to
generate each particular page.

• While it is not possible to alter the web pages or server code,
it could be possible for a hacker with sufficient privileges to
substitute the executable of the application with a malicious one.
However, this risk is inherent to all systems and, to the best of
our knowledge, depends on the security measures implemented
by the server itself.

RediT authorship contribution statement

Juan Domingo: Writing – original draft, Validation, Software, Con-
ceptualization. Jose Ignacio Panach: Writing – original draft, Val-
idation, Formal analysis, Conceptualization. Esther Dura: Writing –
review & editing, Validation, Investigation, Formal analysis, Concep-
tualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This publication is part of the I+D+i project PGC type B with ref-
erence PID2020-117114GB-I00 funded by the MCIU Spanish Ministry
of Science, Innovation and Universities, MCIN/AEI/10.13039/501100
011033/. This is also supported by the project TENTACLE (GVRTE/

2023/4592166) from Generalitat Valenciana, Spain.

6
Appendix A. Supplementary data

Detailed results are described as the .pdf file SupplementaryMate-
rial1.pdf

A video that explains EmintWeb and builds a simple ‘‘Hello, World!’’
application is available as .mp4 file EmintWeb.mp4

A virtual machine with EmintWeb and the example application
installed is available in https://johnford.uv.es/EmintWeb.

A video for the setup of that virtual machine is available as .mp4
file VirtualMachineSetup.mp4

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.softx.2024.101809.

References

[1] Oluwatosin Haroon Shakirat. Client–server model. IOSR J Comput Eng
2014;16(1):67–71.

[2] Wang Yao, Cai Wan-dong, Wei Peng-cheng. A deep learning approach for
detecting malicious javascript code. Secur Commun Netw 2016;9(11):1520–34.

[3] Sadeghian Amirmohammad, Zamani Mazdak, Abdullah Shahidan M. A taxonomy
of sql injection attacks. In: 2013 international conference on informatics and
creative multimedia. 2013, p. 269–73.

[4] Ihrig Colin J. HTTP. Berkeley, CA: A Press; 2013, p. 167–88.
[5] Beltran Vicenc, Torres Jordi, Ayguade Eduard. Understanding tuning complexity

in multithreaded and hybrid web servers. In: 2008 IEEE international symposium
on parallel and distributed processing. 2008, p. 1–12.

[6] Monshizadeh Maliheh, Naldurg Prasad, Venkatakrishnan VN. Mace: Detecting
privilege escalation vulnerabilities in web applications. In: Proceedings of the
2014 ACM SIGSAC conference on computer and communications security. New
York, NY, USA: Association for Computing Machinery; 2014, p. 690–701.

[7] Open Web Application Security Project. Owasp. 2024, https://owasp.org/.
[Online accessed 16 May 2024].

[8] Brambilla Marco, Cabot Jordi, Wimmer Manuel. Model-driven software
engineering in practice. Morgan & Claypool Publishers; 2017.

[9] Zafar Iqra, Azam Farooque, Anwar Muhammad Waseem, Maqbool Bilal,
Butt Wasi Haider, Nazir Aiman. A novel framework to automatically generate
executable web services from bpmn models. IEEE Access 2019;7:93653–77.

[10] Li Liping, Gao Honghao, Shan Tang. An executable model and testing for web
software based on live sequence charts. In: 2016 IEEE/aCIS 15th international
conference on computer and information science. 2016, p. 1–6.

[11] Haller Armin, Marmolowski Mateusz, Gaaloul Walid, Oren Eyal, Sapkota Brah-
manada, Hauswirth Manfred. From workflow models to executable web service
interfaces. In: 2009 IEEE international conference on web services. 2009, p.
131–40.

[12] Li Xin, Tang Xinhuai, Song Zhaoteng, Yuan Xiaozhou, Chen Delai. Aflow: An
automated web services composition system based on the ai planning and
workflow. In: 2010 IEEE international conference on progress in informatics and
computing, vol. 2. 2010, p. 1067–71.

[13] Guerrero-García Josefina, González-Calleros Juan Manuel, González-Monfil Ade-
laida, Pinto David. A method to align user interface to workflow allocation
patterns. In: Proceedings of the XVIII international conference on human
computer interaction. Association for Computing Machinery; 2017.

[14] Lima Herik, Eler Marcelo Medeiros. C++ web framework: A web framework for
web development using c++ and qt. In: Proceedings of the 23rd international
conference on enterprise information systems - vol. 2. INSTICC, SciTePress; 2021,
p. 76–87.

[15] Okamoto Shusuke, Kohana Masaki. A c++ header library for web applications.
In: 2016 19th international conference on network-based information systems.
2016, p. 541–5.

[16] Szabó Martin, Nehéz Károly. C/c++ applications on the web. Prod Syst Inf
Eng 2019;8:69–87, Copyright - Copyright University of Miskolc 2019; Última
actualización - 2023-12-03.

[17] Anderson Brian, Bergstrom Lars, Goregaokar Manish, Matthews Josh, McAllis-
ter Keegan, Moffitt Jack, et al. Engineering the servo web browser engine using
rust. In: 2016 IEEE/ACM 38th international conference on software engineering
companion. 2016, p. 81–9.

[18] The Apache software foundation. Apache jmeter. 2010-2023, https://jmeter.
apache.org/index.html. [Online accessed 16 March 2024].

[19] Lehti R, Virolainen P, Kemelen P, Markley M, Grubb S, van den Berg R, et
al. Advanced intrusion detection environment. 2024, https://github.com/aide.
[Online accessed 12 June 2024].

[20] Shiina Shumpei, Iwasaki Shintaro, Taura Kenjiro, Balaji Pavan. Lightweight
preemptive user-level threads. In: Proceedings of the 26th ACM SIGPLAN
symposium on principles and practice of parallel programming. 2021, p. 374–88.

https://johnford.uv.es/EmintWeb
https://doi.org/10.1016/j.softx.2024.101809
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb1
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb1
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb1
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb2
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb2
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb2
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb3
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb3
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb3
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb3
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb3
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb4
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb5
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb5
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb5
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb5
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb5
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb6
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb6
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb6
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb6
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb6
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb6
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb6
https://owasp.org/
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb8
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb8
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb8
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb9
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb9
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb9
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb9
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb9
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb10
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb10
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb10
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb10
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb10
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb11
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb11
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb11
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb11
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb11
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb11
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb11
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb12
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb12
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb12
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb12
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb12
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb12
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb12
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb13
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb13
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb13
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb13
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb13
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb13
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb13
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb14
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb14
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb14
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb14
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb14
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb14
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb14
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb15
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb15
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb15
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb15
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb15
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb16
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb16
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb16
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb16
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb16
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb17
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb17
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb17
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb17
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb17
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb17
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb17
https://jmeter.apache.org/index.html
https://jmeter.apache.org/index.html
https://jmeter.apache.org/index.html
https://github.com/aide
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb20
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb20
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb20
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb20
http://refhub.elsevier.com/S2352-7110(24)00180-8/sb20

	EmintWeb: Creation of embedded web applications in C++ for specific systems
	Motivation and significance
	Software description
	Example test
	Impact
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References

