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LECTURE 1

Special conjugacy classes and exceptional characters

J. Miquel Mart́ınez

This lecture is devoted to the concept of special conjugacy classes and exceptional
characters, introduced by M. Suzuki in [Suz55]. We will use them to prove the
following theorem from [Suz57]. We say that G satisfies property (W) if every
nonidentity element of G has abelian centralizer in G.

Theorem 1.1 (Suzuki). Let G be a finite group satisfying property (W). If G
has odd order then G is not simple.

It had been proven previously by Weisner that finite groups with this condition
are either solvable or simple. Brauer–Suzuki–Wall proved that nonabelian simple
groups of even order satisfying condition (W) had to be isomorphic to PSLp2, 2kq.
These theorems were proved as part of the CFSG, and occured before the odd
order theorem.

1.1. Special classes and exceptional characters

Definition 1.2. Let H ¤ G. We say a conjugacy class C of H is special in G
if C contains an element x with CGpxq � H.

Lemma 1.3. Let C1, . . . , Ct be special classes of H ¤ G and let xi P Ci be such
that CGpxiq ¤ H. Assume that xi is not G-conjugate to any xj if i � j. If ψ is
a generalized character of H such that ψpgq � 0 for all g P H �

�
i Ci then the

following hold:

(i) ψGpxiq � ψpxiq,

(ii) ψGpgq � 0 if g is not G-conjugate to any xi,

(iii) rψG, ψGs � rψ,ψs.

Proof. If x P G then the induction formula gives

ψGpxq �
1

|H|

¸
tPG
xtPH

ψpxtq

1



2 1.1. Special classes and exceptional characters

and if xt P H but x is notG-conjugate to any xi, we have ψpx
tq � 0 so ψGpxq � 0.

Next we set x � xi and t P G with xt P H. We claim that if ψpxtq � 0 then
t P H. Indeed, if ψpxtq � 0 then by hypothesis we have xt is H-conjugate to
some xj . By the hypothesis on the xk’s we have that xt � xh for some h P H
and this implies that th�1 P CGpxq ¤ H so t P H, as claimed. Using this, the
induction formula gives

ψGpxq �
1

|H|

¸
tPG
xtPH

ψpxtq �
1

|H|

¸
tPH
xtPH

ψpxtq �
|H|

|H|
ψpxq � ψpxq,

which proves (i).

Finally let Ci � CGpxiq ¤ H. Set ci � |G : Ci| and notice that ci � |G : H|hi
where hi � |H : Ci|. By (ii), we know that ψG vanishes on the elements of G
not G-conjugate to any xi. Therefore,

rψG, ψGs �
1

|G|

ţ

i�1

ciψ
GpxqψGpxq �

1

|G|

ţ

i�1

|G : H|hiψpxqψpxq �

�
1

|H|

ţ

i�1

hiψpxqψpxq � rψ,ψs

where we have used (ii) in the second equality. This proves (iii). □

The above result helps us construct a character correspondence in the following
special situation.

Proposition 1.4. Let C1, . . . , Ct be special classes of H ¤ G and let xi P Ci be
such that CGpxiq ¤ H. Assume that xi is not G-conjugate to any xj if i � j. If
H has s ¥ 2 distinct irreducible characters ψ1, . . . , ψs such that

(i) ψipxq � ψjpxq for all x P H �
�
i Ci (in particular, ψip1q � ψjp1q),

(ii) ψpxq � 0 if x P H is G-conjugate but not H-conjugate to an xi

then G has s irreducible characters χ1, . . . , χs with

ψGi � pa� ϵqχi �
¸
j�i

aχj �∆

where ϵ � �1, a ¥ 0, pa � ϵq ¥ 0 and ∆ does not contain any χj’s. Further,
ϵ, a,∆ are independent of i.

Proof. Consider the s�1 generalized characters φi � ψi�ψs, which satisfy the
assumptions of Lemma 1.3. Then rφGi , φ

G
i s � 2 so φGi contains two irreducible

constituents with multiplicity �1. Arguing analogously for φi�φj � ψi�ψj we
get that rφi�φj , φi�φjs � 2 so φGi and φGj have a constituent in common, with

the same sign. Let χs be this constituent (common to all the φi’s). We may write
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1. Special conjugacy classes and exceptional characters 3

φGi � ϵ1χi�ϵ2χs for χi P IrrpGq and ϵ1, ϵ2 signs. Now φGi p1q � ψGi p1q�ψ
G
s p1q � 0

so ϵ1 � �ϵ2, and it follows that

φGi � ϵpχi � χsq

for ϵ � �1 for all 1 ¤ i ¤ s � 1. Notice that ϵ is the same for all i because the
sign of χs as a constituent of all φGi is the same.

Therefore ψGi � ψGs � ϵpχi � χsq and rearranging we obtain

ψGi � ϵχi �
ş

j�1

ajχj �∆

where ∆ does not contain any of the χi’s (we have just written φGs � ϵχs �°s
j�1 ajχj �∆, and notice that ∆ does not depend on i either. Since s ¥ 2 we

may do the same but fixing a different ψj instead of ψs and obtain the same
formula for ψs. We need to show all the aj ’s are equal.

First, notice that if xgi is H-conjugate to xi then g P H (as in the previous
result). Using that ψi vanishes in the elements of H that are G-conjugate but
not H-conjugate to any of the xk’s and that xk and xj are never G-conjugate if
k � j we obtain

ψGi pxjq �
1

|H|

¸
tPG
xtPH

ψipx
t
jq �

1

|H|

¸
tPH

ψipx
t
jq � ψipxjq.

Secondly, if x P G is not G-conjugate to any xi then

ψGi pxq �
1

|H|

¸
tPG
xtPH

ψipx
tq �

1

|H|

¸
tPG
xtPH

ψspx
tq � ψGs pxq

where we have used that ψi and ψs coincide in the elements of H outside
�

Ci.

Setting ci � |G : CGpxiq| and hi � |H : CGpxiq| as before, we have

rψGi , ψ
G
i s � rψGs , ψ

G
s s �

1

|G|

¸
xPG

�
ψGi pxqψ

G
i pxq � ψGs pxqψ

G
s pxq

	
�

�
1

|G|

ţ

j�1

ci

�
ψipxjqψipxjq � ψspxjqψspxjq

	
�

� rψi, ψis � rψs, ψss � 0

Now rψi, ψis � rψs, ψss � pai � ϵq2 � a2s � pas � ϵq2 � a2i which forces ai � as, as
desired. □

Definition 1.5. The χi’s above are called exceptional characters associated to
the ψi’s.

J. Miquel Mart́ınez, Gabriel A. L. Souza, D. Cabrera-Berenguer



4 1.2. Analysis of groups satisfying condition (W)

The following might be a more convenient reformulation: in the situation of the
Lemma,

ψGi � ϵχi �Ψ

where ϵ,Ψ are independent of i. In particular, χi Ø ψi is a natural character
bijection.

Corollary 1.6. Assume the hypotheses and notation of Proposition 1.4. Then
χipxq � χkpxq for every element x P G not G-conjugate to any element in some
Ci. In particular, exceptional characters have the same degree.

Proof. Induction formula and Proposition 1.4(i). □

1.2. Analysis of groups satisfying condition (W)

Notice for example that property (W) guarantees ZpGq � 1 if G is nonabelian.
We assume G is simple of odd order satisfying (W) and work to find a contra-
diction.

Proposition 1.7. If A ¤ G is maximal abelian then A � CGpxq for all 1 � x P
A, and every nontrivial conjugacy class of A is special in G.

Proof. We only need to prove the first affirmation, which follows from the fact
that CGpxq is abelian. □

Proposition 1.8. Let N � NGpAq. Two elements of A are G-conjugate if and

only if they are N -conjugate. In particular, w � |A|�1
|N :A| is an integer and there

are exactly w conjugacy classes of G intersecting Azt1u nontrivially.

Proof. If Ag XA � 1 for g P G then there is 1 � y P AXAg and A � CGpyq �
Ag by Proposition 1.7. Then g P NGpAq, and the first part follows. Since
CGpxq � A for any x P Azt1u we have that x has exactly |N : A| N -conjugates,
and the second part follows. For the final part, w is the number of N -conjugacy
classes in Azt1u and by the first part, w is the number of different G-conjugacy
classes of elements of Azt1u. □

Proposition 1.9. Under our hypotheses, N has exactly w irreducible charac-
ters ψ1, . . . , ψw of degree l � |N : A|, induced from the nontrivial irreducible
characters of A, and every such character induces irreducibly to N .

Proof. See 6.34 of [Isa76] (thanks Juan!). □

Lemma 1.10. With our hypotheses, if χ P CharpNq satisfies χpxq � 0 for x P
NzA then χGpyq � χpyq for y P A.

J. Miquel Mart́ınez, Gabriel A. L. Souza, D. Cabrera-Berenguer



1. Special conjugacy classes and exceptional characters 5

Proof. By Proposition 1.8 we have yt P A if, and only if t P N so

χGpyq �
1

|N |

¸
tPG
ytPA

χpytq �
1

|N |

¸
tPN

χpytq �
|N |

|N |
χpyq

as desired. □

Proposition 1.11. Assume w ¥ 2. The exceptional characters χ1, . . . , χw of G
associated to the characters ψ1, . . . , ψw are linearly independent in C1, . . . , Ct.

Proof. Assume that
°w
i�1 aiχipxq � 0 for all x P Cj (j � 1, . . . , t). Then by

Corollary 1.6 we have that �
w̧

i�1

aiχi

�
pχk � χlq � 0

for any pair k, l P t1, . . . , tu. Now

0 � r

�¸
i

aiχi

�
pχk � χlq , 1Gs �

¸
i

airχi, χks �
¸
i

airχi, χls � ak � al

for any pair k, l. Therefore ¸
i

χipxq � 0

for all x P Cj , j � 1, . . . , t. Now recall that we may write

ψGi � ϵχi �Ψ

where ϵ and Ψ are independent of i. Therefore χipxq � ϵψGi pxq � ϵΨpxq so

(1.2.1) 0 �
¸
i

χipxq �
¸
i

ϵψGi pxq � ϵwΨpxq.

Now Lemma 1.3, ψGi pxq � ψipxq � ψipxjq for xj P AXCj and pψiqA � µ1�� � ��µk
for certain linear characters µ, where tµ1, . . . , µku is the set of N -conjugates of µ.
By Proposition 1.9, every 1A � µ P LinpAq appears as a constituent of exactly
one of the pψiqA’s. Therefore¸

i

ψGi pxq �
¸

1A�µPIrrpAq

µpxjq � �1

(because column sums of character tables of abelian groups are 0). Then Equa-
tion 1.2.1 implies wΨpxq � �1 but w ¥ 2 contradicts the fact that Ψpxq is an
algebraic integer. □

Corollary 1.12. If B is a maximal abelian subgroup of G not G-conjugate to
A then the exceptional characters of A are not exceptional for B.

Proof. We have that χi and χj agree on B but by Proposition 1.11 they should
be linearly independent in every nontrivial conjugacy class of B. □

J. Miquel Mart́ınez, Gabriel A. L. Souza, D. Cabrera-Berenguer



6 1.2. Analysis of groups satisfying condition (W)

If H is a finite group, ρH denotes its regular character.

Proposition 1.13. The induced character 1GA contains every exceptional char-
acter χi of A with the same multiplicity.

Proof. Notice that χi � χj � ϵpψi � ψjq, and that this (generalized) character
vanishes in the elements that are not G-conjugate to some element of A by
Corollary 1.6. Write AG for the set of G-conjugates of elements in A. We have
that ¸

xPG

1GApxq pχipxq � χjpxqq � ϵ
¸
xPAG

1GApxq
�
ψGi pxq � ψGj pxq

	
(1.2.2)

and notice that if x P A we have 1GApxq � 1Apxq and ψGk pxq � ψkpxq by Lemma
1.10. Now Proposition 1.8 implies that every element x P A has exactly |G :
N ||N : CN pxq| conjugates. Using this we can rewrite equation 1.2.2 as

ϵ|G : N |
¸
xPA

1Apxq
�
ψipxq � ψjpxq

�
� ϵ|G : A|

¸
xPA

�
ψipxq � ψjpxq

�
� 0

(where we have used that
°
xPA ψkpxq � |N |rψk, 1N s � 0). From equation 1.2.2

we have
r1GA, χis � r1GA, χjs

as desired. □

Problem 1.14. Show that

r1GA � ψGi , 1
G
A � ψGi s �

1

|G|

¸
xPG

|1GApxq � ψGi pxq|
2 � 1� |N : A|.

Remark 1.15. Write ρ � 1GA. By Propositions 1.13 and 1.4 we may write

ρ� ψGi � 1G � ϵχi � b
w̧

k�1

χk �
¸
aγγ

where the last sum runs over the nontrivial and nonexceptional characters of G.
Using Problem 1.14 we have that

1� |N : A| � rρ� ψGi , ρ� ψGi s � 1� pb� ϵq2 � pw � 1qb2 �
¸
a2γ

so
|N : A| � pb� ϵq2 � pw � 1qb2 �

¸
a2γ .

We will use this formula in the future.

Proposition 1.16. Assume w ¥ 2. If χ is a nonexceptional character of A
then χ takes integer values on A. More precisely, if x P A we have χpxq � aχ in
the notation of Remark 1.15, and χpxq is the unique integer satisfying χpxq �

χp1q mod |A| and |χpxq| ¤ |A|�1
2 . In particular, χ vanishes in Azt1u if and only

if |A| divides χp1q.

J. Miquel Mart́ınez, Gabriel A. L. Souza, D. Cabrera-Berenguer



1. Special conjugacy classes and exceptional characters 7

Proof. Let 1A � λ P LinpAq. Then λG � ψGi for some i (because these ψi
are induced from the nontrivial linear characters of A, see Lemma 1.3. If χ is a
nonexceptional character then by Proposition 1.4, χ appears in every ψGi with
the same multiplicity m. If l � r1GA, χs then the aχ � l �m where aχ is from
Remark 1.15. By Frobenius reciprocity we have

χA � l1A �m
¸

1A�ξPLinpAq

ξ

and therefore we have

χp1q � l �mp|A| � 1q � l �m mod |A|.

Now for x P Azt1u we have ¸
γPLinpAq

γpxq � 0

so

χpxq � pl �mq1Apxq �m
¸

γPLinpAq

γpxq � l �m

and the first part of the result follows. From the formula in Remark 1.15 we

have |χpxq| ¤ χpxq2 ¤ |N : A| ¤ |A|�1
2 . □

Corollary 1.17. If χ, ψ are nonexceptional characters of the same degree, then
rp1Aq

G � ψGi , χs � rp1Aq
G � ψGi , ψs.

Proof. Notice that aχ � χpxq which is uniquely determined by χp1q by the
previous result. □

Proposition 1.18. We have¸
xPAzt1u

|χipxq|
2 ¥ |N : A|p|A| � |N : A|q.

Proof. . We have that pψiqA �
°
λ for exactly |N : A| different N -conjugate

λ P LinpAq. If ξ P LinpAq is not contained in pψiqA then ξG is one of the ψk’s for
k � i. Let m be the multiplicity of χi in ψ

G
k . Then m is independent of j and

rχi, ψ
G
i s � m� ϵ. If l � rχi, 1

G
As then rχi, 1

G
A�ψ

G
i s � l�m� ϵ and by Frobneius

reciprocity

pχiqA � l1A �m
¸

1A�ξPLinpAq

ξ � ϵ
¸
λ

where the last sum is over the |N : A| constituents of pψiqA. Arguing as before,
if 1 � x P A we have

χipxq � l �m� ϵψipxq.

J. Miquel Mart́ınez, Gabriel A. L. Souza, D. Cabrera-Berenguer



8 1.3. Simple groups satisfying (W)

Writing n � l �m P Z we have¸
1�xPA

|χipxq|
2 �

¸
1�xPA

pϵψipxq � nqpϵψipx
�1 � nq �(1.2.3)

�
¸

1�xPA

|ψipxq|
2 � ϵ

¸
1�xPA

pψipxq � ψipx
�1q � a2p|A| � 1q.(1.2.4)

Now if t � |N : A| and pψiqA �
°t
j�1 ξi we have

¸
1�xPA

|χipxq|
2 �

¸
1�xPA

�
ţ

i,j�1

ξipxqξjpx
�1q

�
�

� |A|
ţ

i�1

rξi, ξis � |N : A|2 � |A||N : A| � |N : A|2.

Furthermore, since
°

1�xPA λpxq � �1 for λ P LinpAq we have¸
1�xPA

ψipxq � �|N : A|

because pψiqA has |N : A| constituents. This shows that equation 1.2.3 equals

|A||N : A| � |N : A|2 � 2ϵn|N : A| � n2p|A| � 1q ¥ |N : A|p|A| � |N : A|q

using that 2 ¤ w � |A|�1
|N :A| so a

2w � 2ϵn ¥ 0 for w ¥ 2. □

1.3. Simple groups satisfying (W)

We now assume G is nonabelian simple of odd order and satisfies (W) and work
to find a contradiction. We note the following.

Proposition 1.19. The maximal abelian subgroups of G form a partition of
Gzt1u.

We now set some notation. Let A1, . . . , As be representatives of the G-conjugacy
classes of maximal abelian subgroups of G. Let Ni � NGpAiq, ni � |Ai| and
li � |Ni : Ai|. Recall that wi :� pni � 1q{li is an integer by Proposition 1.8,
and that there are exactly wi G-conjugacy classes intersecting Aizt1u. Since
ni and li are odd, wi is even and in particular wi ¥ 2. Therefore all results
from the previous section apply, and each Ai contributes exactly wi exceptional
characters ofG which are not exceptional for the other Aj ’s by Corollary 1.12.
In fact, we have the following:

Proposition 1.20. | IrrpGq| � 1�
°
wi. In particular, every nontrivial character

of G is exceptional for exactly one Ai.

J. Miquel Mart́ınez, Gabriel A. L. Souza, D. Cabrera-Berenguer



1. Special conjugacy classes and exceptional characters 9

Proof. Every g P Gzt1u is G-conjugate to an element of some Ai. Since each
Ai contributes wi conjugacy classes of G we have that G has 1�

°
wi conjugacy

classes and the first part follows. The sdecond part follows from Corollary 1.12.
□

More notation! We let tχk1, . . . , χ
k
wk
u be the exceptional characters of Ak coming

from characters tψk1 , . . . , ψ
k
wk
u of Nk (these were induced from the linear non-

trivial characters of Ak). We assume now that s is such that |As| � ns is the
smallest order among the Ai’s. Recall that by Corollary 1.6, exceptional charac-
ters of As have the same degree ds. We reorder the Ai’s such that there is some
t with ni dividing ds for i ¤ t and nj not dividing ds for i ¡ t. For the As and
all its related invariants and characters we omit the super or sub-index s.

Proposition 1.21. We have that every 1GA�ψ
G
m contains Ai-characters if i ¤ t.

Proof. Write Γ � 1GA � ψGm. Using the notation from Remark 1.15, and using
that exceptional characters of the same subgroup have the same degree and
Corollary 1.17 we may write

1G � χm � b
¸
j�m

χj �
s�1̧

k�1

ak

wķ

r�1

χkr .

Now 1NA and ψm coincide in NzA so using the induction formula we have that Γ
vanishes in the elements of G not G-conjugate to any element of A, so Γ vanishes
in A1, . . . , As�1.

Assume by way of contradiction that ai � 0. Then from Proposition 1.16 we have
that the χj ’s vanish in x P Aizt1u and that χkr pxq � yk is an integer independent
of r for k � i and k   s. Therefore Γpxq � 0 implies

0 � 1�
¸
k s
k�i

akykwk

which is a contradiction because wk is even. □

Now we find the final contradiction by doing a series of computations. Recall
that, from Remark 1.15 applied to A � As and using the formula from the
previous proof, we have

l � a2pw � 1q � pa� ϵq2 �
¸
k�s

a2kwk ¥ 1�
¸
k�s

a2kwk

using that w � 1 ¡ 0 and at least one of a or a � ϵ is nonzero. By Proposition
1.21 we have that each ak � 0 for k � 1, . . . , t so we conclude

(1.3.1) l � 1 ¥
ţ

k�1

wk.

J. Miquel Mart́ınez, Gabriel A. L. Souza, D. Cabrera-Berenguer



10 1.3. Simple groups satisfying (W)

Now fixing an A-exceptional character χ with degree d we have

|G| �
¸
gPG

|χpgq|2 � d2 �
ş

k�1

|G|

nklk

¸
gPAizt1u

|χpgq|2

where we have used that if g P Akzt1u then |G : CGpgq| � |G : Ak| � |G|{nk (in
the left sum we coubnt the G-conjugates of any g inside Ak exactly lk times!).

If k ¤ t then χpgq � 0 for any g P Akzt1u by Proposition 1.16 which implies that¸
gPAkzt1u

|χpgq|2 � 0.

Further, if k ¡ t we know from the same result that χpgq is a nonzero integer.
Therefore ¸

gPAkzt1u

|χpgq|2 ¥ ni � 1.

Finally, if k � s then we have from Proposition 1.18 that¸
gPAzt1u

|χpgq|2 ¥ lpn� lq.

We put this all together and obtain that

|G| ¥ d2 �
s�1̧

k�t�1

|G|

nklk
pnk � 1q �

|G|

n
pn� lq.

Now every element of Gzt1u is G-conjugate to some element of an Ai. This
implies that

|G| � 1�
ş

k�1

|G|

nklk
pnk � 1q

(we are doing the same computation as before more or less). This implies that

1�
ş

k�1

|G|

nklk
pnk � 1q ¥ d2 �

s�1̧

k�t�1

|G|

nklk
pnk � 1q �

|G|

n
pn� lq

and therefore

1�
ţ

k�1

|G|

nklk
pnk � 1q �

|G|

nl
pn� 1q ¥ d2 �

|G|

n
pn� lq

and rearranging and dividing by |G| we obtain

ţ

k�1

pnk � 1q

nklk
�
pn� 1q

nl
¥ pd2 � 1q{|G| � 1�

l

n

J. Miquel Mart́ınez, Gabriel A. L. Souza, D. Cabrera-Berenguer



1. Special conjugacy classes and exceptional characters 11

which gives

(1.3.2)
ţ

k�1

pnk � 1q

nklk
�
pn� 1� l2q

nl
¥ pd2 � 1q{|G| � 1.

Now recall that by definition, n � |As| ¤ |Ak| � nk if k   s, and that wk �
pnk � 1q{lk. This implies

ţ

k�1

pni � 1q{nili ¤

�
ţ

k�1

wi

�
{n.

Using this and inequality 1.3.1 we have

pl � 1q{n ¥
ţ

k�1

pni � 1q{nili

and using inequlaity 1.3.2 we have

pl � 1q{n� pn� 1� l2q{nl ¥ 1� pd2 � 1q{|G|.

Since G is a nonabelian simple group, d ¡ 1.. This implies that pd2 �
1q{|G| ¡ 0 so we obtain the strict inequality

pl � 1q{n� pn� 1� l2q{nl ¡ 1.

Now using wl � n � 1 and multiplying by n on both sides we can rewrite the
above as

l � 1� pwl � l2q{l ¡ n

so
l � 1� w � l ¡ wl � 1

which implies 2pl � 1q � wpl � 1q ¡ 0 and therefore p2 � wqpl � 1q ¡ 0 but this
contradicts w ¥ 2 and l ¥ 1. We have finally proved

Theorem 1.22 (Suzuki). If a nonsolvable group G satisfies (W) then |G| must
be even.

Using Brauer–Suzuki–Wall and Weisner this implies

Theorem 1.23. If G satisfies (W) then either G is solvable or G is PSLp2, 2kq
for some integer k.

J. Miquel Mart́ınez, Gabriel A. L. Souza, D. Cabrera-Berenguer





LECTURE 2

Generalized blocks and isometries
Gabriel A. L. Souza

This lecture is devoted to studying some of the fundamental ideas introduced in
[KOR03] and relating them to the picky conjectures formulated by A. Moretó
and N. Rizo. These are mostly generalizations of concepts from modular repre-
sentation theory that can be found in [Nav98] - we will draw the parallels as
we go, though none of that theory is needed here.

For a bit of background, Donkin used an isomorphism between the group algebra
kSn and one particular Hecke algebra to define “l-modular representations” of
Sn, where l is a possibly composite number, as representations of other Hecke
algebras (see [Don03]). Here, we will drop the assumption that G � Sn and see
some things we can still retain.

Remark 2.1. Before starting, a note on notation. G will always be a finite group
and C will always be a union of conjugacy classes of G (we will restrict this a
bit later on). The contentious bit is that the standard inner product of two
complex class functions α, β of G will be denoted xα, βy*. The reason for
this will become clearer as we go (in part, it is because it follows [KOR03]).

2.1. C-Blocks

Definition 2.2. Let α, β P cfpGq. We define:

xα, βyC �
1

|G|

¸
gPC

αpgqβpgq.

If xα, βyC � 0, we say they are directly C-linked; otherwise, we say they are
orthogonal across C.

In principle, there is no way to guarantee that g�1 P C when g P C. So, given
two irreducible characters χ, ψ, xχ, ψyC has no reason to be real, much less an
integer. Also, since we don’t have 1 P C, it can even happen that xχ, χyC � 0!

*Miquel, si prefieres cambiarlo a rα, βs, hazlo (basta cambiar la definición de “inn”) - es
que, con el número de matrices que aparecen (+ el hecho que el proprio paper lo hace), creo que
igual queda más claro aśı. Tambien siéntete libre para quitar los “left - right” en las definiciones
de inn, innC, innD; de verdad que no sé cómo lo prefiero...
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14 2.1. C-Blocks

Using the relation of C-linking, we can construct a graph with vertices IrrpGq
where two irreducible characters are connected by an edge if and only if they
are directly C-linked.

Definition 2.3. The C-blocks of G are the connected components of the graph
defined by C-linking. If two irreducible characters χ, ψ are in the same C-block,
we say they are C-linked.

From the definition, if χ, ψ P B, where B is a C-block of G, then there exist
µi P IrrpGq, 1 ¤ i ¤ n, such that χ � µ0, ψ � µn and xµi, µi�1yC � 0 for all
0 ¤ i ¤ n� 1.

Remark 2.4. When C is the union of the classes of the elements of G of order not
divisible by a given prime p, the above definition is one of the characterizations
of the Brauer p-blocks of G.

Whenever α P cfpGq, we write αC to denote the class function of G which
coincides with α on the classes in C and is 0 for all other classes. We will also
write C1 to denote the complement of C in G. Note that this is also a union of
conjugacy classes (namely, those not in C).

Proposition 2.5. Let α, β P cfpGq. Then,
@
αC , β

D
� xα, βyC. In particular, if

χ P IrrpGq is in a C-block B, then both χC and χC1 are C-linear combinations of
the characters in B.

Proof. By definition, we have@
αC , β

D
�

1

|G|

¸
gPG

αCpgqβpgq

�
1

|G|

¸
gPC

αpgqβpgq � xα, βyC .

Thus, if ψ P IrrpGq,
@
χC , ψ

D
� 0 if and only if xχ, ψyC � 0, and this can only

happen for irreducible characters in the block B.

Also, it is immediate from the definition that xχ, ψyC � xχ, ψyC1 � xχ, ψy. But
then, if ψ � χ is directly C1-linked to χ - equivalently, if it is one of the elements
of IrrpGq in the decomposition of χC1 - it is also directly C-linked to χ, meaning
it is in B by the above. □

Of course, the properties we can hope to get depend highly on C. To illustrate
this, we have a couple of examples.

Example 2.6. Suppose C � G. Then, xχ, ψyC � xχ, ψy for all χ, ψ P IrrpGq.
By the First Orthogonality Relation, this means χ is not directly C-linked to any
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2. Generalized blocks and isometries 15

other ψ. Thus, the C-linking graph is totally disconnected and each irreducible
character is a C-block.

Example 2.7. Suppose C � t1u. Then, xχ, ψyC � χp1qψp1q
|G| , which is always

nonzero for all χ, ψ P IrrpGq. Thus, every irreducible character is directly C-
linked to every other irreducible character, and the C-linking graph is complete.
In particular, there is a unique C-block.

Remark 2.8. Notice that the two cases above are exactly what happen in modular
representation theory when p ∤ |G| and when G is a p-group, respectively!

However, no matter which C we choose, we have a sufficient condition for a
character to constitute a block. This is an indicator of some examples to come
later.

Proposition 2.9. Write IrrCpGq � tχ P IrrpGq | Dx P C s.t. χpxq � 0u. Then,
if χ R IrrCpGq, tχu is a C-block of G.

Proof. χ is not in IrrCpGq if and only if χpxq � 0 for all x P C. Then, it follows
from the definition that χ cannot be directly C-linked to any other irreducible
character. □

The converse is clearly false, as the first example of C � G shows, for instance.

Proposition 2.10. Let B be a block of G and let θ �
°
χPIrrpGq aχχ, aχ P C, be

such that θpxq � 0 for all x not in C. Then, the same is true of θB �
°
χPB aχχ.

The result also holds replacing C for C1.

Proof. For the sake of simplicity, we will prove only the stated implication, as
the other one is nearly identical, using the symmetry in the preceding proposi-
tion.

Let µ P IrrpGq. If µ R B, then
A
χC1 , µ

E
� 0 for all χ P B, using Proposition 2.5.

Then,

(2.1.1)

C¸
χPB

aχχ
C1 , µ

G
� 0.

Also, by hypothesis,
°
χPIrrpGq aχχ

C1 � 0, meaningC ¸
χPIrrpGq

aχχ
C1 , µ

G
� 0,

J. Miquel Mart́ınez, Gabriel A. L. Souza, D. Cabrera-Berenguer



16 2.1. C-Blocks

whether µ is in B or not. This equation can be rewritten as

(2.1.2)

C¸
χPB

aχχ
C1 , µ

G
�

C¸
χRB

aχχ
C1 , µ

G
� 0.

Now suppose µ is in B. By Proposition 2.5,
A°

χRB aχχ
C1 , µ

E
� 0, sinceA

χC1 , µ
E
� 0 for all χ R B. Plugging this into Equation 2.1.2 and combining it

with Equation 2.1.1, we getC¸
χPB

aχχ
C1 , µ

G
� 0,@µ P IrrpGq,

meaning
°
χPB aχχ

C1 � 0. But this just says that θBpxq � 0 if x is not in C, as
we wanted. □

Corollary 2.11. If B is a C-block, x P C and y P C1, then¸
χPB

χpxqχpyq � 0.

Proof. Let θ �
°
χPIrrpGq χpyqχ. Since x P C, it is not conjugate to y and thus,

by the Second Orthogonality Relation, θpxq � 0. Since x is arbitrary then, by
the preceding proposition, θBpxq � 0 for all x P C. □

Remark 2.12. In modular representation theory, this result is known as “Weak
Block Orthogonality”.

In modular representation theory, there is a theorem due to Osima that says
that the Brauer p-blocks are the minimal subsets of IrrpGq with the preceding
property. The same result is actually true in our context, as we now show.

Proposition 2.13. Let S � IrrpGq be such that, for all x P C, y P C1, we have¸
χPS

χpxqχpyq � 0.

Then, there exist C-blocks B1, ..., Bk such that S � B1 \ ...\Bk.

Proof. Let θ �
°
χPS χpxqχ. By hypothesis, θ is identically 0 on C1. If µ P

IrrpGqzS, then ¸
χPS

@
µC , χ

D
χpxq �

@
µC , θ

D
� xµ, θy � 0.
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2. Generalized blocks and isometries 17

Then, it follows that
°
χPS

@
µC , χ

D
χ is identically 0 on C, since x was arbitrary.

Write µC � α � β, where all the irreducible summands of α are in S and those
of β are not. Then, given χ P S, xβ, χy � 0, meaning

@
µC , χ

D
� xα, χy. But

α �
¸
χPS

xα, χyχ �
¸
χPS

@
µC , χ

D
χ

and thus αpxq � 0 for all x in C. Then, by definition,
@
α, µC

D
� 0, using that

C \ C1 � G. Consequently, xα, αy � 0, which is equivalent to saying α � 0. In
particular, xµ, χyC �

@
µC , χ

D
� 0 for all χ in S. Thus, no element of S is directly

C-linked to an element outside of it, which is to say that S is a union of connected
components of the C-linking graph of G (which are exactly the C-blocks). □

The class functions tχC | χ P IrrpGqu are almost never linearly independent (as
a multiset), since there are kpGq of them, and yet there can be fewer than kpGq
classes constituting C. What we will now do is decompose them in a certain way
and construct a couple of important matrices along the way.

Let k � kpGq and write C �
�t
i�1Ci. Consider the following ordering of the

character table of G:

C1 C2 � � � Ct � � � Ck

χ1 � � � � � � � � � �
χ2 � � � � � � � � � �
...

...
...

...
...

χt � � � � � � � � � �
...

...
...

...
...

χk � � � � � � � � � �

LetXpCq denote the submatrix of the cells shaded in red; XpCq � rχipCjqsi,j . Let

∆pCq � XpCqtXpCq. Then, ∆pCq �
�°k

r�1 χkpCiqχkpCjq
�
i,j
� diag

�
|G|
|C1|

, ..., |G|
|Ct|

	
by the Second Orthogonality Relation.

Definition 2.14. The matrix of C-contributions of G is defined as ΓpCq �
rxχi, χjyCsi,j.

Notice how

XpCq∆pCq�1 �

�
χipCjq

|G|

|Cj |

�
i,j

,

from which

XpCq∆pCq�1XpCqt �

�
ţ

r�1

χipCrq
|G|

|Cr|
χjpCrq

�
i,j

� ΓpCq,

by definition.
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18 2.1. C-Blocks

Also, we note that, ordering the characters by C-blocks, ΓpCq admits a block-
diagonal form, each block corresponding to one of the C-blocks of G. We denote
these matrices ΓpC, Bq.

Proposition 2.15. ΓpCq is an idempotent matrix of rank and trace t.

Proof. By the preceding equations,

ΓpCq2 � XpCq∆pCq�1
�
XpCqtXpCq

	
∆pCq�1XpCqt

� XpCq∆pCq�1XpCqt � ΓpCq.

Also, XpCq clearly has rank t, since the character table has full rank. But
ΓpCqXpCq � XpCq, meaning ΓpCq also has rank at least t, and, from ΓpCq �
XpCq∆pCq�1XpCqt, its rank is also at most t. Finally, by the properties of the
trace, trpΓpCqq � tr

�
∆pCq�1∆pCq

�
� t. □

Now let tΦi | 1 ¤ i ¤ tu be a basis for the complex vector space of class
functions which are identically 0 outside C and let ΦpCq � rΦipCjqsi,j . By
their linear independence, ΦpCq is an invertible pt � tq-matrix. Now, for each
i P t1, ..., ku, there exist uniquely determined dij P C such that χC

i �
°
j�1 dijΦj .

As such, defining DpCq � rdijsi,j , we have XpCq � DpCqΦpCq.

Definition 2.16. The C-decomposition matrix of G regarding the basis tΦi |
1 ¤ i ¤ tu is the matrix DpCq defined above.

Remark 2.17. We may regard the Φi as analogues to the Brauer characters
(extended to the whole of G) from modular representation theory.

We then have

ΓpCq � XpCq∆pCq�1XpCqt � DpCqΦpCq∆pCq�1ΦpCqtDpCqt

� DpCqΦpCq
�
ΦpCqtDpCqtDpCqΦpCq

	�1
ΦpCqtDpCqt

� DpCq
�
DpCqtDpCq

	�1
DpCqt.

Definition 2.18. The C-Cartan matrix of G with respect to the basis regarding
the basis tΦi | 1 ¤ i ¤ tu is the matrix CpCq � DpCqtDpCq.

Notice how

CpCq�1 �
�
DpCqtDpCq

	�1
� ΦpCq

�
ΦpCqtDpCqtDpCqΦpCq

	�1
ΦpCqt

� ΦpCq∆pCq�1ΦpCqt � rxΦi,Φjysi,j
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2. Generalized blocks and isometries 19

2.2. Closed unions

Thus far, we have considered an arbitrary union of conjugacy classes C. We will
now only consider a special kind of union, where we will have more to say about
the structure of C-blocks and associated concepts.

Definition 2.19. A union C of conjugacy classes of G is called closed if, when
x P C, then every generator of xxy is also in C.

An immediate consequence of this restriction is that the inner product xχ, ψyC
of two irreducible characters is more controlled, as we can see below.

Proposition 2.20. If C is closed, then |G| xχ, ψyC P Z for all χ, ψ P IrrpGq.

Proof. Let n � exppGq and let σ P GalpQn : Qq. Then, we have

σ p|G| xχ, ψyCq � σ

�¸
gPC

χpgqψpgq

�
�
¸
gPC

σpχpgqqσ
�
ψpgq

	

�
¸
gPC

χpgkqψpgkq �
¸
gPC

χpgqψpgq � |G| xχ, ψyC ,

where k is the positive integer coprime with n such that σpζnq � ζkn (where ζn is a
primitive n-root of unity) and the fourth equality uses that g ÞÑ gk is a bijection
from C to C, as this union is closed. Since σ is arbitrary, |G| xχ, ψyC P Q. But
this is an algebraic integer, so |G| xχ, ψyC P Z. □

Most cases we are interested in actually satisfy this condition.

Example 2.21. If g is p-regular, then so is every generator of xgy. Thus, the
set of p-regular elements of G is a closed union of conjugacy classes. Recall that
this is the case studied in modular representation theory.

Example 2.22. Let P � tx P G | x is p-pickyu, where p is a fixed prime. P is
clearly a union of conjugacy classes of G and it is closed, since, if pp, kq � 1
and xk is contained in more than one Sylow p-subgroup, so is xkl � x (l is the
multiplicative inverse of k mod p).

More on Example 2.22

Let P P SylppGq and let x P P be picky. If x is G-conjugate to y and
y P NGpP q, then there exists g P G such that y � xg P P g. But y P P
(since y is a p-element in NGpP q). Thus, g P NGpP q, by pickyness, and

we get xG XNGpP q � xNGpP q. Also, if c P CGpxq, then x P P
c, meaning

c P NGpP q; i.e., CGpxq � NGpP q and xNGpP q is a conjugacy class of
NGpxq satisfying Definition 1.2!
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20 2.2. Closed unions

Example 2.23. Let P be as in Example 2.22. Let x P P and define Spxq �
ty P G | yp is G-conjugate to xu and S � tx P G | xp P pP qu (Spxq is called the
p-section of x). Let tx1, ..., xtu be a complete set of representatives of the picky

classes of G, so that P �
�t
i�1 x

G
i . Then, we have S �

�t
i�1 Spxiq.

Now take x P P and let ty1, ..., ysxu be a complete set of representatives of the
conjugacy classes of p-regular elements in CGpxq. If z P Spxq, then there exists
u P G such that zup � x. In particular, zup1 P CGpxq and thus, there exist some v P

CGpxq and a uniquely determined j such that zuvp1 � yj. Thus, zuv � xyj. Also,

if pxyiq
g � xyj, then g P CGpxq, by the uniqueness of the decomposition into p

and p1-parts, and ygi � yj, implying i � j. In summary, Spxq �
�sx
j�1pxyjq

G.
Combining this with what we had before shows that S is a union of conjugacy
classes of G. If x P S, then xp is picky, and thus so is xkp � pxkqp, meaning this
union is closed.

More on Example 2.23

Let P P SylppGq and let tx1, ..., xtu be a complete set of representatives
of the p-picky G-conjugacy classes, such that xi P P for all i. Then,

PNGpP q :� P X NGpP q �
�t
i�1 x

NGpP q
i is a disjoint union of conjugacy

classes of NGpP q. Also, CGpxiq � NGpP q, as we had seen, so they all
satisfy Definition 1.2.

Just like what was done in Example 2.23, we can show that SNGpP q :�
S X NGpP q is a disjoint union of conjugacy classes of NGpP q, whose
representatives are xiyij , where tyi1, ..., yisiu is a complete set of represen-
tatives of the classes of p-regular elements of CGpxiq. Since CGpxiyijq �
CGpxiq � NGpP q (again using the uniqueness of the decomposition into
p and p1-parts), these are all classes satisfying Definition 1.2!

If z P SNGpP q, there exists g P NGpP q such that zgp � xi for some (uniquely

determined) i. Then, pzkp q
g � xki , which is also a picky element in NGpP q,

and so there exists h P NGpP q such that pxki q
h � xj for some (uniquely

determined) j. Thus, pzkqghp � xj and zk P SNGpP q. Thus, the union is
closed.

From now on, we will assume that C is closed. We may define a couple of
special Z-modules associated to C.

First, we denote RpCq � Z
�
χC | χ P IrrpGq

�
, the Z-module generated by the

χC , which is contained in cfpGq. We also denote PpCq � RpCq X Z rIrrpGqs,
which is the Z-module of generalized characters in RpCq. Finally, we write
CartpCq � RpCq{PpCq.
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2. Generalized blocks and isometries 21

Proposition 2.24. |G|RpCq � PpCq � RpCq; in particular, both are free Z-
modules of the same rank.

Proof. Since cfpGq is torsion-free as a Z-module, the same is true of RpCq and
PpCq. Also, they are both finitely generated. Thus, by a standard result on
modules over PIDs, all we have to do is prove the inclusions to show that they
have the same rank.

Let χ P IrrpGq and let ψ P IrrpGq. Since |G| xχ, ψyC P Z and xχ, ψyC �
@
χC , ψ

D
,

we have
@
|G|χC , ψ

D
P Z. Since ψ is arbitrary, |G|χC is a generalized character,

which finishes the proof. □

Corollary 2.25. CartpCq is a finite abelian group whose exponent divides |G|.

Proof. By the preceding proposition, CartpCq is a Z-module of rank 0. The
fact on the exponent follows from |G|RpCq � PpCq. □

Definition 2.26. A C-basic set is a Z-basis for RpCq.

We will denote kpCq the number of conjugacy classes of G whose union composes
C.

Proposition 2.27. Let t � kpCq. Then, rankpPpCqq � rankpRpCqq � t and
every C-basic set is C-linearly independent.

Proof. Since XpCq is a matrix with full rank equal to t, rankZpRpCqq ¥ t, as
C-linear independence implies Z-independence. Analogously, rankZpRpC1qq ¥
kpGq � t. If χ P IrrpGq, then, by definition, χ � χC � χC1 . Thus, |G|χ P
PpCq ` PpC1q. It easily follows that |G|ZrIrrpGqs � PpCq ` PpC1q � ZrIrrpGqs
and thus rankZpRpCqq�rankZpRpCqq � kpGq � t�pkpGq�tq. From the previous
inequalities, we get rankZpRpCqq � t.

Now, suppose B � tθi | 1 ¤ i ¤ tu is a C-basic set. Then χC P spanZ B �
spanC B for all χ P IrrpGq. In particular, spanCtχ

C | χ P IrrpGqu � spanC B.
But the former has dimension t, since XpCq has full rank. Thus, B is C-linearly
independent. □

Let B be a C-block. Then, since χC has all of its components in the block B, if
we define RpC, Bq � Z

�
χC | χ P B

�
and PpC, Bq � RpC, BqXZrIrrpGqs, then we

obtain two direct sum decompositions:

RpCq �
à

BPBlCpGq

RpC, Bq

PpCq �
à

BPBlCpGq

PpC, Bq,
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22 2.2. Closed unions

from which we also have a decomposition

CartpCq �
à

BPBlCpGq

RpC, Bq
PpC, Bq

.

We write CartpC, Bq � RpC, Bq{PpC, Bq.

Definition 2.28. Let B be a C-block of G and let tθi | 1 ¤ i ¤ su be a Z-basis
for PpC, Bq. The Cartan matrix associated to B in this basis is the matrix
rxθi, θjyCsi,j

�

Proposition 2.29. Let B be a C-block, let tθi | 1 ¤ i ¤ su and tηi | 1 ¤ i ¤ su
be two Z-bases for PpC, Bq and let C,C 1 be the corresponding Cartan matrices.
Then, C,C 1 are integer matrices and there exists a matrix A P MatspZq such
that |detpAq| � 1 and C 1 � AtCA.

Proof. Since the θi are generalized characters which are identically 0 outside
of C, we have xθi, θjyC � xθi, θjy P Z, for all i, j. Let aij P Z be such that
ηi �

°s
k�1 aikθk. Then, we get:

�
xηi, ηjyC

�
i,j
�

�
ş

k�1

aik xθk, ηjyC

�
i,j

� raijs
�
xθi, ηjyC

�

� raijs

�
ş

k�1

ajk xθi, θkyC

�
� raijs

�
xθi, θjyC

�
raijs

t

� At
�
xθi, θjyC

�
i,j
A,

where A � raijs
t. Reversing the roles of η and θ, we get the desired result. The

part on the determinant of A follows from a well-known result on modules over
integral domains (notice that At is the matrix of the ηj written on the basis
tθi | 1 ¤ i ¤ su). □

Problem 2.30. Let d1 | � � � | ds be the invariant factors of the finite Z-module
CartpC, Bq. Show that ds � mintd P N� | dΓpC, Bq is an integer matrixu and
that the invariant factors of the (integer) matrix dsΓpC, Bq are

1,
ds
ds�1

,
ds
ds�2

, ...,
ds
d1

�I do not like this name, as it is analogous to the inverse to our previous “Cartan matrix”.
But it is how they define it in [KOR03]...
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2.3. Isometries

In this final short section, we define the concept of a generalized perfect
isometry and apply it to our case of picky elements; this is related to some
work in progress by A. Moretó and N. Rizo. For reference, in [Bro90], M.
Broué gives a definition which can be stated as follows:

Definition 2.31 (Broué). Let G,H be finite groups and let B,B1 be Brauer p-
blocks of G,H respectively. Then, an isometry I : ZrIrrpBqs Ñ ZrIrrpB1qs (i.e.,
a bijection preserving the ordinary inner product of cfpGq) is called perfect if
the function

µI : G�H Ñ C

pg, hq ÞÑ
¸

χPIrrpBq

χpgqIpχqphq

satisfies the following two conditions:

(i) if exactly one of g, h is p-regular, then µIpg, hq � 0;

(ii) µIpg,hq
|CGpgq|p

and µIpg,hq
|CHphq|p

are algebraic integers.

If such a function exists, B and B1 are called perfectly isometric.

There is a lot of literature on (perfect) isometries and their relations to other
kinds of equivalences (such as Morita equivalences); see [Sam20]. For our con-
text, [KOR03] gives the following definition. It looks much weaker in principle,
but according to [Sam20], it actually preserves many important theorems on
perfect isometries.

Definition 2.32. As before, let G, H be finite groups and C, D closed unions
of conjugacy classes of G, H (respectively). Let B be a C-block of G and B1, a
D-block of H. Write B � tχi | 1 ¤ i ¤ nu. A generalized perfect isometry
from B to B1 is a bijection I : B Ñ B1 such that there exist ϵi P t1,�1u,
1 ¤ i ¤ n satisfying xχi, χjyC � xϵiIpχiq, ϵjIpχjqyD, for all i, j. In this case, we
say B,B1 are perfectly isometric.

Equivalently, the blocks B,B1 are perfectly isometric in this sense if there ex-
ists a matrix S � diagpϵ1, ..., ϵnq, with ϵi � �1 for all i, such that ΓpC, Bq �
SΓpD, B1qS.

We remark that essentially the same notion works for unions of blocks, rather
then blocks individually. So the question of finding generalized perfect isome-
tries, as well as most of what we have been doing, admits both the local version
at a specific block and the global version, taking unions of the blocks.
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Proposition 2.33. Let B,B1 be perfectly isometric (unions of) blocks and write
B � tχi | 1 ¤ i ¤ su, B1 � tµi | 1 ¤ i ¤ su such that xχi, χjyC � xϵiµi, ϵjµjyD.
Then:


 there exists a Z-module isomorphism φ : RpC, Bq Ñ RpD, B1q which
restricts to an isomorphism from PpC, Bq to PpD, B1q;


 there exist bases of PpC, Bq and PpD, B1q such that the Cartan matrices
of B, B1 regarding those bases are equal.

Proof. Let X �
°s
i�1 aiχ

C
i be an arbitrary element of RpC, Bq. Notice thatC

ş

i�1

aiϵiµ
D
i , µj

G
�

C
ş

i�1

aiϵiµ
D
i , µj

G
D

�
ş

i�1

ai xϵiµi, µjyD

�
ş

i�1

ai xχi, ϵjχjyC � ϵj

C
ş

i�1

aiχ
C
i , χj

G
� ϵj xX , χjy .

If µ P IrrpHqzB1, then, since the µDi only have components in the block B1, the
inner product above is 0.

Define φ : RpC, Bq Ñ RpD, B1q by sending X to
°s
i�1 aiϵiµ

D
i . This is clearly

Z-linear. To show it is well defined and injective, note that φpX q � 0 if and
only if xφpX q, µy � 0 for all µ P IrrpHq. By the observation in the previous
paragraph, this is equivalent to xφpX q, µjy for all 1 ¤ j ¤ s. But, using the
equation above, xφpX q, µjy � 0 if and only if xX , χjy � 0. Thus, φpX q � 0 if
and only if X � 0.

Finally, we can define ψ : RpD, B1q Ñ RpC, Bq by sending an element
°s
i�1 biµ

D
i

to
°s
i�1 biϵiχ

C
i . It follows by arguing as above that ψ is well-defined, and a simple

computation gives ψ � φ�1.

From our previous computations, xX , χjy P Z if and only if xφpX q, µjy P Z.
Thus, φ restricts to an isomorphism from PpC, Bq to PpD, B1q. Notice as well,
writing Y �

°s
i�1 biχ

C
i , that

xφpX q, φpY qy �
ş

j�1

bjϵj xφpX q, µjy �
ş

j�1

bjϵ
2
j xX , χjy

�

C
X ,

ş

j�1

bjχj

G
� xX ,Y y .

Thus, if B is a Z-basis for PpC, Bq, the Cartan matrices in the bases B and
φpBq are equal. □

Finally, we end-off by obtaining what is almost a generalized perfect isometry
in a particular case we are interested in.
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Proposition 2.34. Let P P SylppGq, let N � NGpP q and take the notation from

Example 2.23. Then, the induction map ÒGN : ZrIrrpNqs Ñ ZrIrrpGqs defines a
not-necessarily bijective generalized perfect isometry from PpSN q into PpSq.

Proof. If χ is any generalized character of N which is 0 outside of the picky
sections, then the same is trivially true for χG, by the induction formula (and
since P � N). Thus, the map χ ÞÑ χG is well-defined from PpSN q into PpSq,
and is known to be Z-linear. All we have to do, then, is show that

@
αG, βG

D
S �

xα, βySN
for α, β P PpSN q.

For simplicity, let tx1, ..., xtu be a complete set of representatives of the picky
conjugacy classes of G such that xi P P for all i. If g P S, then g is G-conjugate to
xiyij , where the tyi1, ..., yisiu is a complete set of representatives of the p-regular
classes in CGpxiq. Thus, we only need to calculate pxiyijq

G.

Fix a right transversal T for N in G. Then, for each coset N t, |pxiyijq
N t| �

|pxiyijq
N |. If pxiyijq

nt � pxiyijq
n1t1 for some n, n1 P N , t, t1 P T , then xntt

1�1n1�1

i �

xi P P . Thus, x
n
i P P

t1t�1
. But, since n P N , we also have xni P P . As xi is picky,

t1t�1 P N , which means t � t1.

So there are rG : N sG-conjugates of xiyij for eachN -conjugate. I.e., |pxiyijq
G| �

rG : N s|pxiyijq
N |. Thus, we have

@
αG, βG

D
S �

1

|G|

¸
gPS

αGpgqβGpgq �
1

|G|

ţ

i�1

si̧

j�1

|pxiyijq
G|αGpxiyijqβGpxiyijq

�
1

|N |

ţ

i�1

si̧

j�1

|pxiyijq
N |αGpxiyijqβGpxiyijq.

Now, by the induction formula, we have

αGpxiyijq �
1

|N |

¸
hPG

α�ppxiyijq
hq �

1

|N |

¸
hPN

αppxiyijq
hq � αpxiyijq,

where the second equality comes since xi is picky. Combining this equation with
the previous one, we obtain

@
αG, βG

D
S �

1

|N |

ţ

i�1

si̧

j�1

|pxiyijq
N |αpxiyijqβpxiyijq � xα, βySN

,

as wanted. □
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LECTURE 3

Requirement for existence of perfect isometries

David Cabrera Berenguer

This lecture is devoted to study a conditions required to ensure the possible
existence of a perfect isometry between the principal block of NGpP q and G,
when G is simple and NGpP q{Op1pNGpP qq is a Frobenius group. We shall follow
the structure of [Rob00]

3.1. Preliminaries

Let R be the ring of algebraic integers in C and let p be a fixed prime. LetM be
a maximal ideal of R with pR � M . Thus F � R{M is a field a characteristic
p and the projection � : RÑ F is a ring homomorphism.

Let U � tε P C : εm � 1 for some integer m with pm, pq � 1u.

Lemma 3.1. The restriction of � to U defines an isomorphism of groups U Ñ
F�. Also, F is algebraically closed.

Proof. See Lemma (2.1) of [Nav98]. □

Definition 3.2. Let G0 be the set of p-regular elements of G and let X : G Ñ
GLnpF q be a representation of G. Let g P G0. Since F is algebraically closed,
by the previous lemma we have that the eigenvalues of X pgq are of the form
ε�1 , . . . , ε

�
n for uniquely determined ε1, . . . , εn P U. We say that

φ : G0 ÝÑ C
g ÞÝÑ ε1 � . . .� εn

is the Brauer character afforded by the representation X . We say that φ
is irreducible if X is irreducible, and we denote the set of irreducible Brauer
characters by IBrpGq.

Theorem 3.3. IBrpGq is a basis of cfpG0q, the class functions of G0. Thus,
|IBrpGq| is the number of conjugacy classes of p-regular elements of G.

Proof. See Corollary (2.10) of [Nav98]. □
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28 3.1. Preliminaries

If χ P IrrpGq and X is a representation affording χ then X pK̂q � ωχpK̂qI for ev-

ery class sum K̂ of G. Thus ωχ : ZpCGq Ñ R defines an algebra homomorphism.
We may construct an F -linear map

λχ : ZpFGq ÝÑ F

K̂ ÞÝÑ ωχpK̂q
�

by linear extension. It can be seen that λχ is an algebra homomorphism.

Now, let φ P IBrpGq be afforded by an F -representation X . Again, X pK̂q �
λφpK̂qI is a scalar matrix, which only depends on φ, and then λφ : ZpFGq Ñ F
defines an algebra homomorphism.

Definition 3.4. The p-blocks of G are the equivalence classes in IrrpGqYIBrpGq
via χ � φ if λχ � λφ for χ, φ P IrrpGq Y IBrpGq.

Hence, α, β P IrrpGq lie in the same p-block if and only if�
|K|αpxKq

αp1q


�

�

�
|K|βpxKq

βp1q


�

for every K P ClpGq, where xK P K.

We denote the set of p-blocks of G by BlpGq. The unique p-block which contains
the trivial character 1G is the principal block, and it shall be denoted by
B0pGq.

There is another way of characterize the complex irreducible characters of a p-
block. Let B P BlpGq. We denote IrrpBq � IrrpGq X B, IBrpBq � IBrpGq X B,
and we define kpBq � |IrrpBq|, lpbq � |IBrpBq|.

Definition 3.5. Let G,H be groups and let B P BlpGq, B1 P BlpHq. A perfect
isometry between B and B1 is a Z-linear bijective map I : ZrIrrpBqs Ñ ZrIrrpB1qs
that preserves the inner product and such that the map

µI : G�H ÝÑ C
pg, hq ÞÝÑ

°
χPIrrpBq χpgqIpχqphq

verifies the following.

(i) If exactly one of g P G, h P H is p-regular then µIpg, hq � 0.

(ii) The numbers µIpg,hq
|CGpgq|p

, µIpg,hq|CHphq|p
are algebraic integers for pg, hq P G�H.

Definition 3.6. G is a Frobenius group if there is a proper 1 �� N � G and
a complement A of N in G such that CGpnq � N for every 1 �� n P N . We say
that N is the Frobenius kernel of G and A is a Frobenius complement of
G.
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3. Requirement for existence of perfect isometries 29

Lemma 3.7. If G is a Frobenius group with respectively Frobenius kernel and
complement N and A, then p|N |, |A|q � 1.

Proof. Consider the action of A on N by conjugation and let 1 �� n P N . As
CGpnq � N then CApnq � N XA � 1. Therefore,

|N | � 1�
¸
i

|A : CApniq| � 1� n|A|.

□

Lemma 3.8. Let G be a Frobenius group with Frobenius kernel N . Then the
following hold.

(i) If θ P IrrpNq is nontrivial then θG P IrrpGq and hence Gθ � N .

(ii) If χ P IrrpGq satisfies rχN , 1N s � 0 then χ � θG for some θ P IrrpNq.

Proof. See Theorem (6.34) of [Isa76]. □

3.2. The requirement

Suppose that G is a finite simple group. Let P P SylppGq and let H � NGpP q.
Let b1 be the principal p-block of H, and let B1 be the principal p-block of G. We
further assume that there is a perect isometry τ : ZrIrrpb1qs Ñ ZrIrrpB1qs and
that H{Op1pHq is a Frobenius group with Frobenius kernel POp1pHq{Op1pHq
and Frobenius complement E, where E has e conjugacy classes.

Definition 3.9. The non-exceptional characters of b1 are the irreducible char-
actes of µ P Irrpb1q such that P � kerpµq.

Claim 3.10. There are e non-exceptional characters.

First we need a few lemmas.

Lemma 3.11. Let B be a p-block of G and let N � G be a p1-group. Then,
IrrpB0pG{Nqq � IrrpB0pGqq and IBrpB0pG{Nqq � IBrpB0pGqq

Proof. See Theorem (9.9) of [Nav98]. □

Lemma 3.12. Let G be finite and p-solvable with Op1pGq � 1. Then G has a
unique p-block.

Proof. See Problem (4.9) of [Nav98]. □

Now we can prove Claim (3.10)
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Proof. We first prove that Irrpb1q � IrrpH{Op1pHqq. Since H is p-solvable
(NGpP q{P is a p1-group) then so is H{Op1pHq. Also,

Op1pH{Op1pHqq � Op1pHq{Op1pHq � 1.

Thus, by lemma (3.12) we have that the unique p-block of H{Op1pHq is the
principal one and hence by Lemma (3.11) we have that

IrrpH{Op1pHqq � IrrpB0pH{Op1pHqqq � Irrpb1q.

Thus, by definition we have that the number of non-exceptional characters of b1
is

|tα P Irrpb1q : P � kerpαqu| �

|tα P IrrpH{Op1pHqq : P � kerpαqu| �

| IrrpH{POp1pHqq|.

AsH{POp1pHq � pH{Op1pHqq{pPOp1pHq{Op1pHqq � E, then |IrrpH{POp1pHqq| �
e, since e is the number of conjugacy classes of E. □

Claim 3.13. e � lpb1q

Again, we first need a few lemmas.

Lemma 3.14. Let p be a prime such that p does not divide |G|. Then IrrpGq �
IBrpGq.

Proof. See Theorem (2.12) of [Nav98]. □

Lemma 3.15. Let N � G a p-group. Then there is a bijection between the p-
regular classes of G onto the regular classes of G{N .

Proof. See Lemma (3.9) of [Isa18]. □

Now we prove Claim (3.13).

Proof. Since the Frobenius action is coprime and POp1pHq{Op1pHq is a p-
number, then p does not divide |E|. By Theorem (3.14) we have that | IrrpEq| �
|IBrpEq|. Therefore, e � |IBrpEq| � |IBrpH{POp1pHqq| and thus e is the
number of p-regular classes of H{POp1pHq. Since POp1pHq{Op1pHq is a nor-
mal p-subgroup of H{Op1pHq, by Lemma (3.15) we have that there is a bi-
jection between the p-regular classes of H{Op1pHq onto the set of p-regular
classes of pH{Op1pHqq{pPOp1pHq{Op1pHqq � H{POp1pHq. As a consequence,
|IBrpH{POp1pHqq| � |IBrpH{Op1pHqq|. But, by Lemma (3.11) this is equal to
|IBrpb1q| � lpb1q. □
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Now, let tµ1, . . . , µeu be the non-exceptional characters of b1. As τ is an isometry
then µτi � ϵiχi for a sign ϵi and some χi P IrrpGq. We refer to tχ1, . . . , χeu as
the non-exceptional characters of B1.

Obviously, if i �� j then χi �� χj , since in other case 0 �� rϵiχi, ϵjχjs � rµτi , µ
τ
j s �

rµi, µjs, and this is not possible.

We want to prove the following.

Theorem 3.16. All non-exceptional characters in B1 are constant on p-singular
elements. In particular, there are at least lpb1q irreducible characters of B1 which
take constant (nonzero) values on p-singular elements.

Furthermore, it is always possible to modify the perfect isometry τ so that it
sends 1H to 1G.

We will distinguish two cases: when H acts transitively on P zt1u and when it
does not. For the first case, we need some claims to establish the result.

Lemma 3.17. G has a normal p-complement if and only if IBrpB0pGqq � t1G0u.

Proof. See Corollary (6.13) of [Nav98]. □

Lemma 3.18. Let x1, . . . , xk be representatives of the G-conjugacy classes of p-
elements of G. Then,

kpB0pGqq �
ķ

i�1

lpB0pCGpxiqqq.

Proof. See Theorem (5.12) of [Nav98] and apply the third main theorem. □

Claim 3.19. Suppose that H acts transitively on P zt1u. Then kpb1q � 1� lpb1q.

Proof. Let 1 �� x P P . As H{Op1pHq is a Frobenius group with kernel
POp1pHq{Op1pHq and 1 �� x P P then it follows that

CHpxqOp1pHq{Op1pHq � CH{Op1 pHqpxOp1pHqq � POp1pHq{Op1pHq,

and therefore CHpxq ¤ P � Op1pHq. As P � Op1pHq is p-nilpotent then so is
CHpxq and by Lemma (3.17) we have that lpB0pCHpxqqq � 1. As P consists
on 2 H-conjugacy classes, then 1, x are the representatives of the p-classes, and
applying now Lemma (3.18) we have that

kpb1q � lpB0pCHp1qqq � lpB0pCHpxqqq � lpb1q � lpB0pCHpxqqq � lpb1q � 1.

□

Lemma 3.20. Let x P G be a p-element and let y P Op1pCGpxqq. If χ P IrrpGq is
in the principal block then χpxyq � χpxq.
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Proof. See Theorem (7.7) of [Nav98]. □

Now, we prove the Theorem in the case where H acts transitively on P zt1u.

Proof. Now, let χ P IrrpB1q. We check that χ is constant and nonzero on
the p-singular elements. As H acts transitively on P zt1u, then the nontrivial
p-elements are G-conjugate, and therefore χ is constant on the nontrivial p-
elements.

By our previous claims we have that kpb1q � 1� lpb1q. Now, since τ is a perfect
isometry, by Proposition (2.33) we have that kpB1q � kpb1q and lpB1q � lpb1q
and thus, kpB1q � 1� lpB1q. Let 1 �� x P P . Using again Lemma (3.18) we have
that lpB0pCGpxqqq � 1, and Lemma (3.17) yields that CGpxq has a normal p-
complement. As a consequence, if y P CGpxq

0 then necessarily y P Op1pCGpxqq,
and by Lemma (3.20) we deduce that χpxq � χpxyq, and hence χ is constant on
the p-singular elements. Let K P ClpGq be a class of p-singular elements and let
x P K. If χpxq � 0 then

0 �

�
|K|χpxq

χp1q


�

� |K|�,

since χ is in the principal block. Then p divides |K|, since in other case a|K| �
bp � 1 for some a, b P Z and hence 1 P M , which is not possible as M is
maximal. However, as P consists on 2 H-conjugacy classes then it is a minimal
normal subgroup of NGpP q, which is necessarily p-elementary abelian. Thus
P � CGpxq and hence p does not divide |K|. Therefore χ is nonzero on the
p-singular elements. □
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