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LECTURE 1

Special conjugacy classes and exceptional characters
J. MIQUEL MARTINEZ

This lecture is devoted to the concept of special conjugacy classes and exceptional
characters, introduced by M. Suzuki in [Suz55]. We will use them to prove the
following theorem from [Suz57]. We say that G satisfies property (W) if every
nonidentity element of G has abelian centralizer in G.

THEOREM 1.1 (Suzuki). Let G be a finite group satisfying property (W). If G
has odd order then G is not simple.

It had been proven previously by Weisner that finite groups with this condition
are either solvable or simple. Brauer—Suzuki—Wall proved that nonabelian simple
groups of even order satisfying condition (W) had to be isomorphic to PSL(2, 2¥).
These theorems were proved as part of the CFSG, and occured before the odd
order theorem.

1.1. Special classes and exceptional characters

DEFINITION 1.2. Let H < G. We say a conjugacy class C of H is spectal in G
if C contains an element x with Cg(x) € H.

LEMMA 1.3. Let Cq,...,C; be special classes of H < G and let x; € C; be such
that Cg(x;) < H. Assume that x; is not G-conjugate to any x; if i # j. If 1 is
a generalized character of H such that ¢(g) = 0 for all g € H — | J,C; then the
following hold:

(i) % () = (@),
(i) ¥%(g) = 0 if g is not G-conjugate to any x;,
(i) [, %] = [, 9]
PRrROOF. If z € G then the induction formula gives

¥C(z) = |;| S ()
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2 1.1. Special classes and exceptional characters

and if 2* € H but x is not G-conjugate to any z;, we have ¢ (z*) = 0so % (x) = 0.

Next we set * = x; and t € G with 2! € H. We claim that if 1(2!) # 0 then
t € H. Indeed, if ¥(2!) # 0 then by hypothesis we have z! is H-conjugate to
some z;. By the hypothesis on the z;’s we have that 2! = x for some h e H
and this implies that th™! € Cg(z) < H so t € H, as claimed. Using this, the

induction formula gives
H
i 5 v = o 3 i) :H:u b(@),

teG teH
zteH zteH

which proves (i).
Finally let C; = Cg(z;) < H. Set ¢; = |G : C;| and notice that ¢; = |G : H|h;

where h; = |H : C;i|. By (ii), we know that ¢ vanishes on the elements of G
not G-conjugate to any x;. Therefore,

(v, 0] = Z e (x) Z G+ Hlhi(z)i () =
|Gl £ TGl &
hﬂb = [,
where we have used (11) in the second equality. This proves (iii). O

The above result helps us construct a character correspondence in the following
special situation.

PROPOSITION 1.4. Let Cq,...,C; be special classes of H < G and let x; € C; be
such that Cg(ac,) H. Assume that x; is not G-conjugate to any x; if i # j. If
H has s = 2 distinct irreducible characters 11, ..., such that

(i) vi(x) = Yj(x) for all xe H —|J;C;i (in particular, 1;(1) = 1;(1)),
(ii)) ¥(x) =0 if x € H is G-conjugate but not H-conjugate to an x;

then G has s irreducible characters x1,...,Xs with
Y& = (a+e)Xi+2axj + A
J#i

where € = 1, a > 0, (a+€) = 0 and A does not contain any x;’s. Further,
€,a,A are independent of i.

ProoF. Consider the s—1 generalized characters @; = wi —1)s, which satisfy the
assumptions of Lemma 1.3. Then [¢{, 9] = 2 so p§ contains two irreducible
constituents with multiplicity +1. Arguing analogously for ¢; —¢; = 1; —1; we
get that [p; —¢j, i —pj] = 2s0 goiG and cp? have a constituent in common, with
the same sign. Let xs be this constituent (common to all the ¢;’s). We may write
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1. Special conjugacy classes and exceptional characters 3

0 = e1xi+eaxs for xi € Irr(G) and e, 2 signs. Now (1) = % (1) =% (1) = 0
SO €1 = —€9, and it follows that

@zG = E(Xi - Xs)
for e = +1 for all 1 <7 < s — 1. Notice that € is the same for all ¢ because the

sign of x5 as a constituent of all goiG is the same.

Therefore & — 1% = €(x; — xs) and rearranging we obtain

S
TZJZ-G:EXZ'-FZ(I]'X]'-FA
j=1
where A does not contain any of the y;’s (we have just written cpSG —€xs =
Zj—:l a;x; + A, and notice that A does not depend on i either. Since s > 2 we
may do the same but fixing a different 1); instead of )5 and obtain the same
formula for 1;,. We need to show all the a;’s are equal.

First, notice that if ¢ is H-conjugate to z; then g € H (as in the previous
result). Using that 1; vanishes in the elements of H that are G-conjugate but
not H-conjugate to any of the x;’s and that x; and x; are never G-conjugate if
k # j we obtain

vy () |H| > Vil |H| 2 ilag) = vil).

teG teH
zteH

Secondly, if € G is not G—conjugate to any z; then

sz = Zzbs = ¢S (x)

teG teG
xleH zleH

where we have used that ¢; and 1, coincide in the elements of H outside | JC;.

Setting ¢; = |G : Cg(z;)| and h; = |H : Cg(x;)| as before, we have

[ve, w1 — e, v = m;}(wc’ @) — 0 (@) (@) ) =

|G| Z C; (@Zh Z; ﬂh(a:j) ¢s($j)¢s(xj)> -

= [¢Za¢z] - [Tl)s,Uk] =
Now [v;, ¥i] — [¥s, ¥s] = (a; + 6)2 + a? — (as + 6)2 — a? which forces a; = ag, as
desired. 0

DEFINITION 1.5. The x;’s above are called exceptional characters associated to

the ;s

J. Miquel Martinez, Gabriel A. L. Souza, D. Cabrera-Berenguer



4 1.2. Analysis of groups satisfying condition (W)

The following might be a more convenient reformulation: in the situation of the
Lemma,

sz =ex; + ¥
where €, ¥ are independent of ¢. In particular, x; < ; is a natural character
bijection.

COROLLARY 1.6. Assume the hypotheses and notation of Proposition 1.4. Then
Xi(z) = xr(x) for every element x € G not G-conjugate to any element in some
C;. In particular, exceptional characters have the same degree.

ProOOF. Induction formula and Proposition 1.4(i). O

1.2. Analysis of groups satisfying condition (W)

Notice for example that property (W) guarantees Z(G) = 1 if G is nonabelian.
We assume G is simple of odd order satisfying (W) and work to find a contra-
diction.

PROPOSITION 1.7. If A < G is mazimal abelian then A = Cq(z) for alll # x €
A, and every nontrivial conjugacy class of A is special in G.

PRrROOF. We only need to prove the first affirmation, which follows from the fact
that Cg(z) is abelian. O

PROPOSITION 1.8. Let N = Ng(A). Two elements of A are G-conjugate if and

only if they are N-conjugate. In particular, w = ||'2,‘;‘1‘ is an integer and there

are ezactly w conjugacy classes of G intersecting A\{1} nontrivially.

PROOF. If A9n A # 1 for g € G then thereis 1 # ye An A9 and A = Cg(y) =
A9 by Proposition 1.7. Then g € Ng(A), and the first part follows. Since
Cg(x) = A for any = € A\{1} we have that = has exactly |N : A| N-conjugates,
and the second part follows. For the final part, w is the number of N-conjugacy
classes in A\{1} and by the first part, w is the number of different G-conjugacy
classes of elements of A\{1}. O

ProPOSITION 1.9. Under our hypotheses, N has exactly w irreducible charac-
ters U1,...,0y of degree I = |N : A|, induced from the nontrivial irreducible
characters of A, and every such character induces irreducibly to N.

PROOF. See 6.34 of [Isa76] (thanks Juan!). O

LEMMA 1.10. With our hypotheses, if x € Char(N) satisfies x(x) = 0 for x €
N\A then x°(y) = x(y) fory € A.

J. Miquel Martinez, Gabriel A. L. Souza, D. Cabrera-Berenguer




1. Special conjugacy classes and exceptional characters 5

PRrROOF. By Proposition 1.8 we have y' € A if, and only if t € N so

X () = % > x) = |]1,| DX = :x:x(y)

| | teG

teN
yteA
as desired. (I
PROPOSITION 1.11. Assume w = 2. The exceptional characters x1,...,xw 0f G
associated to the characters 11, ..., are linearly independent in Cy,...,Cs.

PROOF. Assume that Y a;x;(z) = 0 for all z € C; (j = 1,...,¢). Then by
Corollary 1.6 we have that

(Z az’Xi) Xk —X1) = 0

i=1
for any pair k,l € {1,...,t}. Now

0= [(Z aiXi) Xk —Xx1) la] = Zai[Xian] - Zaz‘[Xia xi) = ak —a
for any pair k,l. Therefore
le(az) =0
forall z€Cj, j =1,...,t. Now recall that we may write
Y& =ex; + U
where ¢ and ¥ are independent of i. Therefore x;(z) = evy¥(x) — e¥(z) so

(1.2.1) 0= sz-(x) = el (z) — ewl(z).

)

Now Lemma 1.3, %% (z) = ;(x) = ;(x;) for z; € AnCj and (Y;)a = p1+- - -+ pup
for certain linear characters u, where {p1, ..., pu} is the set of N-conjugates of u.
By Proposition 1.9, every 14 # u € Lin(A) appears as a constituent of exactly
one of the (1);) o’s. Therefore

D@ = Y oz =-1
4 1a#pelr(A)

(because column sums of character tables of abelian groups are 0). Then Equa-
tion 1.2.1 implies w¥(z) = —1 but w > 2 contradicts the fact that ¥(z) is an
algebraic integer. O

COROLLARY 1.12. If B is a maximal abelian subgroup of G not G-conjugate to
A then the exceptional characters of A are not exceptional for B.

Proor. We have that x; and x; agree on B but by Proposition 1.11 they should
be linearly independent in every nontrivial conjugacy class of B. O

J. Miquel Martinez, Gabriel A. L. Souza, D. Cabrera-Berenguer



6 1.2. Analysis of groups satisfying condition (W)

If H is a finite group, py denotes its regular character.

ProposITION 1.13. The induced character 12 contains every exceptional char-
acter x; of A with the same multiplicity.

PRrROOF. Notice that x; — x; = €(¢; —1;), and that this (generalized) character
vanishes in the elements that are not G-conjugate to some element of A by
Corollary 1.6. Write A for the set of G-conjugates of elements in A. We have
that

(122 3150 @) - Ge) = Y 15@ (0@ - 18 @)

xeC r€eAC

and notice that if € A we have 1§(z) = 14(x) and E(az) = 1, (x) by Lemma
1.10. Now Proposition 1.8 implies that every element 2 € A has exactly |G :
N||N : Cy(x)| conjugates. Using this we can rewrite equation 1.2.2 as

€lG : N| Y 1a(x) ($ilx) — ;) = €|G: Al > (¢i() — ¥5(x)) =0

reA €A

where we have used that Yr(x) = |N|[Yk, 15] = 0). From equation 1.2.2
( zeA
we have

[15. x] = [15, x5
as desired. O

PROBLEM 1.14. Show that
1
[1G — o 15 - TZ G@)?=1+|N: Al
xeG

REMARK 1.15. Write p = 1%. By Propositions 1.13 and 1.4 we may write
w
p—f = 1G—€Xi+bZXk+Za7’y
k=1

where the last sum runs over the nontrivial and nonexceptional characters of G.
Using Problem 1.1} we have that

L+ N A= [p—of p—¢f1 =1+ (b— e+ (w—1)p* + >
SO
IN 4] = (b )%+ (w— 10 + Y a2,

We will use this formula in the future.

PROPOSITION 1.16. Assume w = 2. If x is a nonexceptional character of A
then x takes integer values on A. More precisely, if x € A we have x(x) = ay in
the notation of Remark 1.15, and x(x) is the unique integer satisfying x(x) =
x(1) mod |A| and |x(z)| < ‘A‘;l. In particular, x vanishes in A\{1} if and only
if |A| divides x(1).

J. Miquel Martinez, Gabriel A. L. Souza, D. Cabrera-Berenguer




1. Special conjugacy classes and exceptional characters 7

PROOF. Let 14 # X € Lin(A). Then A\¢ = ¢¢ for some i (because these 1
are induced from the nontrivial linear characters of A, see Lemma 1.3. If x is a
nonexceptional character then by Proposition 1.4, x appears in every wiG with
the same multiplicity m. If [ = [1§, x] then the a, = | — m where a, is from
Remark 1.15. By Frobenius reciprocity we have

XA = l1a+m 2 f
1A¢§ELin(A)
and therefore we have
x(1) =1—m(]4] —1) =1 —mmod |A|.
Now for z € A\{1} we have
D1 @) =0
~eLin(A)

SO

X(@) = (=m)la(@) +m Y yz)=l-m
~veLin(A)

and the first part of the result follows. From the formula in Remark 1.15 we
have |x(z)| < x()? < |N: Al < |A‘271. O

COROLLARY 1.17. If x, % are nonexceptional characters of the same degree, then

[(1A)G - ¢¢G;X] = [(1A)G - ¢§7¢]

PrOOF. Notice that a, = x(z) which is uniquely determined by x(1) by the
previous result. O

PRrRoOPOSITION 1.18. We have

DT i(@)> = [N A[(JA] - N - A)).
zeA\{1}

PROOF. . We have that (;)4 = >, A for exactly |N : A| different N-conjugate
A€ Lin(A). If € € Lin(A) is not contained in (¢;) 4 then £ is one of the vy ’s for
k # i. Let m be the multiplicity of y; in ¢,§. Then m is independent of j and
[xi, €] = m+e. Ifl = [x;,15] then [x;, 1§ — %] = I —m — € and by Frobneius
reciprocity

(xi)a=1llg+m Z f—i—eZ)\

1a#£€Lin(A)

where the last sum is over the |N : A| constituents of (¢;)4. Arguing as before,
if 1 # x € A we have

xi(z) =1 —m + e;(x).
J. Miquel Martinez, Gabriel A. L. Souza, D. Cabrera-Berenguer




8 1.3. Simple groups satisfying (W)

Writing n =1 — m € Z we have

(1.2.3) > @)= D (ei(z) +n)(ei(a™" +n) =

1#x€A 1#2€A
(1.2.4) = > i@ +e D> (i) — izl +a*(|4] - 1).
1#x€A 1#z€A

Now if t = [N : Al and (¢;)a = };_; & we have

Y, ha@P= ) (Z &(90)&(:6_1)) =

1#2€A 1#£xeA \i,j=1

t
A D [6, 6] = IN AP = JA|IN : A| — [N : AP
i=1

Furthermore, since >}, .4 AM(z) = —1 for A € Lin(A) we have
D) Wilz) = =[N : A
1#z€A

because (1;) 4 has |N : A| constituents. This shows that equation 1.2.3 equals
|A|IN : A| — [N : AP> = 2en|N : A| +n2(JA| — 1) = [N : A|(JA| — [N : A])

using that 2 < w = w;ll' s0 a?w — 2en = 0 for w > 2. |

1.3. Simple groups satisfying (W)

We now assume G is nonabelian simple of odd order and satisfies (W) and work
to find a contradiction. We note the following.

PrRoOPOSITION 1.19. The mazximal abelian subgroups of G form a partition of

G\{1}.

We now set some notation. Let Ay, ..., Ag be representatives of the G-conjugacy
classes of maximal abelian subgroups of G. Let N; = Ng(4;), n; = |4;| and
li = |N; : A;|. Recall that w; := (n; — 1)/l; is an integer by Proposition 1.8,
and that there are exactly w; G-conjugacy classes intersecting A;\{1}. Since
n; and [; are odd, w; is even and in particular w; > 2. Therefore all results
from the previous section apply, and each A; contributes exactly w; exceptional
characters ofG which are not exceptional for the other A;’s by Corollary 1.12.
In fact, we have the following:

PROPOSITION 1.20. |Irr(G)| = 14> w;. In particular, every nontrivial character
of G is exceptional for exactly one Aj;.

J. Miquel Martinez, Gabriel A. L. Souza, D. Cabrera-Berenguer



1. Special conjugacy classes and exceptional characters 9

ProOOF. Every g € G\{1} is G-conjugate to an element of some A;. Since each
A; contributes w; conjugacy classes of G we have that G has 1+ > w; conjugacy
classes and the first part follows. The sdecond part follows from Corollary 1.12.

O
More notation! We let {x¥,..., Xﬁ;k} be the exceptional characters of Ay coming
from characters {¢f,..., ¢k } of Nj (these were induced from the linear non-

trivial characters of A;). We assume now that s is such that |As| = ns is the
smallest order among the A4;’s. Recall that by Corollary 1.6, exceptional charac-
ters of Ag have the same degree ds. We reorder the A;’s such that there is some
t with n; dividing d, for i < ¢ and n; not dividing ds for ¢ > ¢. For the A, and
all its related invariants and characters we omit the super or sub-index s.

PrRoPOSITION 1.21. We have that every lg —@ZJ,% contains A;-characters if i < t.

Proor. Write I' = 12 — 9. Using the notation from Remark 1.15, and using
that exceptional characters of the same subgroup have the same degree and
Corollary 1.17 we may write

s—1 W
o= Xm+b >, x5+ 2, ak ), X
Jj#m k=1 r=1

Now 1Y and 9, coincide in N\A so using the induction formula we have that T
vanishes in the elements of G not G-conjugate to any element of A, so I' vanishes
in Al, N 7As—1-

Assume by way of contradiction that a; = 0. Then from Proposition 1.16 we have
that the x;’s vanish in z € A;\{1} and that x¥(x) = yy is an integer independent
of r for k # ¢ and k < s. Therefore I'(z) = 0 implies

0=1+ Z YW
k<s
ki

which is a contradiction because wy, is even. O

Now we find the final contradiction by doing a series of computations. Recall
that, from Remark 1.15 applied to A = Ag and using the formula from the
previous proof, we have

l=a2(w—1)+(a—e)2+2a%wk>1+2a%wk

k#s k#s
using that w — 1 > 0 and at least one of a or a — € is nonzero. By Proposition
1.21 we have that each ag # 0 for k = 1,...,¢ so we conclude
t
(1.3.1) =12 w.
k=1

J. Miquel Martinez, Gabriel A. L. Souza, D. Cabrera-Berenguer



10 1.3. Simple groups satisfying (W)

Now fixing an A-exceptional character x with degree d we have

Gl= S )2 d2+2'G' S o)

geG geA \{1}

where we have used that if g € Ax\{1} then |G : Cg(g)| = |G : Ax| = |G|/nk (in
the left sum we coubnt the G-conjugates of any g inside Ay exactly [j times!).

If £ < t then x(g) = 0 for any g € A;\{1} by Proposition 1.16 which implies that

> @l =o.

geAp\{1}

Further, if £ > ¢t we know from the same result that x(g) is a nonzero integer.

Therefore
> X@P =ni-1.
geAR\{1}

Finally, if £ = s then we have from Proposition 1.18 that

> Ix@PP = in—1).

geA\{1}

We put this all together and obtain that

1G]

n

G| > d2+2 — 1)+ (n—1).

k= t+1

Now every element of G\{1} is G-conjugate to some element of an A;. This
implies that

|G|_1+2 n—l

(we are doing the same computation as before more or less). This implies that
S G s—1 G G
1+ ) u(nk—l) >d’+ )] u(nk—l)—l-u(n—l)

and therefore

t
G G 2
1 E -1+ =(n-1)>d
+k=1”klk(nk ) + nl (n—1) +

and rearranging and dividing by |G| we obtain

t

Z e — 1) (”_1)>(d2—1)/|a|+1—fl

ngly nl

J. Miquel Martinez, Gabriel A. L. Souza, D. Cabrera-Berenguer



1. Special conjugacy classes and exceptional characters 11

which gives
¢

(k=1 (n—1+1%) 9
1.3.2 > (d*-1)/|G| + 1.
(132) 3T B s @ vyl +
Now recall that by definition, n = |As| < |Agx| = ng if & < s, and that wy =
(ng, — 1)/l This implies

Z (ni —1)/nil; < (Z wi> /n.

k=1 k=1
Using this and inequality 1.3.1 we have
¢

(i-1)/ 2 i — 1)/mil;

and using inequlaity 1.3.2 we have
(I—=1D)/n+mn—-1+1%)/nl>1+(d*-1)/|G|.
Since G is a nonabelian simple group, d > 1.. This implies that (d* —
1)/|G| > 0 so we obtain the strict inequality
(1—=1)/n+(n—1+1%/nl>1.

Now using wl = n — 1 and multiplying by n on both sides we can rewrite the
above as

=1+ wl+1*)/l>n
SO

l—14+w+Il>wl+1
which implies 2(I — 1) — w(l — 1) > 0 and therefore (2 — w)(l — 1) > 0 but this
contradicts w = 2 and [ = 1. We have finally proved

THEOREM 1.22 (Suzuki). If a nonsolvable group G satisfies (W) then |G| must
be even.

Using Brauer—Suzuki-Wall and Weisner this implies

THEOREM 1.23. If G satisfies (W) then either G is solvable or G is PSL(2, 2¥)
for some integer k.

J. Miquel Martinez, Gabriel A. L. Souza, D. Cabrera-Berenguer






LECTURE 2

Generalized blocks and isometries
GABRIEL A. L. Souza

This lecture is devoted to studying some of the fundamental ideas introduced in
[KORO3] and relating them to the picky conjectures formulated by A. Moretd
and N. Rizo. These are mostly generalizations of concepts from modular repre-
sentation theory that can be found in [Nav98| - we will draw the parallels as
we go, though none of that theory is needed here.

For a bit of background, Donkin used an isomorphism between the group algebra
kS, and one particular Hecke algebra to define “I-modular representations” of
Sn, where [ is a possibly composite number, as representations of other Hecke
algebras (see [Don03]). Here, we will drop the assumption that G = S,, and see
some things we can still retain.

REMARK 2.1. Before starting, a note on notation. G will always be a finite group
and C will always be a union of conjugacy classes of G (we will restrict this a
bit later on). The contentious bit is that the standard inner product of two
complex class functions o, of G will be denoted {«,3)*. The reason for
this will become clearer as we go (in part, it is because it follows [KORO3] ).

2.1. C-Blocks
DEFINITION 2.2. Let o, B € cf(G). We define:

1 _
{a, B = @ > al(g)B(g).
geC
If (o, ) # 0, we say they are directly C-linked; otherwise, we say they are
orthogonal across C.

In principle, there is no way to guarantee that g~ € C when g € C. So, given
two irreducible characters x, v, {x,%), has no reason to be real, much less an
integer. Also, since we don’t have 1 € C, it can even happen that (x, x>, = 0!

*Miquel, si prefieres cambiarlo a [a, 8], hazlo (basta cambiar la definicién de “inn”) - es
que, con el nimero de matrices que aparecen (+ el hecho que el proprio paper lo hace), creo que
igual queda mas claro asi. Tambien siéntete libre para quitar los “left - right” en las definiciones
de inn, innC, innD; de verdad que no sé cémo lo prefiero...

13



14 2.1. C-Blocks

Using the relation of C-linking, we can construct a graph with vertices Irr(G)
where two irreducible characters are connected by an edge if and only if they
are directly C-linked.

DEFINITION 2.3. The C-blocks of G are the connected components of the graph
defined by C-linking. If two irreducible characters x, 1 are in the same C-block,
we say they are C-linked.

From the definition, if y,% € B, where B is a C-block of G, then there exist
pi € Irr(G), 1 < @ < n, such that x = po, ¥ = pp and {4, piy1)e # 0 for all
0<e<n—1.

REMARK 2.4. When C is the union of the classes of the elements of G of order not

divisible by a given prime p, the above definition is one of the characterizations
of the Brauer p-blocks of G.

Whenever a € cf(G), we write a to denote the class function of G which
coincides with o on the classes in C and is 0 for all other classes. We will also
write C’ to denote the complement of C in G. Note that this is also a union of
conjugacy classes (namely, those not in C).

PROPOSITION 2.5. Let o, 3 € cf(G). Then, <o¢c,ﬁ> = {a, B)c. In particular, if

x € Irr(G) is in a C-block B, then both XC and X&' are C-linear combinations of
the characters in B.

PROOF. By definition, we have
1
C
« 75 = T4
%0 =g
1 _
=iql > alg9)B(g) = (e, B -

geC

Thus, if ¢ € Irr(G), {(x°,¥) # 0 if and only if (x,1). # 0, and this can only
happen for irreducible characters in the block B.

> af(9)8(9)

geG

Also, it is immediate from the definition that {x, ¥, + {x,¥)e = {x,¥). But
then, if 1) # x is directly C’-linked to x - equivalently, if it is one of the elements
of Irr(G) in the decomposition of X - it is also directly C-linked to y, meaning
it is in B by the above. [l

Of course, the properties we can hope to get depend highly on C. To illustrate
this, we have a couple of examples.

EXAMPLE 2.6. Suppose C = G. Then, {x,¥); = {x,¥) for all x,v € Irr(G).
By the First Orthogonality Relation, this means x is not directly C-linked to any
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other v. Thus, the C-linking graph is totally disconnected and each irreducible
character is a C-block.

EXAMPLE 2.7. Suppose C = {1}. Then, {x,¢), = %, which is always

nonzero for all x,v € Irt(G). Thus, every irreducible character is directly C-
linked to every other irreducible character, and the C-linking graph is complete.
In particular, there is a unique C-block.

REMARK 2.8. Notice that the two cases above are exactly what happen in modular
representation theory when p1 |G| and when G is a p-group, respectively!

However, no matter which C we choose, we have a sufficient condition for a
character to constitute a block. This is an indicator of some examples to come
later.

PROPOSITION 2.9. Write Irt®(G) = {x € Irr(G) | 3z € C s.t. x(z) # 0}. Then,
if x ¢ Iir(Q), {x} is a C-block of G.

PROOF. Y is not in Irr(G) if and only if x(x) = 0 for all z € C. Then, it follows
from the definition that x cannot be directly C-linked to any other irreducible
character. O

The converse is clearly false, as the first example of C = G shows, for instance.

PROPOSITION 2.10. Let B be a block of G and let 6 = erlrr(G) ayx, ay, € C, be
such that 0(z) = 0 for all x not in C. Then, the same is true of Op = 3 cp ayX.
The result also holds replacing C for C'.

PROOF. For the sake of simplicity, we will prove only the stated implication, as
the other one is nearly identical, using the symmetry in the preceding proposi-
tion.

Let p € Irr(G). If u ¢ B, then <XCI, ,u> = 0 for all x € B, using Proposition 2.5.
Then,

(2.1.1) > axxcl,u> = 0.
X€B

Also, by hypothesis, >, () axxcl = 0, meaning

> axxcl,u> =0,

x€lrr(G)

xElrr
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16 2.1. C-Blocks

whether p is in B or not. This equation can be rewritten as

(2.1.2) 2 axxcl,u> + 2 axxcl,u> =0.

xeB x¢B

Now suppose p is in B. By Proposition 2.5, <ZX¢B aXXC/,,u> = 0, since

<Xcl, ,u,> = 0 for all x ¢ B. Plugging this into Equation 2.1.2 and combining it
with Equation 2.1.1, we get

> axxclyu> = 0,Yp € Irr(G),

x€B

meaning erB axxcl = 0. But this just says that 6p(z) = 0 if  is not in C, as
we wanted. O

COROLLARY 2.11. If B is a C-block, x € C and y € C', then

> x(@)x() = 0.

X€B

PROOF. Let 6 = ZXeIrr(G) X(y)x. Since z € C, it is not conjugate to y and thus,

by the Second Orthogonality Relation, #(z) = 0. Since z is arbitrary then, by
the preceding proposition, fp(x) = 0 for all x € C. O

REMARK 2.12. In modular representation theory, this result is known as “Weak
Block Orthogonality”.

In modular representation theory, there is a theorem due to Osima that says
that the Brauer p-blocks are the minimal subsets of Irr(G) with the preceding
property. The same result is actually true in our context, as we now show.

PROPOSITION 2.13. Let S € Irr(G) be such that, for all x € C, y € C', we have

> x(@)x(y) = 0.

XES
Then, there exist C-blocks By, ..., By such that S = By u ... u B.

PROOF. Let 0 = > _ox(x)x. By hypothesis, 6 is identically 0 on C'. If p €

Irr(G)\S, then

XES

D7 X x () = (. 6) = (p, 6) = 0.

XES
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Then, it follows that er g <uc, X> x is identically 0 on C, since x was arbitrary.

Write u€ = a + B3, where all the irreducible summands of « are in S and those
of 8 are not. Then, given x € S, {8, x) = 0, meaning <,uc,x> = (a, x). But

a= > loyxox = >l x)x

XES XES

and thus a(x) = 0 for all  in C. Then, by definition, <oz,,uc> = 0, using that
C u ' = G. Consequently, (o, @) = 0, which is equivalent to saying o = 0. In
particular, (i, X)r = <uc, X> = 0 for all x in S. Thus, no element of S is directly
C-linked to an element outside of it, which is to say that S is a union of connected
components of the C-linking graph of G (which are exactly the C-blocks). |

The class functions {x° | x € Irr(G)} are almost never linearly independent (as
a multiset), since there are k(G) of them, and yet there can be fewer than k(G)
classes constituting C. What we will now do is decompose them in a certain way
and construct a couple of important matrices along the way.

Let k = k(G) and write C = | |'_, C;. Consider the following ordering of the
character table of G:

| G[C] - [C] - |Ch]
X1 % k k %
Xt % k % %

Let X(C) denote the submatrix of the cells shaded in red; X (C) = [xi(C})]i,;. Let

72 RY . G G
A(C) = X(C)X(C). Then, A(C) = | ¥, Xk(ci)x,f(cj)]ij — diag (1], - 15
by the Second Orthogonality Relation. 7

DEFINITION 2.14. The matriz of C-contributions of G is defined as T'(C) =
[xis X Deling-

Notice how

X()AQ) " = [xi<cj>|'g"|] ,
il

from which

X(©)A@)'X(€) = [Z xi(Cr) <l (C)| =T,

X
r=1 |Cr| ’

by definition.
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18 2.1. C-Blocks

Also, we note that, ordering the characters by C-blocks, I'(C) admits a block-
diagonal form, each block corresponding to one of the C-blocks of G. We denote
these matrices I'(C, B).

PROPOSITION 2.15. I'(C) is an idempotent matriz of rank and trace t.

PROOF. By the preceding equations,
r(C)? = X(C)A(C) ™ (X(C)tX(C)) A(C)X ()
= X(C)A(C)"IX(C)t = I(C).

Also, X(C) clearly has rank t, since the character table has full rank. But
I'(C)X(C) = X(C), meaning I'(C) also has rank at least ¢, and, from I'(C) =
X(C)A(C)1X(C)t, its rank is also at most ¢. Finally, by the properties of the
trace, tr(I'(C)) = tr (A(C)'A(C)) = t. O

Now let {®; | 1 < i < t} be a basis for the complex vector space of class
functions which are identically 0 outside C and let ®(C) = [®;(C})]i;- By
their linear independence, ®(C) is an invertible (¢ x t)-matrix. Now, for each
i€ {1,...,k}, there exist uniquely determined d;; € C such that =3 d;j®;.
As such, defining D(C) = [d;;]i,;, we have X (C) = D(C)®(C).

j=1

DEFINITION 2.16. The C-decomposition matrix of G regarding the basis {®; |
1 < i <t} is the matriz D(C) defined above.

REMARK 2.17. We may regard the ®; as analogues to the Brauer characters
(extended to the whole of G) from modular representation theory.

We then have
I'(C) = X(C)A(C)™1X(C)t = D(C)®(C)A(C)~'®(C)!D(C)!
_ D)B(C) (cI»(C)m(cz)tD(C)<1>(C))_1 B(C)D(C)

- p(o) (DETD(EC)) D).

DEFINITION 2.18. The C-Cartan matriz of G with respect to the basis regarding
the basis {®; | 1 <1 < t} is the matriz C(C) = D(C)tD(C).

Notice how
_ —1 S —1
¢~ = (DEID©) =2 (BODEIDEO(C))  BCY
= 2(C)A(C) ' ®(C)! = (@i, @),
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2.2. Closed unions

Thus far, we have considered an arbitrary union of conjugacy classes C. We will
now only consider a special kind of union, where we will have more to say about
the structure of C-blocks and associated concepts.

DEFINITION 2.19. A union C of conjugacy classes of G is called closed if, when
x € C, then every generator of {x) is also in C.

An immediate consequence of this restriction is that the inner product {x, 1),
of two irreducible characters is more controlled, as we can see below.

PROPOSITION 2.20. If C is closed, then |G|{x, V), € Z for all X, € Irr(G).

PROOF. Let n = exp(G) and let o € Gal(Qy, : Q). Then, we have

7 (|G| (x 1)e) = o <2 x<g>m> = Y olx@)o (¥(9))

geC geC

= > 1x(gMe(gF) = D x(9)e(g) = |G| {6 b)e
geC geC
where k is the positive integer coprime with n such that o(¢,,) = ¢* (where ¢, is a
primitive n-root of unity) and the fourth equality uses that g — g¢* is a bijection
from C to C, as this union is closed. Since o is arbitrary, |G|{x,¥), € Q. But
this is an algebraic integer, so |G| {x, ¢ € Z. O

Most cases we are interested in actually satisfy this condition.

EXAMPLE 2.21. If g is p-regular, then so is every generator of {g). Thus, the
set of p-reqular elements of G is a closed union of conjugacy classes. Recall that
this is the case studied in modular representation theory.

EXAMPLE 2.22. Let P = {x € G | x is p-picky}, where p is a fized prime. P is
clearly a union of conjugacy classes of G and it is closed, since, if (p,k) = 1
and x* is contained in more than one Sylow p-subgroup, so is z¥ = x (1 is the
multiplicative inverse of k mod p).

More on Example

Let P € Syl,(G) and let x € P be picky. If z is G-conjugate to y and
y € Ng(P), then there exists g € G such that y = 29 € P9. But y € P
(since y is a p-element in Ng(P)). Thus, g € Ng(P), by pickyness, and
we get 2 A Ng(P) = 2N6(P) | Also, if ¢ € Cg(x), then = € P¢, meaning
¢ € Ng(P); ie., Cg(z) € Ng(P) and zNe(P) is a conjugacy class of
N¢(z) satistying Definition 1.2!
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20 2.2. Closed unions

EXAMPLE 2.23. Let P be as in Ezample 2.22. Let x € P and define S(z) =
{y € G | yp is G-conjugate to z} and S = {x € G | xp € (P)} (S(x) is called the
p-section of x). Let {x1,...,x¢} be a complete set of representatives of the picky
classes of G, so that P = | [i_, 2S. Then, we have S = | [\_, S(z;).

Now take x € P and let {y1,...,ys,} be a complete set of representatives of the
conjugacy classes of p-reqular elements in Cg(x). If z € S(x), then there exists
u € G such that z, = x. In particular, z;‘, € Cqg(x) and thus, there exist some v €
Ca(x) and a uniquely determined j such that z;‘,” =y;. Thus, 2*Y = zy;. Also,
if (xy;)9 = xyj, then g € Cg(x), by the uniqueness of the decomposition into p
and p'-parts, and y] = y;, implying i = j. In summary, S(x) = U;“;l(myj)G.
Combining this with what we had before shows that S is a union of conjugacy
classes of G. If x € S, then x;, is picky, and thus so is x]; = (a:k)p, meaning this
union is closed.

More on Example

Let P € Syl,(G) and let {z1,...,7:} be a complete set of representatives
of the p-picky G-conjugacy classes, such that z; € P for all i. Then,
Pne(p) == P nNg(P) = |_|§:1 m?G(P) is a disjoint union of conjugacy
classes of Ng(P). Also, Cg(z;) € Ng(P), as we had seen, so they all
satisfy Definition 1.2.

Just like what was done in Example 2.23, we can show that Sn(p) :=
S n Ng(P) is a disjoint union of conjugacy classes of Ng(P), whose
representatives are ;1;j, where {y;1, ..., Yis, } is a complete set of represen-
tatives of the classes of p-regular elements of Cg(x;). Since Cg(z;y:5) S
Cg(x;) € Ng(P) (again using the uniqueness of the decomposition into
p and p’-parts), these are all classes satisfying Definition 1.2!

If 2 € SNy (p), there exists g € Ng(P) such that 2y = x; for some (uniquely
determined) ¢. Then, (z]’;)g = z¥, which is also a picky element in N (P),
and so there exists h € Ng(P) such that (zF)" = z; for some (uniquely
determined) j. Thus, (zk)gh = z; and 2F € SNng(p)- Thus, the union is
closed.

From now on, we will assume that C is closed. We may define a couple of
special Z-modules associated to C.

First, we denote R(C) = Z [Xc | x € Irr(G)], the Z-module generated by the
x¢, which is contained in cf(G). We also denote B(C) = R(C) n Z[Irr(G)],
which is the Z-module of generalized characters in JR(C). Finally, we write

Cart(C) = R(C)/B(C).
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ProOPOSITION 2.24. |G|R(C) < P(C) < R(C); in particular, both are free Z-
modules of the same rank.

PROOF. Since cf(G) is torsion-free as a Z-module, the same is true of 93(C) and
PB(C). Also, they are both finitely generated. Thus, by a standard result on
modules over PIDs, all we have to do is prove the inclusions to show that they
have the same rank.

Let x € Irr(G) and let ¢ € Irr(G). Since |G|{x, ¥)e € Z and {x, ) = (X%, ¢),
we have <|G|XC,1/J> € Z. Since v is arbitrary, |G|xC is a generalized character,
which finishes the proof. O

COROLLARY 2.25. Cart(C) is a finite abelian group whose exponent divides |G|.

PROOF. By the preceding proposition, Cart(C) is a Z-module of rank 0. The
fact on the exponent follows from |G|R(C) < B(C). O

DEFINITION 2.26. A C-basic set is a Z-basis for R(C).

We will denote k(C) the number of conjugacy classes of G whose union composes

C.

PROPOSITION 2.27. Let t = k(C). Then, rank(B(C)) = rank(R(C)) = t and
every C-basic set is C-linearly independent.

PROOF. Since X(C) is a matrix with full rank equal to ¢, rankz(9R(C)) > t, as
C-linear independence implies Z-independence. Analogously, rankz(R(C')) =
k(G) —t. If x € Irr(G), then, by definition, x = x¢ + x¢. Thus, |G|x €
PB(C) ®P(C'). Tt easily follows that |G|Z[Irr(G)] < PB(C) @ B(C') < Z[Irr(G)]
and thus rankz (R(C)) +rankz(R(C)) = k(G) = t+(k(G)—t). From the previous
inequalities, we get rankz(9R(C)) = t.

Now, suppose & = {6; | 1 < i < t} is a C-basic set. Then x¢ € spany % <
spang Z for all x € Irr(G). In particular, spanc{x¢ | x € Irr(G)} < span %.
But the former has dimension ¢, since X (C) has full rank. Thus, 4 is C-linearly
independent. (I

Let B be a C-block. Then, since x° has all of its components in the block B, if
we define R(C, B) = Z [x° | x € B] and B(C, B) = R(C, B) n Z[Irr(G)], then we
obtain two direct sum decompositions:
R(C) = @ R(C, B)
BeBl¢(G)

FC) = D WPEC B),

BeBle(G)
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from which we also have a decomposition

R(C, B)
Cart(C) = .
* BES% $(C, B)

We write Cart(C, B) = R(C, B)/B(C, B).

DEFINITION 2.28. Let B be a C-block of G and let {0; | 1 < i < s} be a Z-basis
for B(C, B). The Cartan matriz associated to B in this basis is the matriz

[6:,0)c)is"

PROPOSITION 2.29. Let B be a C-block, let {0; | 1 <i < s} and {n; |1 <i < s}
be two Z-bases for PB(C, B) and let C,C" be the corresponding Cartan matrices.

Then, C,C" are integer matrices and there exists a matric A € Mats(Z) such
that |det(A)| =1 and C' = A'CA.

PROOF. Since the 6; are generalized characters which are identically 0 outside
of C, we have {0;,0;), = (0;,0;) € Z, for all i,j. Let a;; € Z be such that
ni = >p—q @ikfk. Then, we get:

l?j

[ninidel, ;= [Z @i <9kv77j>c] = [ai] [<Bim5)c]
k=1

= [as] [Z ajk <9i,0k>c] = [ai;] [€0:,0;)¢] [ais]’
k=1
= A’ [<9i79j>c]i,j 4,

where A = [a;j]". Reversing the roles of 1 and 6, we get the desired result. The
part on the determinant of A follows from a well-known result on modules over
integral domains (notice that A’ is the matrix of the n; written on the basis
{6;]1<i<s}). O

PROBLEM 2.30. Let dy | --- | ds be the invariant factors of the finite Z-module
Cart(C, B). Show that ds = min{d € N* | dI'(C, B) is an integer matriz} and
that the invariant factors of the (integer) matriz d;I'(C, B) are

ds ds ds

1777 IR
ds—1 ds 2 dy

1T do not like this name, as it is analogous to the inverse to our previous “Cartan matrix”.
But it is how they define it in [KORO3]...
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2.3. Isometries

In this final short section, we define the concept of a generalized perfect
isometry and apply it to our case of picky elements; this is related to some
work in progress by A. Moret6 and N. Rizo. For reference, in [Bro90], M.
Broué gives a definition which can be stated as follows:

DEFINITION 2.31 (Broué). Let G, H be finite groups and let B, B’ be Brauer p-
blocks of G, H respectively. Then, an isometry I : Z[Irr(B)] — Z[Irr(B')] (i-e.,
a bijection preserving the ordinary inner product of cf(G)) is called perfect if
the function

ur:Gx H—-C
(g.:h)~ D x(@IX)(h)

x€lrr(B)
satisfies the following two conditions:
(i) if exactly one of g, h is p-reqular, then ur(g,h) =0;

|é1;1(€hg\)p are algebraic integers.

and

=\ pr(gh)
(i) 1e5ta

If such a function exists, B and B’ are called perfectly isometric.

There is a lot of literature on (perfect) isometries and their relations to other
kinds of equivalences (such as Morita equivalences); see [Sam20]. For our con-
text, [KORO3] gives the following definition. It looks much weaker in principle,
but according to [Sam20], it actually preserves many important theorems on
perfect isometries.

DEFINITION 2.32. As before, let G, H be finite groups and C, D closed unions
of conjugacy classes of G, H (respectively). Let B be a C-block of G and B, a
D-block of H. Write B = {x; | 1 <i < n}. A generalized perfect isometry
from B to B’ is a bijection I : B — B’ such that there exist ¢; € {1,—1},
1 <i < n satisfying {xi, Xj)e = &l (xi), € 1(X;))p, for all i,j. In this case, we
say B, B' are perfectly isometric.

Equivalently, the blocks B, B’ are perfectly isometric in this sense if there ex-
ists a matrix S = diag(ey, ..., €,), with ¢, = +1 for all 4, such that I'(C, B) =
ST(D, B')S.

We remark that essentially the same notion works for unions of blocks, rather
then blocks individually. So the question of finding generalized perfect isome-
tries, as well as most of what we have been doing, admits both the local version
at a specific block and the global version, taking unions of the blocks.
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PROPOSITION 2.33. Let B, B’ be perfectly isometric (unions of ) blocks and write
B={xi|1<i<s}, B = {u|1<i<s} such that (xi, xj)e = {€ili, €511 )p-
Then:
e there exists a Z-module isomorphism ¢ : R(C,B) — R(D, B') which
restricts to an isomorphism from B(C, B) to B(D, B');

o there exist bases of R(C, B) and B(D, B') such that the Cartan matrices
of B, B’ regarding those bases are equal.

PROOF. Let 2" =2, a;x% be an arbitrary element of %(C, B). Notice that

S S
<2 ai€ipny ug> <Z ai€ipy ,Uj> = > aieipti, 1idp
i=1 i=1
= Z ai {Xi: €jXj)¢ = €j <Z aiXi ,x]> =i {Z,X5)-

1=1

If u € Irr(H)\B’, then, since the uP only have components in the block B’, the
inner product above is 0.

Define ¢ : R(C, B) — R(D, B') by sending 2~ to Y.;_, a;e;uP. This is clearly
Z-linear. To show it is well defined and injective, note that p(2") = 0 if and
only if {p(2"),uy = 0 for all 4 € Irr(H). By the observation in the previous
paragraph, this is equivalent to (p(%£), ;) for all 1 < j < s. But, using the
equation above, (p(Z"), u;) = 0 if and only if (27, x;) = 0. Thus, p(Z") = 0 if
and only if 2" = 0.

Finally, we can define ¢ : (D, B') — R(C, B) by sending an element >;_, b;uP
to D37 bii XZC- It follows by arguing as above that 1 is well-defined, and a simple
computation gives 1) = @71,

From our previous computations, (2", x;) € Z if and only if {(o(Z"), u;) € Z.
Thus, ¢ restricts to an isomorphism from B(C, B) to PB(D, B’). Notice as well,
writing 2 = Y>7_, bix¢, that

(P(2),p(¥)) = Z biej (o(2), 15> = Y b€ (2, x5

j=1
<% Ebjxj> =2, Y.
Thus, if £ is a Z-basis for P , the Cartan matrices in the bases % and
©(A) are equal. O

Finally, we end-off by obtaining what is almost a generalized perfect isometry
in a particular case we are interested in.
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PROPOSITION 2.34. Let P € Syl (G), let N = Ng(P) and take the notation from

Ezample 2.25. Then, the induction map 15: Z[Irr(N)] — Z[Irr(G)] defines a
not-necessarily bijective generalized perfect isometry from P(Sn) into P(S).

PrROOF. If x is any generalized character of N which is 0 outside of the picky
sections, then the same is trivially true for x, by the induction formula (and
since P € N). Thus, the map x — x© is well-defined from 9B(Sy) into P(S),
and is known to be Z-linear. All we have to do, then, is show that <aG, /BG>5 =

(a, B)s,, for a, € P(Sn).

For simplicity, let {x1,...,z;} be a complete set of representatives of the picky
conjugacy classes of G such that z; € P for all ¢. If g € S, then g is G-conjugate to
xiYij, where the {y;1, ..., yis, } is a complete set of representatives of the p-regular
classes in Cg(z;). Thus, we only need to calculate (z;y;;)°.

Fix a right transversal T for N in G. Then, for each coset Nt, |(z;y:;)"Y =
(@i )V If (@iyi5)™ = (xiyij)”/t, for some n,n’ € N, t,t' € T, then :U?“I?l”,fl =
x; € P. Thus, z}' € P But, since n € N, we also have z}' € P. As x; is picky,
tt! € N, which means t = ¢’

So there are [G : N] G-conjugates of x;y;; for each N-conjugate. Le., |(z;y:;)¢| =
[G : N]|(zyi;)™|. Thus, we have

<aG7BG>3 |G| Z Z Z |(ziyij) “la” (ziyij) B ( TiYij)

geS Z—lj 1
Z Z | :I"lyz_] |04 %Z/m) (xlylj)
i=17=1

Now, by the induction formula, we have

(ziyis) Z :cly” = Z xzym = a(zYij)

heG heN
where the second equahty comes since x; is plcky. Combining this equation with
the previous one, we obtain

(%, B%) ¢ = 2 2 |(@ayig) ™ a(ziyis) Blziyig) = (o, Bys,, »

lel

as wanted. O
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LECTURE 3

Requirement for existence of perfect isometries
Davib CABRERA BERENGUER

This lecture is devoted to study a conditions required to ensure the possible
existence of a perfect isometry between the principal block of Ng(P) and G,
when G is simple and Ng(P)/O,(Ng(P)) is a Frobenius group. We shall follow
the structure of [Rob00]

3.1. Preliminaries

Let R be the ring of algebraic integers in C and let p be a fixed prime. Let M be
a maximal ideal of R with pR € M. Thus F' = R/M is a field a characteristic
p and the projection * : R — F'is a ring homomorphism.

Let U ={ee C:e™ =1 for some integer m with (m,p) = 1}.

LEMMA 3.1. The restriction of * to U defines an isomorphism of groups U —
F>*. Also, I is algebraically closed.

PROOF. See Lemma (2.1) of [Nav98]. O

DEFINITION 3.2. Let G° be the set of p-reqular elements of G and let X : G —
GL,(F) be a representation of G. Let g € GV. Since F is algebraically closed,
by the previous lemma we have that the eigenvalues of X(g) are of the form
ef,...,e} for uniquely determined €1, ...,e, € U. We say that
p: GO — C
g = ¢eg1+...+¢ep
is the Brauer character afforded by the representation X. We say that ¢

is trreducible if X is irreducible, and we denote the set of irreducible Brauer
characters by IBr(G).

THEOREM 3.3. IBr(G) is a basis of cf(GY), the class functions of GO. Thus,
[IBr(G)| is the number of conjugacy classes of p-regqular elements of G.

PROOF. See Corollary (2.10) of [Nav98]. O
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28 3.1. Preliminaries

If x € Irr(G) and X is a representation affording x then X (K) = w, (K)I for ev-

ery class sum K of G. Thus wy : Z(CG) — R defines an algebra homomorphism.
We may construct an F-linear map

A Z(FG) — F
K — wy(K)

by linear extension. It can be seen that A, is an algebra homomorphism.

~

Now, let ¢ € IBr(G) be afforded by an F-representation X. Again, X (K) =
Ap(K)I is a scalar matrix, which only depends on ¢, and then A, : Z(FG) — F
defines an algebra homomorphism.

DEFINITION 3.4. The p-blocks of G are the equivalence classes in Irr(G) UIBr(G)
via X ~ ¢ if Ay = A, for x,p € Irr(G) U IBr(G).

Hence, a, 8 € Irr(G) lie in the same p-block if and only if

(Koo _ (115))*

a(1) B(1)

for every K € CI(G), where xi € K.

We denote the set of p-blocks of G by BI(G). The unique p-block which contains

the trivial character 15 is the principal block, and it shall be denoted by
Bo(G).

There is another way of characterize the complex irreducible characters of a p-
block. Let B € BI(G). We denote Irr(B) = Irr(G) n B, IBr(B) = IBr(G) n B,
and we define k(B) = |Irr(B)|, [(b) = |IBr(B)].

DEFINITION 3.5. Let G, H be groups and let B € BI(G), B' € BI(H). A perfect
isometry between B and B' is a Z-linear bijective map I : Z[Irr(B)] — Z[Irr(B')]
that preserves the inner product and such that the map

pwr: GxH — C
(9:h)  — 2yer(s) X9 IO (R)

verifies the following.
(i) If exactly one of g € G, h € H is p-reqular then ur(g,h) = 0.

pr(g,h)  pi(g,h)
ICc(9)lp’ ICu(M)p

(ii) The numbers are algebraic integers for (g,h) € G x H.

DEFINITION 3.6. G is a Frobenius group if there is a proper 1 £ N <G and
a complement A of N in G such that Cg(n) € N for every 1 £ ne N. We say
that N is the Frobenius kernel of G and A is a Frobenius complement of

G.
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3. Requirement for existence of perfect isometries 29

LemMA 3.7. If G is a Frobenius group with respectively Frobenius kernel and
complement N and A, then (|[N|,|A]) = 1.

ProOOF. Consider the action of A on N by conjugation and let 1 = n € N. As
Cq(n) € N then Cg(n) € N n A = 1. Therefore,

IN| =1+ 1[A: Ca(ni)] = 1 +n|A|.
Il

LEMMA 3.8. Let G be a Frobenius group with Frobenius kernel N. Then the
following hold.

(i) If 6 € Irr(N) is nontrivial then 8¢ € Irr(G) and hence Gy = N.
(ii) If x € Irr(G) satisfies [xn,1n] = 0 then x = 0F for some 6 € Trr(N).

PROOF. See Theorem (6.34) of [Isa76]. O

3.2. The requirement

Suppose that G is a finite simple group. Let P € Syl,(G) and let H = Ng(P).
Let by be the principal p-block of H, and let By be the principal p-block of G. We
further assume that there is a perect isometry 7 : Z[Irr(by)] — Z[Irr(B1)] and
that H/O,(H) is a Frobenius group with Frobenius kernel PO, (H)/Oy(H)
and Frobenius complement F, where F has e conjugacy classes.

DEFINITION 3.9. The non-exceptional characters of by are the irreducible char-
actes of € Irr(by) such that P < ker(u).

CLAIM 3.10. There are e non-exceptional characters.
First we need a few lemmas.

LEMMA 3.11. Let B be a p-block of G and let N < G be a p'-group. Then,
Irr(Bo(G/N)) = Irr(Bo(G)) and IBr(Bo(G/N)) = IBr(By(G))

PROOF. See Theorem (9.9) of [Nav98]. O

LEMMA 3.12. Let G be finite and p-solvable with Oy (G) = 1. Then G has a
unique p-block.

PROOF. See Problem (4.9) of [Nav98|. O

Now we can prove Claim (3.10)
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30 3.2. The requirement

Proor. We first prove that Irr(b;) = Irr(H/Opy(H)). Since H is p-solvable
(Ng(P)/P is a p’-group) then so is H/Opy (H). Also,

O, (H/Oy(H)) =0y (H)/Opy(H) = 1.
Thus, by lemma (3.12) we have that the unique p-block of H/O, (H) is the

principal one and hence by Lemma (3.11) we have that

Irr(H /Oy (H)) = Irr(Bo(H /Oy (H))) = Irr(br).

Thus, by definition we have that the number of non-exceptional characters of b;
is

{a € Irr(by) : P € ker(a)}| =
o € Ter(H /Oy (1) : P  er(a)}] =
[15(H /PO (H)].

As H/PO,(H) = (H/O,,(H))/(PO,(H)/Oy (H)) = B, then [lrx(H/PO, (H))| -
e, since e is the number of conjugacy classes of E. O

Cram 3.13. e = I(by)
Again, we first need a few lemmas.

LEMMA 3.14. Let p be a prime such that p does not divide |G|. Then Irr(G) =
IBr(G).

PROOF. See Theorem (2.12) of [Nav98|. O

LEMMA 3.15. Let N < G a p-group. Then there is a bijection between the p-
reqular classes of G onto the regular classes of G/N.

PROOF. See Lemma (3.9) of [Isal8]. O
Now we prove Claim (3.13).

PRrROOF. Since the Frobenius action is coprime and PO, (H)/O,(H) is a p-
number, then p does not divide |E|. By Theorem (3.14) we have that |Irr(E)| =
[IBr(E)|. Therefore, e = |IBr(E)| = |IBr(H/POy(H))| and thus e is the
number of p-regular classes of H/PO,,(H). Since PO, (H)/Oy(H) is a nor-
mal p-subgroup of H/O,(H), by Lemma (3.15) we have that there is a bi-
jection between the p-regular classes of H/O,(H) onto the set of p-regular
classes of (H/Oy(H))/(POy(H)/Opy(H)) =~ H/POy(H). As a consequence,
|IBr(H /POy (H))| = |IBr(H/Oy(H))|. But, by Lemma (3.11) this is equal to
1Br(by)] = U(by). O
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3. Requirement for existence of perfect isometries 31

Now, let {1, ..., pe} be the non-exceptional characters of b;. As 7 is an isometry
then p] = €;x; for a sign ¢; and some x; € Irr(G). We refer to {x1,...,xe} as
the non-exceptional characters of Bj.

Obviously, if 7 & j then x; # X, since in other case 0 % [€;xi, €jX;] = [,u[,,u}] =
[14i, 1], and this is not possible.

We want to prove the following.
THEOREM 3.16. All non-exceptional characters in By are constant on p-singular

elements. In particular, there are at least [(by) irreducible characters of By which
take constant (nonzero) values on p-singular elements.

Furthermore, it is always possible to modify the perfect isometry T so that it
sends 1 to 1¢.

We will distinguish two cases: when H acts transitively on P\{1} and when it
does not. For the first case, we need some claims to establish the result.

LEMMA 3.17. G has a normal p-complement if and only if IBr(Bo(G)) = {1go}.
PROOF. See Corollary (6.13) of [Nav98]. O

LEMMA 3.18. Let x1,...,xx be representatives of the G-conjugacy classes of p-
elements of G. Then,

k
Z (Bo(Ca(w:)))-

PROOF. See Theorem (5.12) of [Nav98| and apply the third main theorem. O
CrLAM 3.19. Suppose that H acts transitively on P\{1}. Then k(b1) = 1+1(by).

PRrROOF. Let 1 £ = € P. As H/Oy(H) is a Frobenius group with kernel
POy (H)/Oy(H) and 1 & x € P then it follows that
CH(x)Op’(H)/Op’(H) = CH/Op/(H) (xop’(H)) - Pop’(H)/Op’(H)a

and therefore Cy(z) < P x Oy (H). As P x Op(H) is p-nilpotent then so is
Cp(z) and by Lemma (3.17) we have that I(Bo(Cg(x))) = 1. As P consists
on 2 H-conjugacy classes, then 1,z are the representatives of the p-classes, and
applying now Lemma (3.18) we have that

k(b1) = (Bo(Cru(1))) + U(Bo(Cr(z))) = 1(b1) + U(Bo(Cr(z))) = 1(b1) + 1
O

LEMMA 3.20. Let x € G be a p-element and let y € Oy (Cq(x)). If x € Irr(G) is
in the principal block then x(zy) = x(x).
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32 3.2. The requirement

PROOF. See Theorem (7.7) of [Nav98]. O
Now, we prove the Theorem in the case where H acts transitively on P\{1}.

ProOOF. Now, let x € Irr(B;). We check that x is constant and nonzero on
the p-singular elements. As H acts transitively on P\{1}, then the nontrivial
p-elements are G-conjugate, and therefore y is constant on the nontrivial p-
elements.

By our previous claims we have that k(b;) = 1 +1(b1). Now, since 7 is a perfect
isometry, by Proposition (2.33) we have that k(B1) = k(b1) and I(By) = I(b1)
and thus, k(B1) = 14+1(B1). Let 1 + x € P. Using again Lemma (3.18) we have
that I[(Bop(Cg(z))) = 1, and Lemma (3.17) yields that Cg(x) has a normal p-
complement. As a consequence, if y € Cg(z)? then necessarily y € Oy (Cg(z)),
and by Lemma (3.20) we deduce that x(z) = x(zy), and hence x is constant on
the p-singular elements. Let K € CI(G) be a class of p-singular elements and let

x € K. If x(z) = 0 then
. <|K|x<z)>* .
x(1)

since x is in the principal block. Then p divides |K]|, since in other case a| K|+
bp = 1 for some a,b € Z and hence 1 € M, which is not possible as M is
maximal. However, as P consists on 2 H-conjugacy classes then it is a minimal
normal subgroup of N¢g(P), which is necessarily p-elementary abelian. Thus
P < Cg(x) and hence p does not divide |K|. Therefore x is nonzero on the
p-singular elements. O
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