
PANACH, PASTOR, JURISTO: A FAMILY OF EXPERIMENTS TO COMPARE TWO MODEL-DRIVEN DEVELOPMENT TOOLS VS A TRADITIONAL DEVEL-
OPMENT DEVELOPMENT METHOD 1

A Family of Experiments to Compare
Two Model-Driven Development Tools vs

a Traditional Development Method
Jose Ignacio Panach, Óscar Pastor, Natalia Juristo

Abstract— Context: There are many papers which extol the benefits of Model-Driven Development (MDD) compared to tra-
ditional developments. However, the adoption of MDD to develop fully functional systems without coding is not frequent. Ob-
jective: This paper presents a family of experiments with 7 replications and 56 sample units to compare a traditional method
versus MDD, analysing two MDD tools. Method: The factor in the experiment is the method with two treatments (traditional
and MDD). We analyse together all replications thanks to two moderator variables in a multilevel hierarchy: Replication (from
1 to 7) and MDD Tool (INTEGRANOVA and WebRatio). Response variables are Functional Suitability, measured in terms of
effectiveness in simple and complex problems; Effort, measured as time to develop simple problems; and Satisfaction, meas-
ured in terms of perceived ease of use, perceived usefulness and intention to use. Result: Functional Suitability in MDD yields
significantly better results both in simple and complex problems, while Effort for simple problems is also significantly better for
MDD. Differences for Functional Suitability in complex problems are greater than with simple ones. Considering the MDD tools,
INTEGRANOVA yields significantly better Functional Suitability in complex problems. Regarding Satisfaction, replications with
WebRatio have a better intention to use than replications with INTEGRANOVA. Conclusions: Even though MDD yields better
Functional Suitability and Effort, the subjects’ Satisfaction with MDD is not better than with a traditional method.

Index Terms— D.1.2 Automatic Programming; D.2.1.e Methodologies; D.2.1.i Validation

—————————— ——————————

1. INTRODUCTION
 odel-Driven Development (MDD) is a term

used to describe the systematic use of software ab-
stractions (models) as primary artifacts during a

software engineering process [1]. Even though the idea of
using MDD does not involve the use of automatic code
generation from models, the MDD community has histori-
cally tried to automate the process as much as possible.
This way developers’ effort can focus on building concep-
tual models which abstractly represent the system, and
then model-to-code transformations implement the
code [2]. There are numerous ideas that appear under the
umbrella of MDD approaches [3]: (1) Metaprogramming:
where a model creates a programming template; (2) Do-
main-specific language: a computer language specialized
to a particular application domain; (3) Domain-specific
modelling: a modelling language is customized to a partic-
ular domain; (4) Generative programming: which models
families of software systems so that code can be automati-
cally generated from these families; (5) Model-integrated

computing, which aims to integrate heterogeneous sys-
tems of different domains; (6) Generic model management:
which addresses techniques for threatening models and
mappings; (7) Conceptual model programming: where an-
alysts’ effort focus on building holistic conceptual models
and all code is automatically generated. From all these ap-
proaches of MDD, the contribution of this article focuses
on the last one. From now on, when we refer to MDD, we
only refer to the perspective of conceptual model program-
ming.

In contrast to MDD, we have the traditional software
development method where the developer has to manu-
ally write the code that implements the system. The use of
models in this case is only for documentation, or as instru-
ments to report solutions, with no option to generate code
from them. This leads to both poor and obsolete models
which do not correspond with the implementation.

There are works which extol the benefits of MDD, such
as the work of Hailpern and Tarr [4], Selic [5] or Weigert
and Weil [6]. However, from an empirical point of view,
there are not many families of experiments that have con-
trasted some of the advantages of MDD. We have carried
out two previous works on this research line. In [7] we con-
ducted an experiment with 13 sample units to compare
MDD versus a traditional method in terms of Functional
Suitability (how well the software complies with the re-
quirements), Effort (spent time in simple problems),
Productivity (Functional Suitability/Effort), and Satisfac-
tion (pleasant feeling). The results did not yield any signif-
icant difference even though we noted, through descrip-
tive data, a trend that shows that MDD results in more
Functional Suitability for complex problems. In order to

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

 J.I. Panach is a faculty member of the Escola Tècnica Superior
d'Enginyeria, Departament d’Informàtica, Universitat de València,
Avinguda de la Universitat, s/n 46100 Burjassot, València, Spain. E-
mail: joigpana@uv.es

 N. Juristo, is a faculty member of the Escuela Técnica Superior de
Ingenieros Informáticos, Universidad Politécnica de Madrid, Cam-
pus de Montegancedo, 28660 Boadilla del Monte, E-mail: nata-
lia@fi.upm.es

 O. Pastor is a faculty member of the Centro de Investigación en Mé-
todos de Producción de Software,Universitat Politècnica de València,
Camino de Vera s/n, Edificio 1F, 46022 Valencia, Spain. E-mail: opas-
tor@pros.upv.es

M

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, MMMMMMMM 2021

improve the statistical power and investigate this line,
in [8] we conducted six replications of the same experiment
in two different universities. We gathered 52 sample units,
with enough power to avoid type II errors; the failure to
reject a false null hypothesis as the result of a test proce-
dure. We concluded that MDD yields better Functional
Suitability, independently of problem complexity.

Starting from the conclusions extracted from both pre-
vious works ([7] and [9]), the main contribution of this ar-
ticle is the comparison of MDD versus a traditional
method, independently of the MDD tool used in the devel-
opment process. The MDD paradigm is strongly associated
with the MDD tool that operationalized this process, and
we would like to study if the results can be generalized for
different MDD tools. The context being analysed is the de-
velopment of a fully functional system from scratch. There-
fore, we conducted a family of 7 experiments with two
MDD tools: 4 replications with the MDD tool INTE-
GRANOVA [10] and 3 replications with WebRatio [11]. 4
out 3 replications with the MDD tool INTEGRANOVA are
based on the raw data published at [9]. Note that in this
article we have gathered all replications (previously pub-
lished and new ones) except for the baseline, which we
have not considered since their problems were not the
same as the ones used in the rest of the replications. The
few sample units of the baseline (13), together with the
complexity to aggregate data with different problems, lead
us to discard using the baseline in our current analysis. The
aggregation of all replications results in 56 experimental
units, which provide sufficient statistical power (at least
0.8) to avoid type II errors with 0.05 probability. This family
of experiments is based on one factor named Method (with
two treatments: Traditional and MDD) and two moderator
variables to aggregate the replications in a multilevel hier-
archy: Replication (from 1 to 7) and MDD Tool (INTE-
GRANOVA and WebRatio). As response variables, we
have Functional Suitability (measured in terms of effective-
ness in simple problems and effectiveness in complex
problems), Effort (time spent for simple problems) and Sat-
isfaction (measured in terms of Perceived Ease of Use, Per-
ceived Usefulness and Intention to Use). These response
variables are the same ones we used in our first experi-
ment [7]. Productivity is not analysed because it is derived
from Effort/Functional Suitability [12]; and both Effort and
Functional Suitability are considered in our family.

The article is organized as follows. Section 2 discusses
related work. Section 3 describes how a traditional method
and MDD are operationalized in a software development
process. Section 4 presents the characteristics shared by all
replications and the differences among them. Section 5 pre-
sents the outcomes. Section 6 discusses the interpretation
of the results. Finally, Section 7 shows the conclusions. The
article includes 5 appendixes: a summary of the state of the
art (A), descriptive data of the state of the art (B), summary
of the experiment design (C), demographic data (D), and
results of replications homogeneity (E).

2. RELATED WORK
In this section, we review work related to MDD in empiri-
cal experiments through a Systematic Literature Review

(SLR). Our research question when looking for related
works was: What are the experiments in MDD, especially
the experiments within a family? The search string used
was: (family of experiments OR several experiments OR
empirical evaluations OR empirical studies OR experi-
ments OR replications) AND (model-driven OR MDD OR
MDA OR MDE). The inclusion criteria were: (IC1) empiri-
cal experiments in MDD (even when no replications are re-
ported); (IC2) articles that deal with conceptual models.
The exclusion criteria were: (EC1) articles with no experi-
ments; (EC2) articles without subjects; (EC3) articles that
are not related with models; (EC4) articles that do not de-
scribe the results of the experiments. The Quality criteria
to prioritize the results were: (QC1) the journal is in JCR
list; (QC2) the validation is based on a family of experi-
ments, (QC3) there are statistical significant results. The
search was run in February 2021 on Scopus, IEEE Xplore
and ACM Digital Library.

Appendix A shows a summary of all related works. For
each work, we describe the goal, number of subjects, num-
ber of replications, variables, results and limitations. Most
of these elements are described in the work of Ferreira et
al. [13] as the basic information needed in software-engi-
neering experiments. Appendix B shows the results of the
quality criteria and the aggregation of results according to
analysed variables, rank of subjects, MDD models and
MDD tools used in the experiment. For each result we also
show the percentage of articles that deal with it.

The comparison of MDD with a traditional method is
not new in Software Engineering (SE). For example, among
others we can reference the work of Martínez et al [14],
who have compared Model-driven, Model-Based and
Code-Centric with respect to their adoption among soft-
ware developers. The experiment was conducted with 26
students to measure Perceived Usefulness, Perceived Ease
of Use, Compatibility of Each Method and Intention to
Adopt. The results show that MDD is the most useful, alt-
hough it is also considered the least compatible with pre-
vious developers’ experiences. Developers feel comforta-
ble with the use of models, and they are likely to use them.
The main limitation of this work is the small sample size
(26 subjects), with no replications, which limits the gener-
ality of the results. Brdjanin et al. [15] conducted an exper-
iment to evaluate databases generated from BPMN models
in combination with UML class diagrams versus a manual
design. There are no replications of this experiment. The
analysed variables are Effectiveness (measured through re-
call and precision), Efficiency (measured as time) and Usa-
bility. The results show that the automatically generated
database model can be considered as starting point for a
manual design. The combination of MDD and a manual
design provides the best result. The main limitation is that
the time to train subjects was so long that from an initial
group of 95 subjects, only 31 finally participated. Wander-
ley et al. [16] conducted an experiment to compare build-
ing conceptual models from scratch versus using mind
maps as a first step. 18 subjects participated in the experi-
ment with no replications. The analysed variables were Ef-
fort and Usability; the results conclude that the time spent
producing conceptual models with the help of mind maps

PANACH, PASTOR, JURISTO: A FAMILY OF EXPERIMENTS TO COMPARE TWO MODEL-DRIVEN DEVELOPMENT TOOLS VS A TRADITIONAL DEVEL-
OPMENT DEVELOPMENT METHOD 3

was always less than that needed to produce models with-
out maps. Usability is not analysed in detail; the analysis
focuses on how easy mind maps are and their under-
standability.

Other groups of works have dealt with a family of ex-
periments to evaluate MDD methods, such as Gonzalez-
Huerta et al. [17]. That work aims to validate QuaDAI, a
method for the derivation, evaluation and improvement of
software architectures in MDD. The family is composed of
4 replications and a total of 92 subjects . The analysed var-
iables are Effectiveness, Efficiency, Perceived Ease of Use,
Perceived Usefulness and Intention to Use, with regard to
using QuaDAI versus Architecture Tradeoff Analysis
Method (ATAM). The results showed that when applying
QuaDAI, the subjects obtained architectures with better
values, and that they found the method easier to use, more
useful and more likely to be used. The results of each rep-
lication are aggregated through meta-analysis. Each repli-
cation has a low sample size. Ricca et al. [18] conducted a
family of 5 replications with 100 subjects. The goal was to
study the benefits of MDD for maintainability with respect
to a traditional approach. The comparison was operation-
alized with a state-based tool (UniMod) for MDD, and Java
for the traditional development. The metrics used in the
family are Correctness, Time Spent and Efficiency. The re-
sults show that the use of UniMod reduces efficiency and
time, but there are no significant differences regarding ac-
curacy. The main limitation is that these results can only be
generalized for MDD tools based on state machine models.
Other work of Ricca et al. [19] aims to analyse how devel-
opers’ experience and ability influence web application
comprehension. They conducted a family of 4 replications
with 75 subjects to study the variable comprehension. This
is measured in terms of precision and recall. Results indi-
cate that subjects having different ability achieved different
performance and different levels of benefit by using stere-
otyped diagrams. Low experience subjects benefited more
from stereotyped diagrams. The main limitation is that the
experiments are only based on the stereotypes of UML Web
Application Extension. The work of Cruz-Lemus et al. [20]
is a family of experiments with a baseline and two replica-
tions conducted with 91 subjects. The goal of that work is
an understandability prediction model to know the com-
plexity of statechart diagrams in UML notation. Results
show that complexity factors that influence the under-
standability of statechart diagrams are control flow fea-
tures, entry/exit actions, and number of activities. The
main limitation of this work is that it is based on a correla-
tion analysis, there is not a controlled experiment with dif-
ferent treatments. Reggio et al. [21] present two replica-
tions of an experiment with the goal of evaluating the com-
prehensibility of business processes through a style and the
effort to comprehend that style. The experiment was con-
ducted with 88 students from two different universities.
Results show that all the subjects achieve a significantly
better comprehension with the style, the use of the style
did not have impact on the effort, and more experienced
participants benefited more from the use of the style. As
limitation of this family of experiments we highlight that
problems used in the experiment are very easy, which may

hinder more significant results.
Other works focus on analysing characteristics of MDD

methods (not a whole MDD development process). Fer-
nández et al. [22] conducted a family of experiments to
evaluate a web usability evaluation process (WUEP) that
measures usability in an MDD model. The study focuses
on comparing WUEP versus a heuristic evaluation. The
family is composed of 3 replications and 64 subjects. The
metrics are Effectiveness, Efficiency, Perceived Ease of Use
and Satisfaction. Each replication is analysed individually,
and the aggregation is done through meta-analysis. The re-
sults show that WUEP is more effective, efficient and pro-
duces more developers’ satisfaction than a heuristic evalu-
ation. Heuristic evaluation is perceived as easier than
WUEP. The main limitation of this family is that, prior to
this evaluation, most of the subjects did not have a good
knowledge of usability. Mussbacher et al. [23] have con-
ducted an experiment based on design thinking to analyse
the characteristics of MDD that justify why it has not been
universally adopted in industry. The design thinking was
done with 15 MDD experts, where each one had to identify
the future challenges in MDD to be adopted by industry.
The results show that the main MDD challenges for next 30
years are: Cross-disciplinary model fusion, personal model
experience, flexible model integration, and resemblance
modelling. The main limitations of this experiment are that
the sample size is not large and there is a lack of quantita-
tive metrics.

Other works compare different approaches to working
with MDD. Cachero et al. [24] compares two types of do-
main model notations, graphical versus textual. The exper-
iment recruited 127 subjects and the analysed variables
were Efficiency and Effectiveness. The results demonstrate
that the improvement of a graphical notation compared to
a textual one is statistically significant. The limitations of
this experiment are that the size of the models used were
relatively small and in the same domain. Planas and
Cabot [25] have conducted an experiment with 45 subjects
to compare the usability of two modelling tools that can be
used in MDD: MagicDraw and Papyrus. The evaluation is
based on the variable Usability in the Modelling Process,
and the modelling obstacles the subjects encounter during
the process. The results show that there are no differences
between both tools. The main limitation is that the experi-
ment was based on videos; there was no discussion or
questionnaires for the subjects. Safdar et al [26] conducted
an experiment to compare three modelling tools: IBM ra-
tional Software Architect (RSA), MagicDraw, and Papyrus.
The experiment recruited 30 subjects to measure produc-
tivity in terms of modelling effort required to correctly
complete a task, learnability, time, number of clicks and
memory load. The results show that RSA is better in terms
of time and number of clicks when modelling class dia-
grams and state machines. The main limitation of the ex-
periment is that it focuses only on three UML diagrams:
class, state and sequence.

Finally, there are other works that aim to evaluate ex-
periments in the software engineering area. Freire et al. [27]
presents an empirical study which evaluates a Domain-

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, MMMMMMMM 2021

Specific Language (DSL) proposed to formalize experi-
ments in software engineering. The experiment was con-
ducted using as sample size of 16 experiments in the soft-
ware engineering area evaluating Completeness and Ex-
pressiveness. The results highlight several limitations of
the DSL which affect the formalization and execution of ex-
periments. The main limitation of this experiment is that
the authors of the DSL, themselves, conducted the experi-
ment.

Our conclusions from the related works highlight that
there are not many articles that have compared MDD
methods among them ([17], [24], [25], [26]), and only one
of them did this with a family of experiments ([17]). Several
authors such as Basili [28] highlight the importance of rep-
lications to build a sound body of knowledge. Regarding
the comparison of MDD versus a traditional method, this
appears only in two articles ([14], [15]) with no replications.
Most articles focus on measuring effectiveness [15] [17] [22]
[24], efficiency and effort ([15], [16], [17], [18], [21], [22],
[24]), since these benefits are usually claimed for MDD. Re-
garding the number of subjects, 7 articles ([17], [18], [19],
[20], [21], [22], [24]) recruited more than 50 participants.
The current article aims to cover the lack of families of ex-
periments to compare a traditional method versus MDD,
independently of a specific MDD tool.

3. MDD VS A TRADITIONAL METHOD
This section describes both development methods ana-
lysed in the family of experiments: MDD and a traditional
method. Note that in both development methods, the de-
velopers have to develop fully functional systems from
scratch. Since MDD can be operationalized into several
tools, we opted for two different tools (INTEGRANOVA
and WebRatio) in our family for the sake of generalizing
the results as much as possible. This choice is due to the
fact that both tools implement the MDD paradigm from a
conceptual model programming point of view. In this case,
the model is the code, so analyst must focus all their efforts
on building conceptual models. Code is relegated to auto-
matic code generation transformations that are hidden for
developers. No code is manually written. Even though
there are other tools that operationalize this approach of
MDD, such as NDT [29], these other tools are mainly based
on textual notation. Since both INTEGRANOVA and We-
bRatio are based strictly on graphical models and they are
widely referenced in research articles of conceptual model
programming [30], we opted for this choice.

3.1. INTEGRANOVA
INTEGRANOVA [10] is an MDD tool that generates code
in Java and C# (both for Web and Desktop) from concep-
tual models. Each conceptual model represents a different
characteristic of the system:
 The Object Model specifies the system structure in

terms of classes of objects and their relationships. It is
modelled as an extended UML class diagram.

 The Dynamic Model represents the sequences of
events that can occur for a class of objects, and the in-
teraction between object classes.

 The Functional Model specifies how events change ob-
ject states. The behaviour of the system is modelled by
the Functional and Dynamic Models working to-
gether.

 The Interaction Model represents the interaction be-
tween the system and the user.

3.2. WebRatio
WebRatio [11] is another MDD tool based on Eclipse that
generates web and mobile applications from conceptual
models. Below, we describe these models:
 The Domain Model is a conceptual schema that repre-

sents all the classes with their properties and relation-
ships needed in the system. It is represented with UML
class diagram notation.

 The Interaction Flow Modelling Language (IFML) [31]
represents the system interfaces. This was adopted by
the OMG as the standard to represent interfaces ab-
stractly.

 The Action Model that specifies the CRUD (Create,
Read, Update, Delete) operations that can be done in
the system.

Note that the only point in common between INTE-
GRANOVA and WebRatio is the Domain Model. The syn-
tax and the semantic of this model are the same in both
tools. This is because both tools adopt the standard UML
notation. Even though the goal of the other models is
shared between both tools, they are completely different.
There are no similar syntaxes to represent the functionality
or the interfaces. Apart from the models, the process to
generate code from the conceptual models is also different.
In the case of INTEGRANOVA, there is a Web service that
sends the models to a server that downloads the code.
Next, the developer has to setup said code to run the sys-
tem. The complete process takes around 10 minutes. For
WebRatio, the process is shorter (around 1 minute). The
model is compiled in the local machine and the code is au-
tomatically deployed when downloaded. Both INTE-
GRANOVA and WebRatio generate fully functional sys-
tem, which is the target of our study. The developers’ effort
is focused on conceptual models, and the whole system is
automatically generated.

3.3. Traditional Method
In a traditional method, the developer focuses on writing
the code that implements the system. The implementation
can be done in any programming language. In this method,
the code is the only representation of the system. There are
two main approaches:
 Code-centric: developers do not use any conceptual

model; they just write the code directly from the list of
requirements.

 Model-based: developers use at least one model (in
any notation) to represent the parts of the system that
are more confusing. The transformation from these
models to code is done manually.

4. REPLICATIONS THAT COMPOSE THE FAMILY
All replications follow a within-subjects design where sub-
jects have to develop a system from scratch, bot using a

PANACH, PASTOR, JURISTO: A FAMILY OF EXPERIMENTS TO COMPARE TWO MODEL-DRIVEN DEVELOPMENT TOOLS VS A TRADITIONAL DEVEL-
OPMENT DEVELOPMENT METHOD 5

traditional method and MDD (see summary in Appendix
C). Differences among replications are the MDD tool (IN-
TEGRANOVA and WebRatio) and the order of the training
problems used to learn a traditional method and MDD.
The aggregation of the replications for the analysis is done
through two contextual variables: one to represent the rep-
lication and other to represent the MDD tool used. Next,
we describe the details of the experiment design.

4.1. Common Characteristics among Replications
The hypotheses, factor, response variables, metrics, profile
of subjects, design, experimental problems, experiment
procedure and experimenters are the same for all replica-
tions. All these characteristics can be seen in [7], next we
summarize them to provide a self-contained article.

The goal is to compare MDD versus a traditional soft-
ware development method independently of the MDD
tools, for the purpose of identifying differences and simi-
larities between methods. We focus on system developed
attributes as well as developers’ workload. The experiment
is conducted from the perspective of researchers and prac-
titioners interested in MDD.

From all the benefits that the literature attributes to
MDD (summary in [7]), we focus our family on the most
referenced ones: Functional Suitability, Effort and Satisfac-
tion. Next, we describe the experimental design according
to Juristo and Moreno [32]. The research questions and hy-
potheses are:
 RQ1: Is Functional Suitability affected by MDD? Ac-

cording to ISO 25000 [33], Functional Suitability is “
The degree to which the software product provides
functions that meet stated and implied needs when
the software is used under specified conditions”. The
null hypothesis tested to address this research
question is: H01: Functional Suitability of a system
built using MDD is similar to Functional Suitability
using a traditional method.

 RQ2: Is developer’s Effort affected by MDD? Accord-
ing to IEEE [12], Effort is defined as “the number of
labour units required to complete a scheduled activity
or work breakdown structure component, usually ex-
pressed as person-hours”. The null hypothesis tested
to address this research question is: H02: Developer’s
Effort to build a system using MDD is similar to Effort
required using a traditional method.

 RQ3: Is developer’s Satisfaction developing a system
affected by MDD? Satisfaction is defined as the con-
tentedness with and positive attitudes towards prod-
uct use [12]. The null hypotheses to address this re-
search question is: H03: Developer’s Satisfaction using
MDD to build a system is similar to the level of Satis-
faction using a traditional method.

The family of experiments analyses the factor develop-
ment method, where the control is a traditional method
and MDD is the treatment. As response variables we have
Functional Suitability to answer RQ1, Effort for RQ2, and
Satisfaction for RQ3. Functional Suitability is measured
through the metric Effectiveness. According to ISO
25000 [33], Effectiveness is defined as “The degree to which
specified users can achieve specified goals with accuracy

and completeness in a specified context of use”. We meas-
ure Effectiveness as the percentage of test cases success-
fully passed in the system developed with the treatment
from scratch. Each test case is divided into several items
(steps in the execution) in such a way that the addition of
all the items that compose a test case is 1. The test case re-
turns a value between 0 (no item has passed the test) and 1
(all items have passed the test), including decimals. The ag-
gregation of all the test cases used in a system is calculated
through the average. For example, if we have a test case
with 10 items and only 8 items are passed successfully, the
effectiveness of this test case is 0.8. If we have three test
cases, with an effectiveness of 0.8, 0.6 and 0.5, the aggrega-
tion to calculate the effectiveness of the whole system is
0,63 ((0.8+0.6+0.5)/3). Effectiveness focuses on the func-
tionality; usability of user interfaces is out of target.

Previous studies claim that MDD yields better effective-
ness in complex problems compared to simple ones. So, we
have divided Effectiveness into two metrics: Effectiveness
in Simple Problems and Effectiveness in Complex Prob-
lems. In order to differentiate between simple and complex
problems, we have divided each problem into three parts.
The effectiveness obtained in the first part corresponds to
simple problem, while the whole problem corresponds to
complex problem. Subjects can only continue with the next
part if the first one is completed. So, the same problem is
used to measure both types of effectiveness.

Regarding Effort, this is measured as the time needed to
complete the first part of the experimental problem (the
part corresponding to simple problem). The experimental
problems are too long to be completed in 4 hours (the max-
imum time to complete the experiment). So, we ensure that
most subjects managed to complete this first part. If we an-
alysed the time to develop the whole problem (complex
problem), all subjects would have the same time, since all
of them would need 4 hours, and we cannot analyse differ-
ences among treatments. Satisfaction is measured through
three metrics: Perceived Ease Of Use (PEOU), Perceived
Usefulness (PU), and Intention To Use (ITU), as proposed
by Davis [34] . These three metrics were measured using a
5-point Likert scale questionnaire named MAM. Based on
Moody [35], in the MAM questionnaire, we defined eight
questions to measure Perceived Usefulness, six questions
to measure Perceived Ease of Use and two questions to
measure Intention to Use. We defined a questionnaire for
each treatment (MDD and traditional method).

Even though the meaning of each question was the
same for both levels, each questionnaire includes terms
specific to the level that we aim to measure. For example,
the statement "I will definitely use MDD to develop web
applications" is used to measure Satisfaction with MDD,
whereas the statement "I will definitely use a traditional
method to develop web applications" is used to measure
Satisfaction with the traditional method.

Note that when we refer to Functional Suitability, Effort
and Satisfaction in this article, we refer to the meaning that
the metrics previously described provide. All these re-
sponse variables have more subtle aspects such as under-
standability, originality, elegance, etc. that are out of scope
of our experiment.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, MMMMMMMM 2021

Figure 1. Previous experience with the applied treatments

Figure 2. Job experience at software companies per replication

The subjects are Master´s degree students from the Uni-

versitat Politècnica de València (UPV, Spain) who are tak-
ing a course in software engineering, specifically in MDD.
Even though they are students, most of them have real ex-
perience in software development companies, as Figure 2
shows. All of them had good knowledge of a traditional
development, but only a few had heard something about
MDD before this course (as Figure 1 shows). Raw data can
be seen in Appendix D. The subjects participated in pairs

in the experiment, so in our experiment a sample unit is a
pair of subjects. The experimental design is a paired design
blocked by experimental problems [32]. The sample units
are divided into two groups (G1 and G2). Both groups
started with the traditional development and moved on to
MDD. The only differences between the groups were the
experimental problems. G1 started with Problem 1 and
went on to Problem 2 in MDD, while G2 did the opposite.
This way we avoid a learning effect of the problem be-
tween treatments and we mitigate the threat of results that
depend on a specific problem (both treatments work with
both problems). We used a within-subjects design since it
provides the largest possible sample size. All sample units
participated in the experiment at the same time, so we
avoided variability among different possible contexts.

The experimental problems are two necessarily simple
problems that describe a system in such a way that the sub-
jects had to develop it from scratch. One problem is the In-
voice Problem, which aims to manage an electrical appli-
ance company and the other problem is the Photographers
Problem, which aims to manage a company that works
with freelance photographers. The first part of the Invoice
Problem (simple problem) has 100 function points, while
the whole problem (complex problem) has 272 function
points. For the Photographers Problem, we have 94 func-
tion points for the simple problem version and 199 for the
complex problem version. These functions points have

0% 20% 40% 60% 80% 100%

Rep.1 2013

Rep.2 2014

Rep.3 2015

Rep.4 2016

Rep.5 2017

Rep.6 2018

Rep.7 2019

None 1 month
1‐3 months 3‐12 months
1‐3 years More than 3 years

PANACH, PASTOR, JURISTO: A FAMILY OF EXPERIMENTS TO COMPARE TWO MODEL-DRIVEN DEVELOPMENT TOOLS VS A TRADITIONAL DEVEL-
OPMENT DEVELOPMENT METHOD 7

been calculated from an experimenters’ solution to give an
idea of how complex problems are. Other subjects’ solu-
tions may differ slightly but not in problem magnitude.

The experimental procedure is made up of the follow-
ing steps:

1. Subjects fill in a demographic questionnaire to re-
port their previous knowledge of both treatments.

2. Sample units train with the traditional develop-
ment (16 hours).

3. Sample units apply the treatment of the traditional
method (4 hours).

4. Sample units train with the MDD method (16
hours).

5. Sample units apply the treatment of MDD (4
hours).

6. Sample units fill in open questions with 3 pros and
cons of MDD to try to justify the results of the ex-
periment.

The details of the problems, the test case items , and the
steps that define the experimental procedure can be seen
in [8]. The source materials used in the experiment can be
seen in [36] for future replications.

4.2. Different Characteristics among Replications
The few differences that we have incorporated into the rep-
lications have been to generalize the results as much as
possible. Table 1 summarizes these changes. For each rep-
lication, the table shows the academic year when the repli-
cation was conducted, the MDD tool used, the sample size
(subject pairs in our experiment) and the training problems
used in each method (V= Video club and T=Transport).

Table 1. Summary of changes among replications

Replication MDD tool Sample
Size

Training
Problems

Rep.1 2013 INTEGRANOVA 10 V/T

Rep.2 2014 INTEGRANOVA 6 T/V

Rep.3 2015 INTEGRANOVA 6 V/T

Rep.4 2016 INTEGRANOVA 8 T/V

Rep.5 2017 WebRatio 6 V/T

Rep.6 2018 WebRatio 8 T/V

Rep.7 2019 WebRatio 12 V/T

The MDD treatment has been operationalized through

two MDD tools: INTEGRANOVA and WebRatio. The
learning process for each one was different due to the par-
ticularities of each tool, but the experimental problems and
the time spent were the same. This change aims to extract
conclusions independently of the tool. The sample size also
fluctuated depending on the number of students taking the
Master’s degree. This size does not have much statistical
power if we analyse the results per each replication inde-
pendently, but the power is sufficient if we aggregate the
replications. We used two training problems, one for each
treatment. For the replications we swapped the training
problem used in each method. In replications 1, 3, 5 and 7
we used the Video club problem (a system to manage film
renting) to train the traditional method and the Transport
problem (a system to manage routes of public buses) for
MDD. For replications 2, 4, 6 and 8 we interchanged the

training problems. This change was done to ensure that the
learning process did not depend on the training problem
used. These training problems were not analysed as part of
the experiment, they were only used to ensure that subjects
had enough knowledge of both treatments.

4.3. Aggregation of the family of experiments
Our aggregation of replications is based on the work
of [37], which proposes using a multilevel hierarchy. The
aggregation is done through contextual variables; varia-
bles that reflect the differences between the experiments
and which need to be further investigated. Figure 3 shows
the multilevel hierarchy of the family of experiments. In
the first level, we have the subjects of each experiment; in
the second level the repeated measurement of each repli-
cation (we have a within-subjects design); in the third level
we have the replication; and finally, in the fourth level we
have the tool where the MDD method is operationalized in
each replication. The study of differences in Level 1
(named participant variables in [37]) is not of interest in
our study since we are not interested in analysing differ-
ences among subjects of each replication individually, but
on the aggregation of replications.

So, we include subjects as a random variable in our sta-
tistical model, but it is not the target of our study. The var-
iable in Level 2 is called Design variable in [37], i.e., a var-
iable that is the target of the design, and it is defined in the
design of each replication. This is the target of each repli-
cation, and it is termed Method. This variable has two
treatments: a traditional development and MDD. The var-
iables of Level 3 and Level 4 are called Contextual variables
in [37] , i.e., variables which are defined for the aggrega-
tion of replications. In Level 3 we have the variable Repli-
cation, with one level per replication, and in Level 4 we
have the variable MDD tool with two levels: INTE-
GRANOVA and WebRatio. Note that MDD tools are only
used for the MDD treatment, so with the aggregation of
replications we are interested in analysing possible differ-
ences between tools only for the MDD method. So we will
analyse in detail Method*MDD tool interaction to study
whether one Method yields better values depending on the
MDD tool. Even though these contextual variables are not
part of our experimental design, they are also a target of
study since they allow us to identify differences between
replications. In order to ensure that samples of each repli-
cation are homogeneous for the aggregation, we con-
ducted a Chi-Square test. Appendix E shows the p-values
of analysing the independence of the variable Replication
with each response variable. Values higher to 0.05 means
that samples are homogeneous. All p-values are higher to
0.05 except for Effort. This heterogeneity for Effort could
be due to the contextual variable MDD tool, that may affect
in the time of each replication. If we apply the Chi-Square
test for the replications that worked with INTE-
GRANOVA, and we repeat the same test for replications
that worked with WebRatio, we see that subjects are homo-
geneous in both groups of MDD tools. So, we can state that
replications are homogeneous and there are not differences
among replications that may have an impact on the results.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, MMMMMMMM 2021

Figure 3. Multilevel hierarchy of the family of experiments

4.4. Data Analysis
We report descriptive data using box-and-whisker plots to
illustrate the differences regarding the treatments of the
design variable and the levels of the contextual variables.
Descriptive data helps graphically identify possible differ-
ences between treatments or among levels.

As a statistical test to look for significant differences be-
tween treatments and among replications we use a mixed
model, as proposed in [37]. The assumption for applying
the mixed model is normality of residuals. The normality
of residuals can be tested with the Saphiro-Wilk test ap-
plied to the residuals automatically calculated during the
application of the mixed model test [38]. When the p-value
is less than 0.05, we can reject the null hypothesis, which
means that there are significant differences for the variable
(design variable or contextual variable). In our analysis, we
have defined Subjects (Level 1 in Figure 3) as a random
variable, while Method (Level 2), Replication (Level 3), and
MDD tool (Level 4) are defined as fixed variables. We used
scaled identity as a covariance type for repeated measure-
ments since it was the one with the lowest AIC (Akaike’s
Information Criterion) as proposed in [37]. We have also
included the interactions of the design variable Method
with the contextual variables. The analysis of these inter-
actions is useful to study whether one treatment yields bet-
ter values depending on the level of the contextual varia-
bles. Moreover, we have also analysed the blocking varia-
ble Problem and its interaction with Method to study
whether there are also differences in treatments depending
on the problem.

We have used Cohen’s d [39] to calculate effect size in
those variables with significant differences (variables
whose p-value with the mixed model is less than 0.05). Co-
hen’s d is defined as the difference between two means di-
vided by a standard deviation of the data. According to
Cohen [39], the meaning of the effect size is as follows:
more than 0.8 is a large effect; from 0.79 to 0.5 is a moderate

1 Number in the outlier means the sample id that differs significantly
from other observations

effect; from 0.49 to 0.2 is a small effect.
Using the mixed model, we cannot calculate power sta-

tistically (independently of the statistical tool used in the
analysis). However, we used G*Power [40], finding that,
for a repeated measurement statistical test, we need a sam-
ple size of 16 units for an effect size of 0.8 (large effect) to
get a power of 80%. The sample size of each replication is
less than 16 units, which implies a low power. So, we opt
for analysing the aggregation of all replications, not each
replication independently.

5. ANALYSIS OF RESULTS
This section analyses the results according to the data anal-
ysis previously described for each response variable (de-
scriptive data, mixed model, and Cohen’s d). Raw data can
be seen in [41]. Next, we study the descriptive data of each
variable of our hierarchical multilevel tree (Figure 3), from
the lowest level to the highest one.

5.1. Functional Suitability
Functional Suitability is measured through two metrics. Ef-
fectiveness in Simple Problems and Effectiveness in Com-
plex Problems. Note that Effectiveness in Simple Problems
is the effectiveness of one third of the problems, while Ef-
fectiveness in Complex Problems is the effectiveness of the
whole problem. Since the experiment had 4 hours to be fin-
ished, just a few subjects managed to finish the whole
problem; however, most of them finished the first third.
Figure 4 shows the box plot for the metric Effectiveness in
Simple Problems considering the design variable Method.
Note that the line that connects both treatments in the plot
shows the averages of each treatment. We appreciate that
even though the median and the third quartile are similar
for both treatments, the first quartile is better for MDD1.
So, for simple problems, MDD seems to yield better values
for effectiveness.

Figure 5 shows the box plot of Effectiveness for Simple
Problems for the contextual variable Replication. We see a

PANACH, PASTOR, JURISTO: A FAMILY OF EXPERIMENTS TO COMPARE TWO MODEL-DRIVEN DEVELOPMENT TOOLS VS A TRADITIONAL DEVEL-
OPMENT DEVELOPMENT METHOD 9

high fluctuation of medians depending on the replication.
This high variability could be because in each replication
the sample size is small (around 6 sample units). This jus-
tifies our decision to avoid the analysis of each replication
individually, and focus on the aggregation to extract con-
clusions.

Figure 4. Effectiveness of Method considering simple problems

Figure 5. Effectiveness of Replication considering simple prob-

lems

Figure 6 shows the box plot of Effectiveness for Simple
Problems for the MDD tool. First, median and third quar-
tile are very similar, so we can state that there are no differ-
ences in effectiveness for simple problems for both MDD
tools.

Figure 6. Effectiveness of MDD tool considering simple problems

Table 2 shows the p-values and the effect sizes (when

2 P-values are rounded to 3 decimals, that is why we have p-values=0

the p-value is less than 0.05) of the variables. The results
show that MDD is significantly better, and we also identify
significant differences for the blocking variable (Problem).
Note that the effect size for Method is low, and for Problem
we have a large effect. Analyzing descriptive data, we can
state that the Invoice Problem yields better values for ef-
fectiveness. Even though both problems have similar diffi-
culty and size, the first problem has some constraints in the
requirements that could complicate the design. These con-
straints consist of conditions that must be satisfied to as-
sign photographers to reports and the period of time re-
quired to present two requests of the same photographer.
We do not identify any differences in level 3 and 4 contex-
tual variables.

Table 2. p-values2 and effect size of the variables considering ef-
fectiveness in simple problems

Design
variable

Method p-value 0.000

Effect size 0.104

Contextual
variable

Replication p-value 0.080

Method*Replication p-value 0.617

MDD tool p-value 0.358

Method*MDD tool p-value 0.976

Blocking
variable

Problem p-value 0.000

Effect size 0.829

Method*Problem p-value 0.108

Figure 7 shows the box plot for Effectiveness in Com-

plex Problems. We find that first quartile, median, and
third quartile are better for MDD. The differences between
medians are more pronounced than in the case of simple
problems (Figure 4).

Figure 7. Effectiveness of Method considering complex problems

Figure 8 shows the box plot for Replication analyzing

complex problems. Except for the first replication, all the
medians follow the same pattern around 25%. If we com-
pare these results with the results of simple problems, we
notice that effectiveness decreases considerably (medians
in simple problems were around 75%). This is because the
subjects did not have enough time to complete complex
problems in the 4 hours the experiment lasted.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, MMMMMMMM 2021

Figure 8. Effectiveness of Replication considering complex prob-

lems

Figure 9 shows the box plot for the MDD tool for com-
plex problems. Median and third quartile are better for IN-
TEGRANOVA, but these differences seem to be low.

Figure 9. Effectiveness of MDD tool for complex problems

Table 3 shows p-values and effect sizes for effectiveness
when the problems are complex. We appreciate significant
differences for Method and MDD tool. The effect for
Method is large, so MDD shows clearly better values for
effectiveness in complex problem compared to a tradi-
tional method. The effect for the MDD tool is very low.

Table 3. p-values and effect size of the variables considering effec-

tiveness in complex problems

Design
variable

Method p-value 0.000

Effect size 0.984

Contex-
tual
variable

Replication p-value 0.109

Method*Replica-
tion

p-value 0.097

MDD tool p-value 0.004

Effect size 0.321

Method*MDD tool p-value 0.027

Blocking
variable

Problem p-value 0.307

Method*Problem p-value 0.714

The results also show a significant difference for the in-
teraction Method*MDD tool. Figure 10 shows the profile
plot of this interaction. This plot helps us identify the tool
that yields the best effectiveness for a specific method.
When lines in the profile plot are not in parallel, we can
state that there is a combination of Method-MDD tool that

differs from the other combination. We note that INTE-
GRANOVA yields better effectiveness only in the MDD
method, while in the traditional method both tools yield a
similar effectiveness. This result makes sense, since MDD
tools only affect the MDD treatment (not the traditional
one), so differences appear only on the MDD treatment.

Figure 10. Profile plot of the Method*MDD tool for effectiveness

in complex problems

So, to conclude, we can reject H01 (Functional Suitability
of a system built using MDD is similar to Functional Suita-
bility using a traditional method). MDD yields better Func-
tional Suitability independently of the problem complexity
and independently of the MDD tool.

5.2. Effort
Figure 11 shows the box plot for Effort for the variable
Method. Note that Effort is measured as the time needed
to complete the first exercise in the problem, since it is the
only one that most subjects managed to finish within the
time spent in the experiment. We see that MDD yields a
better time than the traditional method. Both first quartile
and median obtain better results with MDD.

Figure 11. Time of Method

Figure 12 shows the box plot with the time in each rep-
lication. There is a high fluctuation among replications,
perhaps due to the low sample size of each replication, in-
dividually.

Figure 13 shows the box plot with the time for each
MDD tool. Medians yield more time in the use of WebRatio
compared to the use of INTEGRANOVA, but the averages
are the same for both tools.

PANACH, PASTOR, JURISTO: A FAMILY OF EXPERIMENTS TO COMPARE TWO MODEL-DRIVEN DEVELOPMENT TOOLS VS A TRADITIONAL DEVEL-
OPMENT DEVELOPMENT METHOD 11

Figure 12. Time in each replication

Figure 13. Time of MDD tool

Table 4 shows the p-values of the variables considering
time. Method yields significant differences with a moder-
ate effect. MDD requires less time than a traditional
method. We also identify significant differences in two in-
teractions: Method*MDD tool and Method*Problem.

Table 4. p-values and effect size of the variables considering time

Design
variable

Method p-value 0.000

Effect size 0.532

Contextual
variable

Replication p-value 0.244

Method*Replication p-value 0.346

MDD tool p-value 0.831

Method*MDD tool p-value 0.034

Blocking
variable

Problem p-value 0.059

Method*Problem p-value 0.005

Figure 14 shows the profile plot for Method*MDD tool.

This plot aims to show which tool yields the best Effort for
a specific method. We see in the plot that there is a greater
difference in time with the MDD tool compared to the tra-
ditional method. This is because the traditional method is
the same for both tools, the differences may only arise in
the MDD treatment. Figure 15 shows the profile plot of
Method*Problem. The Invoice Problem is more sensitive to
the treatment; MDD reduces its time almost to half. This
could be because the Photographers Problem included
several constraints which may make comprehension of the
problem slightly more difficult.

Figure 14. Profile plot of Method*MDD tool for Time

Figure 15. Profile plot of Method*Problem for Time

So, to conclude, we can reject H02 (Developer’s Effort to
build a system using MDD is similar to Effort required us-
ing a traditional method.) Effort for simple problem with
MDD is less than when working with a traditional method,
and INTEGRANOVA needs less Effort than WebRatio.

5.3. Satisfaction
Satisfaction is measured through three metrics: Perceived
Ease of Use, Perceived Usefulness and Intention to Use. For
the sake of brevity, we focus the descriptive analysis on the
variable Method, which is the factor in our experimental
design. The analyses of Problems, Replications, and MDD
tools do not provide relevant results for our study.

Figure 16, Figure 17, and Figure 18 show the box plots
for Perceived Ease of Use, Perceived Usefulness and Inten-
tion to Use regarding Method respectively. Only Intention
to Use yields differences between both treatments, where
the traditional method yields better first quartile, median,
and third quartile. Table 5 shows the p-values for the var-
iables considering Perceived Ease of Use. The results only
yield significant differences for Replication, with a small
effect. Analyzing descriptive data of replications, we see
that replications with WebRatio yield slightly better results
for Perceived Ease of Use than replications with INTER-
GRANOVA. However, these differences are so low that the
variable MDD tool does not show significant differences.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, MMMMMMMM 2021

Figure 16. Perceived Ease of Use for Method

Figure 17. Perceived Usefulness for Method

Figure 18. Intention to Use for Method

Table 5. p-values and effect size of the variables considering Per-

ceived Ease of Use

Design
variable

Method p-value 0.346

Contex-
tual
variable

Replication p-value 0.044

Effect size 0.443

Method*Replica-
tion

p-value 0.955

MDD tool p-value 0.125

Method*MDD tool p-value 0.317

Blocking
variable

Problem p-value 0.262

Method*Problem p-value 0.322

Table 6 shows p-values of the variables for Perceived

Usefulness. The only significant difference appears in the
interaction Method*Problem. Figure 19 shows the profile
plot of this interaction. We appreciate that differences in
problems are more important for the MDD treatment,
where the Invoice Problem yields the best value. Again, the
fact that this problem has no constraints may lead to per-
ceiving MDD as easier (and therefore more useful) than in
the case of developing the Photographers Problem.

Table 6. p-values and effect size of the variables considering Per-

ceived Usefulness

Design
variable

Method p-value 0.541

Contextual
variable

Replication p-value 0.720

Method*Replication p-value 0.993

MDD tool p-value 0.142

Method*MDD tool p-value 0.129

Blocking
variable

Problem p-value 0.637

Method*Problem p-value 0.043

Figure 19. Profile plot of Method*Problem for Perceived Useful-

ness

InTable 7 we identify a significant difference for Method
with a moderate effect. The traditional method yields a bet-
ter Intention to Use compared to MDD. This leads us to
think that even though MDD reports better values for ef-
fectiveness and time, subjects still prefer the traditional
method. Figure 20 shows the profile plot for the interaction
Method*MDD tool. The Intention to Use MDD is similar
for both INTEGRANOVA and WebRatio. The differences
appear in the traditional method, where the use of a spe-
cific MDD tool does not apply.

Table 7. p-values and effect size of the variables considering Inten-

tion to Use

Design
variable

Method p-value 0.001

Effect
size

0.604

Contextual
variable

Replication p-value 0.696

Method*Replication p-value 0.223

MDD tool p-value 0.097

Method*MDD tool p-value 0.007

Blocking
variable

Problem p-value 0.659

Method*Problem p-value 0.076

PANACH, PASTOR, JURISTO: A FAMILY OF EXPERIMENTS TO COMPARE TWO MODEL-DRIVEN DEVELOPMENT TOOLS VS A TRADITIONAL DEVEL-
OPMENT DEVELOPMENT METHOD 13

Figure 20. Profile plot of Method*MDD tool for Intention to Use

So, to conclude, we can reject H03 (Developer’s Satisfac-
tion using MDD to build a system is similar to the level of
Satisfaction using a traditional method) only for the metric
Intention to Use. The subjects intend to use a traditional
method rather than MDD.

5.4. Threats to Validity
We have classified the threats that our aggregation of rep-
lications may be open to according to the classification pro-
vided by Wohlin [42]. We organized the threats of each
type based on three groups: avoided, incurred and miti-
gated.

Conclusion validity. This threat is concerned with issues
that affect the ability to draw the correct conclusions about
relationships between the treatment and the outcome.
Threats of this type are: (1) Low statistical power: this ap-
pears when the sample size is low and we are unable to
reject an erroneous hypothesis. We avoided this threat by
analysing the family of experiments as a whole through
moderator variables. According to G*Power, we need a
minimum of 16 sample units, and after the aggregation we
have 56 units, which exceeds this limit. (2) Fishing: this
appears when experimenters may influence the results by
looking for a specific outcome. Our family experiences this
threat since the experimenters themselves conducted the
replications and the aggregation. (3) Reliability of meas-
urements: this appears when measurements can show the
wrong values. We have mitigated this threat, since Func-
tional Suitability is measured by the experimenters, which
reduces the errors, and Satisfaction is measured automati-
cally via a Likert questionnaire. This threat may appear for
Effort, since each sample unit must write down when
she/he finished the first part of the problem to measure
time. It is possible that a few sample units made mistakes
when reporting time. (4) Reliability of treatment imple-
mentation: this appears when the implementation is not
similar between treatments. We avoided this threat, since
both treatments in all replications were based on the same
instruments and procedure. (5) Random heterogeneity of
subjects: this appears when sample units are highly heter-
ogeneous. We avoided this threat, since, as the subjects’
profiles show (Figure 1 and Figure 2) the sample units have
a similar profile. (6) Previous subjects’ experience, this

threat appears when subjects do not have the same level of
experience with both treatments. In our case, subjects are
experts at a traditional method, but not experts at MDD.
We mitigated this threat through lessons and training with
MDD before the experiment. (7) Family wise error rate,
which is the probability of coming to at least one false con-
clusion in hypothesis tests. This threat is avoided in our ex-
periment since we are not conducting multiple tests (we do
not have a general hypothesis that depends on more spe-
cific hypotheses). Thanks to the aggregation of the replica-
tions, we are analyzing just one sample test per metric (not
a family of tests), so we have a wise error rate equals to the
α of the null hypotheses (0.05).

Internal validity. This threat is concerned with influ-
ences that may affect the dependent variable with respect
to a causality which the researchers are unaware of.
Threats of this type that may appear are: (1) History: this
appears when treatments are applied at different times. We
mitigated this threat, since both treatments were applied
under the same circumstances (the same instruments and
the same experimenters). Even for replications spread
across 7 years, no modifications were applied (same struc-
ture, same instructors, and same course content) (2) Matu-
ration: this appears when subjects react differently over
time. Our family of experiments experiences this threat
since the MDD treatment is always applied after the tradi-
tional method. This choice is because, from a pedagogical
point of view, we were only able to work with MDD after
training with it. Even though this threat is impossible to
avoid in an experiment embedded in a course where sub-
jects have to learn (they must mature), we mitigated it us-
ing different problems in both treatments. (3) Instrumenta-
tion: this appears when errors in the instruments may af-
fect the results. We mitigated this threat since the instru-
ments were used in 7 replications, and the experimenters
did not notice any error. Even though our satisfaction ques-
tionnaire is not validated, it is based on the TAM of Da-
vis [34], which has been validated previously. (4) Mortal-
ity: this appears when subjects abandon the experiment.
We avoided this threat since in all 7 replications none of the
subjects abandoned the experiment. (5) Selection: this ap-
pears when subjects have not been chosen at random but
for convenience. We have mitigated the dependency be-
tween subjects and results aggregating the several replica-
tions. (6) Ceiling effect: this occur when a high proportion
of subjects in a study have maximum scores on the ob-
served variable. We solved this threat with problems too
complex to be solved in the time spent in the experiment.
So, subjects reached the maximum level of effectiveness
rarely. In order to solve this threat for Effort, we measured
the time to finish simple problems instead of measuring
the whole time (that is limited). (7) Suitability of subjects
for experimental tasks: this appears when subjects play a
role in the experiment in which they are not experts. Our
experiment incurs this threat since we are asking engineers
to do the work of a consultant.

Construct validity. This threat is concerned with gener-
alizing the results of the experiment to the concept, or the-
ory, behind the experiment. Threats of this type that our
family may be open to are: (1) Inadequate pre-operational

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, MMMMMMMM 2021

explanation of constructs: this appears when the theory be-
ing analysed is not clear. We suffer this threat since metrics
for Functional Suitability, Effort and Satisfaction reduce the
analysis to passed test, time and Perceived Ease of Use-Per-
ceived Usefulness-Intention to Use respectively. This may
simplify the real world omitting other aspects such as usa-
bility or customization. (2) Mono-operation bias: this ap-
pears when the experiment deals with only a single factor,
which may not give a full picture of the theory. We have
mitigated this issue thanks to the contextual variables Rep-
lication and MDD Tool. (3) Confounding constructs and
levels of constructs: this appears when there are different
levels of expertise among subjects. We incurred this threat
since, as Figure 1 shows, we have different levels of
knowledge concerning MDD and the traditional method.
Note that even though there are different levels, most sub-
jects have a high knowledge of a traditional method and a
low knowledge of MDD. (4) Experimenter expectancies:
this appears when experimenters can bias the results based
on what they expect. We have mitigated this threat by re-
cruiting subjects with no special interest in the results of
the experiment. (5) Problem homogeneity: this appears
when experimental problems are too homogeneous to gen-
eralize the results to other problems. Our experiment suf-
fers this threat since even though both problems refer to
different contexts, both of them are from the same domain
(information management domain).

External validity. This threat is concerned with condi-
tions that limit our ability to generalize the results of our
experiments to industrial practice. Threats of this type are:
(1) Interaction of selection and treatment: this appears
when subjects are not representative of the population we
want to generalize. We mitigated this threat by recruiting
subjects in the field of software development. Note that
this threat is not completely avoided since the field of soft-
ware development is highly diverse. Even though we have
subjects with and without experience in the real world,
only 14 subjects from 112 had three or more years of job
experience. So we cannot state that our results are general-
izable for high experience analysts. (2) Interaction of set-
ting and treatment: this appears when the experimental
material, or setting, is not representative of the target of
study. We suffer this threat in two ways: (i) problems are
necessary simple to be as much finished as possible to be
runnable in 4 hours, so they are not representative of real
complex problems. (ii) Only two MDD tools are evaluated,
while the concept of MDD is wide. We have just focused
our study on MDD tools based on a conceptual model pro-
gramming perspective, where all analysts’ effort is to build
models (the full code is generated automatically with no
human intervention). So generalization only applies to
problems to be solved in 4 hours and for conceptual model
programming MDD tools. (3) Interaction of history and
treatment: this appears when the time when the experi-
ment is conducted may affect the results. We have miti-
gated this threat using the same procedure, materials and
experimenters in all replications. (4) Restricted generaliza-
bility: this appears when results can only be generalizable
to a specific context. Our experiment suffers this threat
since INTEGRANOVA and WebRatio define two methods

that may be different from those used by other MDD tools.
So our results cannot be generalized to MDD tools with
methods very different from those used by INTE-
GRANOVA and WebRatio. Moreover, the context of Func-
tional Suitability, Effort and Satisfaction is wide, and this
experiment focus on passed test, time and MAM question-
naire respectively. So results can only be generalizable in
those terms.

6. DISCUSSION
This section discusses the results calculated previously for
each variable, and the pros and cons extracted from the an-
swers to the open questions concerning MDD written by
the subjects at the end of the experiment. Even though rep-
lications are homogeneous in terms of the experimental de-
sign, we appreciate slight differences among replication
samples. For example in Figure 5, Figure 8, and Figure 12
we see some differences in the medians. These differences
could be due to the low power of each replication alone,
which involves more variability in the replication. This is
why we focus our analysis on the aggregation of all the
replications, to have enough power to extract significant
conclusions. The results for Functional Suitability are
measured through two metrics: Effectiveness in Simple
Problems and Effectiveness in Complex Problems. Effec-
tiveness in Simple Problems shows that MDD is signifi-
cantly better than a traditional method, although these dif-
ferences are not much greater for complex problems. The
values reported in both MDD tools are very similar, but we
identified some differences between problems. The Invoice
Problem yields better effectiveness than the Photographers
Problem. The reason for this result could the lack of con-
straints in the Invoice Problem. This result reinforces the
results of previous studies [9] that state that differences be-
tween a traditional method and MDD appears both in
complex and simple problems, even though these differ-
ences are more evident in complex ones. Although there
are differences in the way in which analysts work with IN-
TEGRANOVA or WebRatio, these technical issues do not
affect the results for effectiveness.

The results for Effectiveness in Complex Problems rein-
force the existence of differences between a traditional
method and MDD when the analyzed problems are com-
plex, as in [9]. In this case, we also experienced differences
between the MDD tools; WebRatio yields better values for
effectiveness than INTEGRANOVA. To justify this differ-
ence, we analyzed the list of pros and cons concerning
MDD which we asked the subjects to write about after the
application of the MDD treatment. Most of the subjects
who worked with INTEGRANOVA claim that the deploy-
ment of the model into a functional system requires too
much time (around 10 minutes). Once the code is gener-
ated in C#, the database has to be generated through
scripts, and the server and the client have to be compiled
from the generated C# code. However, the deployment
with WebRatio was much faster (around 1 minute). The
system is automatically deployed on the cloud without
scripts or compilations. This difference may justify that
subjects using INTEGRANOVA had fewer opportunities to
deploy their systems, and therefore carried out fewer tests,

PANACH, PASTOR, JURISTO: A FAMILY OF EXPERIMENTS TO COMPARE TWO MODEL-DRIVEN DEVELOPMENT TOOLS VS A TRADITIONAL DEVEL-
OPMENT DEVELOPMENT METHOD 15

so Functional Suitability could be affected by this issue.
Not every change in the model could be quickly tested in
a running system.

The results for Effort show that working with a tradi-
tional method requires more Effort for simple problems
than working with MDD. If we combine this result with
the Functional Suitability result, we can state that MDD
yields more Functional Suitability with less Effort for sim-
ple problems than a traditional method. We see that INTE-
GRANOVA requires less Effort for simple problems than
WebRatio, even though the deployment of the system in
INTEGRANOVA requires more time. Looking at the open
questions regarding the pros and cons of MDD, we see that
many subjects who worked with INTERGRANOVA stated,
as an advantage, that GUIs are automatically generated
with no need for modelling. However, in the case of We-
bRatio, there is no default GUI model. The subjects had to
model the GUI before running the system. So, this differ-
ence when dealing with GUI modelling in both MDD tools
may justify the difference in Effort that appears for each
tool. The problems also show differences; the Photogra-
phers Problem involves more Effort for simple problems
than the Invoice Problem. Again, the existence of several
constraints in the Photographers Problem may justify this
difference.

The results for Satisfaction are divided into Perceived
Ease of Use, Perceived Usefulness and Intention to Use.
Only Intention to Use yields significant differences for the
method, showing that subjects have the Intention to Use a
traditional method rather than MDD. This result contra-
dicts the results for Functional Suitability and Effort. Alt-
hough MDD yields better Functional Suitability and Effort,
the subjects still prefer the traditional development. In or-
der to look for answers to justify this fact, we analyzed the
open questions regarding the cons of MDD. The most re-
peated issue is that MDD does not seem as flexible as a tra-
ditional method. Other issues reported by the subjects are
the following: MDD tools do not support non-SQL data-
bases and microservices; the community that uses MDD
tools is not large; there are few options to personalize GUIs,
and there are no MDD tools to work collaboratively. Note
that all problems are related with the tool that implements
the MDD paradigm, not with the paradigm itself. This
leads us to think that, maybe, more powerful and flexible
MDD tools could change the subjects’ opinion regarding
their intention to use MDD in the future. Note that subjects
are much more familiar with a traditional development.
So, they may present inertia to change. Demographic data
of Figure 1 shows that only 11% of subjects had worked
with MDD previously, while 56% of subjects have been
working with a traditional method more than 3 months in
a real company (Figure 2). Maybe, the lack of job opportu-
nities in the area of MDD [43] in the real world could affect
the poor intention to use MDD.

Even though the results for Satisfaction in MDD are not
positive, via the open questions the subjects mentioned
some benefits after their experience. The most relevant be-
ing: it is easy to use for non-programmers; development is
quick; it is user friendly; it is very visual; the learning curve
is short, and, the homogeneity of the development. These

benefits lead us to think that the subjects also see MDD as
a positive paradigm which offers possibilities that a tradi-
tional method does not. The subjects do not express any
important differences in Satisfaction depending on the
MDD tool; both tools yield similar values for Satisfaction,
even though the models which each tool works with are
quite different.

Comparing our results with the works of the related lit-
erature, we see that our work agrees in the fact that MDD
improves Functional Suitability and Effort, as other works
such as [15], [16], [17], [18], [21], [22], and [24] state. How-
ever, our results do not yield a better Satisfaction for MDD,
as other works such as [14], [20], [22] do. Maybe, this result
is because we are comparing the Satisfaction of working
with a traditional method (where subjects are very com-
fortable) versus satisfaction in MDD (a method completely
new). On the contrary, experiments done in the literature
measure Satisfaction only in an MDD context, so results are
not biases by subjects’ experience. Main novelties of our
family of experiments regarding previous works can be
summarized in: (1) comparison of a traditional method
versus MDD in the development of a fully functional sys-
tem from scratch; (2) generalization of results through the
use of two different MDD tools; (3) conclusions are ex-
tracted from 7 replications, which reduces the possibility
of contextual threats that may affect a particular replica-
tion.

7. CONCLUSIONS
This article presents a family of experiments consisting of 7
replications to compare a traditional method versus MDD
(under the context of conceptual model programming),
combining two MDD tools: INTEGRANOVA and WebRa-
tio. The sample size of the whole family is 56. Aggregation
of the replications has been done through moderator vari-
ables defined from a multilevel hierarchy. We have used
the course of the replication and the MDD tool as modera-
tor variables. The response variables analyzed are Func-
tional Suitability (measured as effectiveness in simple
problems and effectiveness in complex problems), Effort
(measured as time spent in simple problems) and Satisfac-
tion (measured as Perceived Ease of Use, Perceived Useful-
ness and Intention to Use). The information extracted
through these response variables was complemented with
open questions, where subjects had to write 3 pros and
cons of MDD.

The results of the family of experiments conclude that
Functional Suitability and Effort for simple problems yield
significant differences between a traditional method and
MDD. MDD yields the best values for Functional Suitabil-
ity. This difference is larger for complex problems. Regard-
ing Satisfaction, a traditional method has more Intention to
Use than MDD. The lack of flexibility of MDD tools could
justify this result. Note that MDD tools only allow to gen-
erate what can be represented through models, while man-
ual coding allows more customized developments.

We can conclude that even though MDD provides more
Functional Suitability and less Effort for simple problems,
existing MDD tools still have to evolve to offer more fea-
tures for analysts, such as collaborative work, support to

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, MMMMMMMM 2021

non-SQL databases and more personalization. One of the
positive ideas extracted from the open questions is that the
learning curve for MDD is not steep. This is an important
advance for the wide adoption of MDD.

We have learnt some experimental design lessons. First,
metrics should be applied by a unique experimenter to en-
sure homogeneity. Second, experiments that spend several
sessions may be affected by a different context in each ses-
sion. Third, it is important to check the instruments before
starting the experiment. Fourth, the context of the replica-
tions must be as similar as possible to aggregate data.

As future work, we plan to replicate the experiment in
different universities with different experimenters and
more MDD tools. We also plan to prepare a list of recom-
mendations to improve MDD extracted from the experi-
ence of the experiments.

ACKNOWLEDGEMENTS
This work was developed with the support of the Spanish
Ministry of Science and Innovation project DataMe
(TIN2016-80811-P), PGC2018-097265-B-I00, and was co-fi-
nanced by ERDF. It also has the support of Generalitat Va-
lenciana with GISPRO project (PROMETEO/2018/176)
and GV/2021/072.

REFERENCES

[1] S. J. Mellor, A. N. Clark, and T. Futagami, "Guest Editors'

Introduction: Model-Driven Development," IEEE
Software, vol. 20, pp. 14-18, 2003.

[2] D. W. Embley, S. Liddle, and Ó. Pastor, "Conceptual-

Model Programming: A Manifesto," in Handbook of
Conceptual Modeling, ed: Springer, pp. 3-16, 2011.

[3] S. W. Liddle, "Model-driven software development," in

Handbook of Conceptual Modeling, ed: Springer, pp. 17-

54, 2011.

[4] B. Hailpern, Tarr, P., "Model-Driven Development: the

Good, the Bad, and the Ugly," IBM Syst. J., vol. 45, pp.

451-461, 2006.

[5] B. Selic, "The Pragmatics of Model-Driven

Development," IEEE software, vol. 20, pp. 19-25, 2003.

[6] T. Weigert and F. Weil, "Practical experiences in using

model-driven engineering to develop trustworthy

computing systems," in IEEE International Conference
on Sensor Networks, Ubiquitous, and Trustworthy
Computing (SUTC'06), 2006.

[7] J. I. Panach, S. España, Ó. Dieste, Ó. Pastor, and N.

Juristo, "In search of evidence for model-driven

development claims: An experiment on quality, effort,

productivity and satisfaction," Information and Software
Technology, vol. 62, pp. 164-186, 2015.

[8] J. I. Panach, O. Dieste, B. Marín, S. España, S. Vegas, O.

Pastor, and N. Juristo, "Evaluating Model-Driven

Development Claims with Respect to Quality: A Family

of Experiments," IEEE Trans. Software Eng., vol. 47, pp.

130-145, 2021.

[9] J. I. Panach, O. Dieste, B. Marín, S. España, S. Vegas, O.

Pastor, and N. Juristo, "Evaluating Model-Driven

Development Claims with respect to Quality: A Family

of Experiments," IEEE Transactions on Software
Engineering, pp. 130-145, 2018.

[10] INTEGRANOVA, "INTEGRANOVA Technologies:

http://www.integranova.com," ed.

[11] M. Brambilla and P. Fraternali, "Large-scale Model-

Driven Engineering of web user interaction: The WebML

and WebRatio experience," Science of Computer
Programming, vol. 89, pp. 71-87, 2014.

[12] IEEE, IEEE standard computer dictionary. A compilation
of IEEE standard computer glossaries. Institute of

Electrical and Electronics Engineers. New York, EE.UU.,

1991.

[13] W. Ferreira, M. T. Baldassarre, S. Soares, B. Cartaxo, and

G. Visaggio, "A Comparative Study of Model-Driven

Approaches For Scoping and Planning Experiments,"

Proceedings of the 21st International Conference on

Evaluation and Assessment in Software Engineering,

Karlskrona, Sweden, pp. 78-87, 2017.

[14] Y. Martínez, C. Cachero, and S. Meliá, "MDD vs.

traditional software development: A practitioner’s

subjective perspective," Information and Software
Technology, vol. 55, pp. 189-200, 2013.

[15] D. Brdjanin, G. Banjac, D. Banjac, and S. Maric, "An

experiment in model-driven conceptual database

design," Software & Systems Modeling, vol. 18, pp. 1859-

1883, 2019.

[16] F. Wanderley, D. Silveira, J. Araujo, A. Moreira, and E.

Guerra, "Experimental Evaluation of Conceptual

Modelling through Mind Maps and Model Driven

Engineering," Cham, pp. 200-214, 2014.

[17] J. Gonzalez-Huerta, E. Insfran, S. Abrahão, and G.

Scanniello, "Validating a model-driven software

architecture evaluation and improvement method: A

family of experiments," Information and Software
Technology, vol. 57, pp. 405-429, 2015.

[18] F. Ricca, M. Torchiano, M. Leotta, A. Tiso, G. Guerrini,

and G. Reggio, "On the impact of state-based model-

driven development on maintainability: a family of

experiments using UniMod," Empirical Software
Engineering, vol. 23, pp. 1743-1790, 2018.

[19] F. Ricca, M. D. Penta, M. Torchiano, P. Tonella, and M.

Ceccato, "How Developers' Experience and Ability

Influence Web Application Comprehension Tasks

Supported by UML Stereotypes: A Series of Four

Experiments," IEEE Transactions on Software
Engineering, vol. 36, pp. 96-118, 2010.

[20] J. A. Cruz-Lemus, A. Maes, M. Genero, G. Poels, and M.

Piattini, "The impact of structural complexity on the

understandability of UML statechart diagrams,"

Information Sciences, vol. 180, pp. 2209-2220, 2010.

[21] G. Reggio, F. Ricca, G. Scanniello, F. D. Cerbo, and G.

Dodero, "A precise style for business process modelling:

results from two controlled experiments," Proceedings of

the 14th international conference on Model driven

engineering languages and systems, Wellington, New

Zealand, pp. 138-152, 2011.

[22] A. Fernandez, S. Abrahao, and E. Insfran, "Empirical

validation of a usability inspection method for model-

PANACH, PASTOR, JURISTO: A FAMILY OF EXPERIMENTS TO COMPARE TWO MODEL-DRIVEN DEVELOPMENT TOOLS VS A TRADITIONAL DEVEL-
OPMENT DEVELOPMENT METHOD 17

driven Web development," J. Syst. Softw., vol. 86, pp.

161-186, 2013.

[23] G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel, B. H. C.

Cheng, P. Collet, B. Combemale, R. B. France, R. Heldal,

J. Hill, J. Kienzle, M. Schöttle, F. Steimann, D.

Stikkolorum, and J. Whittle, "The Relevance of Model-

Driven Engineering Thirty Years from Now," Cham, pp.

183-200, 2014.

[24] C. Cachero, S. Meliá, and J. Hermida, "Impact of model

notations on the productivity of domain modelling: An

empirical study," Information and Software Technology,
vol. 108, pp. 78-87 2018.

[25] E. Planas and J. Cabot, "How are UML class diagrams

built in practice? A usability study of two UML tools:

Magicdraw and Papyrus," Computer Standards &
Interfaces, vol. 67, p. 103363, 2020.

[26] S. A. Safdar, M. Z. Iqbal, and M. U. Khan, "Empirical

Evaluation of UML Modeling Tools–A Controlled

Experiment," Cham, pp. 33-44, 2015.

[27] M. Freire, U. Kulesza, E. Aranha, G. Nery, D. Costa, A.

Jedlitschka, E. Campos, S. T. Acuña, and M. N. Gómez,

"Assessing and Evolving a Domain Specific Language

for Formalizing Software Engineering Experiments: An

Empirical Study," International Journal of Software
Engineering and Knowledge Engineering, vol. 24, pp.

1509-1531, 2014.

[28] V. R. Basili, "The Role of Controlled Experiments in

Software Engineering Research," in Empirical Software
Engineering Issues. Critical Assessment and Future
Directions: International Workshop, Dagstuhl Castle,
Germany, June 26-30, 2006. Revised Papers, V. R. Basili,
et al., Eds., ed Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 33-37, 2007.

[29] M. Jose Escalona and G. Aragon, "NDT. A Model-Driven

Approach for Web Requirements," IEEE Transactions on
Software Engineering, vol. 34, pp. 377-390, 2008.

[30] G. Rossi, M. Urbieta, D. Distante, J. M. Rivero, and S.

Firmenich, "25 Years of Model-Driven Web Engineering.

What we achieved, What is missing," CLEI Electronic
Journal, vol. 19, pp. 5-57, 2016.

[31] OMG. Interaction Flow Modeling Language (IFML) :
http://www.ifml.org/.

[32] N. Juristo and A. Moreno, Basics of Software
Engineering Experimentation: Springer, 2001.

[33] ISO/IEC, "ISO/IEC 25000 - Software engineering -

Software product Quality Requirements and Evaluation

(SQuaRE) - Guide to SQuaRE," 2010.

[34] F. D. Davis, "Perceived usefulness, perceived ease of use,

and user acceptance of information technology," MIS Q.,
vol. 13, pp. 319-340, 1989.

[35] D. L. Moody, "The method evaluation model: a

theoretical model for validating information systems

design methods," European Conference on Information

Systems (ECIS 03), Naples, Italy 2003.

[36] J. I. Panach. Experiment material. Available:

https://www.uv.es/joigpana/Experiment_materials.p

df

[37] P. Riofrío, S. Vegas, and N. Juristo, "A Method for

Aggregating Families of Experiments in Software

Engineerings. ," Empirical Software Engineering Journal,
Pending to publish.

[38] L. S. Meyers, Applied multivariate research : design and
interpretation / Lawrence S. Meyers, Glenn Gamst, A.J.
Guarino. Thousand Oaks: SAGE Publications, 2006.

[39] L. Cohen, Statistical power analysis for the behavioral
sciences, 2nd. Edition ed.: Lawrence Earlbaum

Associates, 1988.

[40] E. Erdfelder, F. Faul, and A. Buchner, "GPOWER: A

general power analysis program," Behavior Research
Methods, Instruments, & Computers, vol. 28, pp. 1-11,

1996.

[41] J. I. Panach, Ó. Pastor, and N. Juristo. (2021). Family of
experiments MDD VS Traditional. Available: Mendeley

Data, doi: 10.17632/kz5pn2whyd.1

[42] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B.

Regnell, and A. Wesslén, Experimentation in Software
Engineering: An Introduction: Springer, 2012.

[43] J. Hutchinson, M. Rouncefield, and J. Whittle, "Model-

driven engineering practices in industry," Proceedings of

the 33rd International Conference on Software

Engineering (ICSE), Waikiki, Honolulu, HI, USA, 2011.

Jose Ignacio Panach has been an assistant pro-

fessor at the Universitat de València since 2011

and an Assistant Researcher at the Centro de In-

vestigacion en Metodos de Produccion de Soft-

ware (ProS) at the Universidad Politécnica de

Valencia since 2005. Jose Ignacio holds a PhD

in Computer Science (UPV 2010). His research

activities focus on MDD, usability, and interac-

tion modelling.

Oscar Pastor is Professor and Director of the

Centro de Investigación en Métodos de Produc-

ciónde Software –ProS of the Universitat Poli-

técnica de València. He got his PhD in 1992. For-

merly he was a researcher for HP Labs, Bristol,

UK. His research activities focus on web engi-

neering, requirements engineering, infor-

mation systems and MDD.

Natalia Juristo received her PhD degree from

the Universidad Politecnica de Madrid (UPM)

in 1991. She is currently a full professor of soft-

ware engineering at UPM. She received a Fin-

land Distinguished Professor Program (Fi-

DiPro) professorship starting in January 2013.

Her main research interests include experi-

mental software engineering, requirements,

and testing

